
An Interdisciplinary Approach to Motivate Students to

Learn Digital Systems and Computing Engineering*

MARTA I. TARRÉS-PUERTAS, ALEXIS LÓPEZ-RIERA, PERE PALÀ-SCHÖNWÄLDER and

SEBASTIÀ VILA-MARTA
Department of Mining, Industrial and ICT Engineering (EMIT),Universitat Politècnica de Catalunya, Spain.

E-mail: marta.isabel.tarres@upc.edu, alexis.lopez.riera@upc.edu, pere.pala@upc.edu, sebastia.vila@upc.edu

We report a new learning approach in collaborative learning-by doing, real-world team-based project in two ICT courses:

Digital Systems andComputing Engineering, conducted atUniversitat Politècnica deCatalunya.Data collected included:

background information on students; course evaluations; measures of the knowledge and cross-knowledge of both

disciplines taken before and after our SimulAVRproject. SimulAVR integrates interdisciplinary knowledge by simulating

via software amicrocontroller and its implementation inVHDL.Our study is basedon the analysis of the results of running

the project for 3 years. After taking the simulAVR project, the students rated the interest in both courses higher.

Keywords: interdisciplinary projects; learning by doing; problem-based learning; collaborative work; teamwork; multidisciplinary
approach; ICT; microcontrollers; simulation; digital systems; motivation; computing engineering

1. Introduction

Empirical data from a qualitative investigation of
the experiences of ICT students cursing the Bache-

lor’s degree in ICT Systems Engineering at the

Universitat Politècnica de Catalunya (UPC) is pre-

sented. The new Bachelor’s degree in ICT Systems

Engineering was born on September 2010 as a

response to the adoption of the European Higher

Education Area (EHEA). Bachelor’s degree in ICT

Systems Engineering trains and qualifies students to
dealwith engineering problems inwhich electronics,

informatics and communications play a part. ICT

Students have a general training profile and the

specific knowledge required to work in the emer-

ging, high-impact sector of embedded systems,

which are present in automotive, home automation,

industrial machinery, medical equipment, consu-

mer electronics and traffic control systems. In this
context, two new subjects called Programming

Technologies (PT) and Digital Systems (DS) were

designed in the second semester of the first year.

The relevance of PT in the Bachelor is paramount

and students learn the object oriented programming

paradigm in Python. The standard computer

science discipline curricula recommendations,

ACM and IEEE-CS, (see for example [1]), empha-
size the relevance of learning new languages and

programming constructs, and suggest that students

must understand the principles underlying how

programming language features are defined, com-

posed, and implemented.Oneof the goals of PT is to

show students that building mathematical models

of real systems can help in the design and analysis of

those systems; and to encourage students with the
difficult step of deciding which aspects of the ICT

world are important to the problem being solved

andhow tomodel them inways that give insight into

the problem.
The aim of DS is to learn how to design complex

digital systems. The programmable devices

(FPGAs, CPLDs) allow testing the design of digital

systems implementations described by VHSIC

Hardware Description Language, in short,

VHDL. VHDL language in introductory courses

on digital systems is widely used. For more details

on a VHDL language course, see for example, [2].
The objective of this paper is to describe our

experiences, both successes and failures, in teaching

PT and DS topics during three years and document

what we have learnt, providing the details of the

interdisciplinary project SimulAVR. This paper

describes the use of anAVRmicrocontroller (Simu-

lAVR) in a project-based learning environment in

which the design of the AVR is the basis of the PT
project in order to encourage the students to get

more involved with the computer digital systems

abstraction. The students themselves take responsi-

bility for their learning process and become promo-

ters of their own learning. They have to develop a

project that is relevant to the real world. They need

to obtain the relevant information and learn all of

the necessary concepts while the lecturer provides
guidance and counseling in the process (they learn

the concepts by doing). Thus, the project stimulates

learning. Moreover the project is based on colla-

boration. Students have to work in teams, which

forces them to develop other skills. For more

information on the pedagogical approaches we

refer to the works of learning by doing projects,

[3, 4], problem-based learning, [5–7], project-based
computer programming activities [8], collaborative

* Accepted 10 November 2018.510

International Journal of Engineering Education Vol. 35, No. 2, pp. 510–518, 2019 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2019 TEMPUS Publications.



research between courses, [9–12], real-world pro-

jects and team-based learning, [13, 14]. All the

course files for DS and PT are open source and

available at theOpenCourseWareof this degree,(see

[15]).

1.1 Motivation

PT and DS topics have been taught at universities

using basically the same teachingmethods for years,

which include lectures to explain theoretical con-

cepts and laboratory assignments to put them into

practice, based on personal computers. In our

approach we emphasize learning-by-doing in con-
trast to traditional lecture-based approach.

Programming Technologies course is a critical

building block in information systems curricula,

(see [16]). The fundamental concepts of OOP,

including (but not limited to) writing classes, inheri-

tance, and polymorphism, are taught. Python is

used as the programming language, but the focus

of the course is more on general concepts instead of
features typical of any particular language. For

previous work in this area see for example the

works of Goldwasser and Letscher, [17].

Ourwork is significant because (1)we apply a new

approach based on collaborative learning between

digital systems and computing, (2) we apply novel

pedagogical approaches such as problem-based

learning, project-based computer activities, team-
based learning and learning-by-doing project, (3)

the approach allows improving student’s learning

evaluation in DS and PT compared to the former

method where assignments were made individually

for each course and (4) allows to keep the student’s

motivation and interest in DS and PT high.

One of the main challenges we have faced is to

teach DS and PT in an interdisciplinary way that
allows us to give high-quality feedback. We rede-

signed a programming course based on the best

practices obtained from our own research and

experiences. The redesign was done in the following

areas: by enhancing active learning, collaboration

and team-based learning, real-world projects and

collaborative research between courses, and student

communication and by refactoring the evaluation
procedure. In this regard, we have observed how PT

and DS teacher’s enthusiasm and receptivity for

developing the project SimulAVR based on digital

systems is a critical ingredient formaximum impact.

The SimulAVR project, [18], is a simulator for the

Atmel AVR family of microcontrollers.

1.2 Main contributions

In this paper we present, (1) a multidisciplinary

project, SimulAVR, using object oriented program-

ming methodology learned in PT and implementa-

tion in VHDL, (2) the study of the satisfactory

results obtained by combining concepts of the two

disciplines: digital systems and computing, and (3)

the lessons learned in setting up the SimulAVR

project.

1.3 Methodology

Next follows the main stages of our methodology.

1.3.1 Sharing tasks and discussions by

interdisciplinary teachers

To carry out this approach and be able to ‘‘train the

trainer’’, the fellow colleagues of computer science

and electrical engineering planned tomeet one week

before starting the course and weekly two hours

during the semester. Theoretical study of the digital

systems micro-controllers area are discussed with
computer science teachers. In our case, it was really

easy to break down barriers between teammembers

of computer science and electrical engineering

departments due to the fact that the departments

were joined as a result of the new ICT bachelor.

1.3.2 Project proposal brainstorming

Theobjectivewas to develop a preliminary design of

the new software project challenge as a follow up of
the works already developed in PT and DS.

1.3.3 Design the object-oriented paradigm of the

SimulAVR project and verification of the algorithm

resulting as the proposal solution

This is worked out together in face-to-face meetings

with agendas determined by with DS and PT

teachers. The project is broken into tasks and class-
room teaching is synchronized in order to prepare

students for each task of the project. These requires

a strong collaboration between instructors before

each guided task. We use a content management

system (Subversion, SVN) to share source code and

results. The project design included: (1) the devel-

opment of the UML diagram, (2) specifications, (3)

software project planning: requirements, core use
cases, basic design, design verification, assignments

to code in parallel, (4) test cases development, (5)

initial integration by combining subcomponents/

subclasses and (6) final integration. Finally, an

efficient algorithm to simulate an AVR mini-con-

troller is devised and tested. In section 3 we describe

the SimulAVR project in depth.

1.3.4 Publishing material on-line [18] and

reviewing material based on student’s feedback

The published material includes (1) the SimulAVR

specifications according to the software project

planning, (2) Programming Technologies and Digi-

tal Systems course notes.

An Interdisciplinary Approach to Motivate Students to Learn Digital Systems and Computing Engineering 511



1.3.5 Measuring the quantitative impact of our

actuations

During the semester we gather two types of course
data related to analyze the impact of the AVR

project in PT and DS marks. We do this for two

reasons: (1) to adjust the course to the students’

needs during the course, and; (2) to analyze data

after the courses in order to improve the perfor-

mance of the courses the following year. In section

4.1 we give the details of the results.

1.3.6 Checking evaluation results as an analysis of

student’s marks and gathering feedback from

students

We also want to use the class feedback and experi-

ence for improving the project statement, its dis-

tribution into tasks, adjusting the difficulty of each

task, etc. Instructors spend considerable time super-

vising and interacting with the students. The Sub-

version management system gives us also the ability
to closely monitor the progress of each group of

students. A significant fraction of student groups

are able to produce impressive solutions andmost, if

not all, are more than correct. And all of them

provided very positive feedback for this task. In

section 4.2 we give the details of the results.

1.4 Organization

The rest of the paper is organized as follows.
Sections 2–3 give the required background and

curricular context information about DS and PT

courses, and the implementation details of the

SimulAVR project. In Section 4, the evaluation

data gathered and the results obtained each year

are presented, followed by a description of the

feedback from students, reflecting on the results

and the adaptations made to during the three
subsequent academic years in which it was applied,

from 2013/2014 to 2015/2016. Section 5 discusses

the lessons learned during this experience and draws

conclusions.

2. Courses description

2.1 Description of digital systems

Digital Systems is a compulsory course in the

second semester during the first year of the ICT

degree. The main goal of the course is to design and

implement digital systems in VHDL language.

Thus, it is based on the design of small projects

based on real devices, implementing them with a

FPGA device. The concepts of digital systems
theory used from now on are standard. For more

information we refer to the books of Mano, [19],

Tanenbaum [20] and Atmel Project [21].

On the first part of the course, basic concepts of

digital systems applied to VHDL are introduced.

On the second part, the aim is to reinforce the

VHDL learning through the design and implemen-

tation of an 8-bit AVR microcontroller. The
designed AVR is a simplified version from the

original. The main VHDL code is given to the

students. Fig. 1 shows the miniAVR architecture

schematic.

The course evaluation consists of a partial exam

and a final exam, that represent 15% and 35%

respectively of the final mark. The partial exam

contains some questions about general concepts in
digital electronic and a VHDL problem. In the final

exam there is a VHDL problem and a multiple

choice test about specific questions on the AVR

microcontroller (particularly on VHDL implemen-

tation) and featuring concepts on VHDL. More-

over, the lab assignments give 25% of the final mark

and the exercises another 25%.

2.2 Description of programming technologies

Programming Technologies course is a critical

building block in information systems curricula,
(see [16]). The fundamental concepts of OOP are

taught. Python is used as the programming lan-

guage.

In the two hours of theory sessions, the professor

Marta I. Tarrés-Puertas et al.512

Fig. 1.MiniAVR architecture schematic (VHDL implementation).



alternates new theoretical concepts with examples

and exercises. Lectures, in which the course topics

are presented, explained and illustrated, are com-

binedwith student interaction regarding the various

alternatives for solving practical cases. In the two

hours of laboratory sessions, some exercises are

solved through collaboration. To facilitate active

learning, students are expected to solve problems
from a list during laboratory sessions and as part of

their home study activities. They are also advised to

regularly consult their professor about the quality

of their programs. Finally, students need to work in

groups to solve the SimulAVR project. The pro-

grammingproject integrates knowledge and skills of

the entire course. In a previous laboratory session,

teams of students will be trained to solve the project.
The final exam mark is awarded individually. Final

marks for the course will be determined using the

following weighting: 40% final examination, 25%

SimulAVRproject assessment, and 35%continuous

assessment (laboratory and additional lecture exer-

cises).

3. The SimulAVR project

In what follows we describe the new SimulAVR

Python based project.

3.1 AVR microcontroller background

This section is a recapitulation of some basic con-
cepts that are the base of the developed software.

Formore information onAVR8-bit Instruction Set

concepts we refer to [19], Tanenbaum, [20] and

Atmel [21]. Inwhat followswe provide the specifica-

tion details of theAVRmicrocontroller architecture

provided to PT students.

The AVR is a modified Harvard architecture 8-

bit RISC single-chip microcontroller, where pro-
gram and data are stored in separate physical

memory systems that appear in different address

spaces, but having the ability to read data items

from program memory using special instructions.

The AVR Enhanced RISC microcontroller sup-

ports powerful and efficient addressing modes for

access to the Program memory (Flash) and Data

memory (SRAM, Register file, I/O Memory, and

Extended I/O Memory). This section describes the

various addressing modes supported by the AVR

architecture.

Program instructions (ProgramMemory) are
stored in non-volatile flash memory. Although the

MCUs are 8-bit, each instruction takes one or two

16-bit words. The data address space (Data-

Memory) consists of the register file, I/O registers,

and SRAM. Theworking registers aremapped in as

the first 32 memory addresses (0000–001F). Central

in the AVR architecture is the fast-access RISC

register file, which consists of 32 � 8-bit general
purpose working registers. Within one single clock

cycle, AVR can feed two arbitrary registers from the

register file to the ALU, do a requested operation,

and write back the result to an arbitrary register.

The ALU supports arithmetic and logic functions

between registers or between a register and a con-

stant. Single register operations are also executed in

the ALU. In addition to the general registers, there
is a Program Counter (PC) register and a Status

Register (SREG) that contains the condition flags

and interrupt masks. The width(size) of the pro-

gram counter (PC) is 16 bits.

Fig. 2 shows the basic architecture of the AVR

microcontroller.

In the project a limited set of AVR instructions

and a basic number of addressing modes is used.
Following there is a description of the expected

addressing modes needed by the instructions.

� Direct Single Register Addressing. The operand

is contained in register d (Rd).

� Direct Register Addressing, Two Registers.
Operands are contained in register (Rr) and

(Rd). The result is stored in register (Rd).

� I/O Direct Addressing. Operand address is con-

tained in six bits of the instruction word.

An Interdisciplinary Approach to Motivate Students to Learn Digital Systems and Computing Engineering 513

Fig. 2. SimulAVR microcontroller basic architecture.



The set of instructions needed to implement are

the basic and arithmetic instructions, data transfer

instructions, branch instructions andMCUControl

Instructions. The set of required instructions are
ADD, SUB, SUBI, AND, OR, EOR, LSR, MOV,

LDI, STS, LDS, RJMP, BRBS, BRBC, NOP,

BREAK, IN, OUT. For the case of IN and OUT

instructions, we work with virtual ports, such as the

keyboard and the screen, andweuse the instructions

for the in/out of the assembly language programs.

Fig. 3 shows the use of the AVR ADD instruc-

tion.

3.2 SimulAVR module structure

This section illustrates the overall architecture of the

developed software, presents themajor class designs

and highlights application of Python language for
simulating the miniAVR. The project is structured

in several modules containing one ore more classes.

Following there is a brief description of each

module.

bitvec: Contains the classes needed to represent

words and bytes.

memory:Contains the classes related to thememory

of the AVR architecture.

state: Contains one class that represents the state

(memory included) of the microcontroller.
instruction: Contains the classes that implement all

and each of the operations in machine language

recognized by the simulator.

repertoir: Contains one class that groups the reper-

toir of instructions of the simulator.

avrmcu: Contains one class that implements the

general control of the microcontroller.

intelhex: It is a predefined module that allows to
read conveniently programs written in machine

language, that is files with Intel HEX format,

[Int88].

avrexcep: This is the module needed to manage the

exceptions.

simavr: This is the main module.

3.3 SimulAVR class diagram

Fig. 4 shows the class diagram that represents the

class structure of the project. Note that neither

constructors nor special methods are included.

Following there is a brief description of each class.

BitVector class is an abstract class representing a
word less than or equal to 16 bits.

Byte class represents a byte.

Word class represents a word of 16 bits.

AVRException class handles any exception raised in

the simulation of the AVR. AVRExceptions are

classified into BreakException, MemoryExcep-

tion and UnknownCodeError.

Memory class is an abstract class and represents the
space memory of the AVR. It has two subclasses,

the ProgramMemory class and DataMemory

class. Data memory is addressed by octet. Load

and store instructions operate on 8 bit quantities.

Program memory is addressed by 16 bit word

when fetching instructions.

State class represents the MCU state. The state

contains the set of registers and memories.
When an instruction is executed, the state

changes.

InstRunner class is an abstract parent class which

generalizes the common methods for each of the

instruction subclasses. Each instruction of the

microcontroller is represented by a class. For

example, the ADD instruction is represented by

the Add class, and similarly for each of the rest of
instructions implemented for the AVR. The

classes Adc, Sub, Subi, And, Or, Eor, Lsr, Mov,

Ldi, Sts, Lds, Rjmp, Brbs, Brbc, Nop, Break, In,

Out are subclasses of InstRunner.

Repertoir class represents a set of instructions of a

Marta I. Tarrés-Puertas et al.514

Fig. 3. SimulAVR Instruction ADD R7, R17.

Fig. 4. SimulAVR class diagram.



MCU. The main goal of this class is, given an

instruction returns the InstRunner object that is

capable of executing the corresponding code.

AvrMcu class represents the MCU AVR simulator.

Themain goal of this class is to execute a program

written in assembly language.

3.4 SimulAVR program execution

The main program is invoked as follows, $ ./simavr

program.hex

The file program.hex contains the program for

the MCU AVR in the standard format HEX, [22].

When finishing the execution of the simulation,

command simavr, allows to do a set of actions
according to the following options:

-p: the program memory is dumped to screen.

-r: the registers content is dumped to screen.

-d: the data memory content is dumped to screen.
-t: set trace on the data memory operations.

For example, $ ./simavr -rt program.hex executes

the instructions contained in the program.hex file,

shows the data memory accesses and dumps regis-

ters state. The file in HEX format contains the
machine program needed by the AVR. IntelHex

project, [23], gives a python module that allows to

easily process files in HEX format. Class Intel-

Hex16bit from intelhex module is used to read the

machine language instructions stored in heHEXfile

that needs to be simulated. In order to create de

HEX file we use a free assembler language for the

AVR family, named Avra, [24]. Then we can write
the file example1.asm and then convert it automa-

tically to example1.hex.

LDI R16, 0xff

LDI R17, 1

ADD R17, R17
MOV R0, R17

AND R0, R16

BREAK

The avra commands are as follows: $ avra exam-

ple1.asm and $avra -l example1.lst example1.asm

4. Evaluation results

A total of 120 students participated in this study,

with an average of 40 students each course. The

students were randomly assigned to collaborative

learning teams, each of which consisted of four

students. The core of the experiment consisted of

an 8-week software development project based on
the AVRmicro-controller simulation. At the begin-

ning of the learning activity, the students were asked

to understand the UML diagram given in object

oriented classes together with an accurate descrip-

tion ofmethods andattributes of each class. Follow-

ing that, they needed to design and implement the

software for simulating a small AVR-compatible

microcontroller (SimulAVR). In our research, we

analyzed (1) student’s marks in DS and PT courses,

(2) student’s perception of their ability to solve

digital systems problems using PT, and (3) student’s
learning attitudes toward taking DS and PT

courses, compaired to other courses in the institu-

tion. The aim of the study was twofold: to assess the

learning effectiveness of the new active educational

approach and to analyze the motivation toward the

two subjects fostered by the project development.

The first aim is analyzed using the scores achieved

by the students in each course; the second aim is
analyzed via satisfaction questionnaires. We revisit

these points in more detail in the next subsections.

4.1 Analysis of students’ marks

Next follows the analysis of student’s marks in PT

andDS through the effects of the SimulAVRproject

implementation. The official marks provided by

UPC-Manresa were employed to compare the stu-

dents’ problem-solving ability after solving the

SimulAVR assignment in each course (DS and

PT), compared to the ones before doing the assign-

ment. Fig. 5 shows the total scores of the students
compared for the periods before (Pre-AVR) the

SimulAVR project development (from academic

year 2013/14 to academic year 2015/16) and after

the finalization (Post-AVR). In each course we can

see an increasing of the student average marks in

each subject after doing the assignment (Post-AVR)

with respect to the Pre-AVR marks. For the case of

DS, the marks augmented by 27%, 24% and 36%
respectively. For the case of PT the marks increased

5%, 10% and 4% respectively.

4.2 Gathering feedback from students

In what follows we provide the information about
students viewpoint related to the ability to solve DS

and PT problems, including students fulfillment

perception measures.

4.2.1 Analysis of students’ problem-solving ability

and Analysis of the students’ learning motivation

The same questionnaire was given to students at the

middle of the semester (Pre-AVR) and at the end

(Post-AVR). Students ranked their level of agree-

ment or disagreement (1: Strongly disagree, 5:

Strongly agree) with several predefined statements.

Table 1 lists the eleven statements related to the
project activities and their feeling of level of under-

standing of the concepts of the two courses.

Fig. 6 indicate a strong perception of students to

their own ability to work in Object-oriented assign-

ments based on Digital Systems.

An Interdisciplinary Approach to Motivate Students to Learn Digital Systems and Computing Engineering 515



4.2.2 Analysis of students’ learning attitudes

toward taking the courses

Finally we provide the analysis of students’ learning
attitudes toward takingPT/DS courses compared to

all courses in UPC and all courses in UPC-Manresa

(EPSEM). Table 2 shows the general questionnaire

from official evaluation results carried by UPC-

BarcelonaTech at the end of the semester.
The students are asked to mark the level of

agreement in each statement of Table 2 from 1

(Strongly disagree) to 5 (Strongly Agree). The

satisfaction and total scores of the students were

compared from academic year 2013/14 to academic

year 2015/16. Fig. 7 shows, for each question, the

mean of ranks obtained in the three academic

courses.
The results in Fig. 7 indicate that the intervention

Marta I. Tarrés-Puertas et al.516

Table 1. Specific questionnaire

Q1: VHDL language is a powerful language used widely.

Q2: I am able to apply the VHDL language in order to solve any
problem presented in DS field.

Q3: I am able to apply theOOP concepts learned in the PT course
to real issues or to other disciplines.

Q4: DS practical cases are widely applied in the industry.

Q5: Concepts in DS and in PT match together.

Q6: PT allows to deepen in the knowledge of the AVR working
process.

Q7: PT increases the knowledge of the OOP methodology.

Q8: PT allows to practice in depth the VHDL language.

Q9: PT helps to understand the relationship between high level
and low level programming languages.

Q10: PT helps to simulate how the miniAVR works by using a
limited set of instructions.

Q11: The AVR concepts in DS are the base of the SimulAVR

Fig. 6. Specific questionnaire (Table 1) results.

Table 2. General questionnaire at UPC

Q1: The contents of the course are interesting.

Q2: I agree with the course procedures and assignments support
course objectives.

Q3: I am satisfied with the course

Fig. 7. Results of general questionnaire at UPC (Table 2).

Fig. 5. Analysis of students’ marks in PT and DS.



of the proposed learning approach improves the

learning motivation of the students in the two

courses. Further, the interest in DS and PT is

higher than the median of the courses taken in

UPC as a whole and UPC-Manresa (EPSEM).

However, in order to be able to contextualize these
numbers and emphasize the success of our proposal,

note that, in our institution, the passing rate in the

second semester of first-year subjects is around 38%

and the drop-out rate around 44%, both on average,

(see [25]), while the numbers corresponding to DS

and PT (the full subject) are around a 80% passing

rate and 10% drop-out rate.

5. Discussion

We have found that in each group there is a number

of students who enjoy challenges, and thus like the

challenging projects as the SimulAVR project as

well. Student’s attitude is very important for a

successful SimulAVR project. Also, our approach
has some limitations in the case of students that fail

one of the two courses because it becomes very

difficult for them to be able to reach the challenge

of relating and integrating the knowledge of both

subjects. The percentage of these students is low,

and the number of students who leave both courses

almost always coincides.

6. Conclusions

The SimulAVR project allows ICT Systems Engi-

neering students to deepen their knowledge of

digital systems together with object oriented pro-

gramming. Empirical evidences developed for both

courses at UPC in Manresa have been presented.

Through these activities, students became more
interested in theDigital Systems andOOP concepts.

Additionally, the number of students achieving high

scores increased. What is more, there is an incre-

ment of the student interest in taking computer

architecture subjects in the subsequent academic

year. The positive impact of this experience on

teaching in first-year subjects suggests that this

idea can be expanded to other courses. Student
feedback and assessment data indicate that the

intended objectives were achieved.

It is hoped that the findings of this study can assist

the lecturers of OOP and DS courses to develop

similar techniques to improve student learning

experiences and motivate students towards Digital-

Systems-OOP and related courses. All exercises,

data and supplementary material are available at
openCourseWare web-site of this degree, for use by

other instructors. The four authors of this paper

won the ‘‘Premi a la Qualitat en la Docència

Universitària del Consell Social de la UPC al

Grau en Enginyeria de Sistemes TIC’’ Award,

which was awarded annually for excellence and

innovation in teaching and for making a significant

impact on the student learning experience.

Acknowledgments—This study is supported in part by the Span-
ishMinisterio de Economia yCompetitividad andFEDERgrant
TEC2015-65748-R. The authors would like extend our thanks to
DS and PT students who provided excellent feedback over the
past 3 years.

References

1. IEEE Computer Society The Association for Computing
Machinery (ACM). Computer Science Curricula 2013. Cur-
riculum guidelines for undergraduate degree programs in
computer science, https://www.acm.org/education/CS2013-
final-report.pdf, Accessed 1 June 2017.

2. R. d’Amore, A Synthesis-Oriented VHDL Course ACM
Transactions on Computing Education, 10(2), pp. 1–24, 2010.

3. M. V. Ramakrishna, A Learning by Doing Model for
Teaching Advanced Databases, Proceedings of the Australa-
sian Conference on Computing Education, ACSE ’00, New
York, NY, USA, pp. 203–207, 2000.

4. A. V. Alejos, J. A. G. Fernandez, M. G. Sanchez and I.
Cuiñas, Innovative Experimental Approach of Learning-
Through-Play Theory in Electrical Engineering, The Inter-
national Journal of Engineering Education, 27(3), pp. 535–
549, 2011.

5. D. Chinn and K. Martin, Collaborative, Problem-based
Learning in Computer Science, Journal of Computer Science
in Colleges, 21(1), pp. 239–245, 2005.

6. M. Cirstea, Problem-Based Learning (PBL) in Microelec-
tronics, The International Journal of Engineering Education,
19(5), pp. 738–741, 2003.

7. W. Hamiza, W. M. Zin, A. Williams and W. Sher, Introdu-
cing PBL in Engineering Education: Challenges Lecturers
and Students Confront, The International Journal of Engi-
neering Education, 33(3), pp. 974–983, 2017.

8. H. Wang, I. Huang, and G. Hwang, Comparison of the
effects of project-based computer programming activities
between mathematics-gifted students and average students,
Journal of Computers in Education, 3(1), pp. 33–45, 2016.

9. E. L. Tiessen and D. R. Ward, Developing a Technology of
Use for Collaborative Project-based Learning, Proceedings
of the 1999 Conference on Computer Support for Collabora-
tive Learning, CSCL ’99, Palo Alto, California, 1999.

10. L. C. Benson,M.K. Orr, Sherrill B. Biggers,W. F.Moss,M.
W.Ohland and S.D. Schiff, Student-CenteredActive, Coop-
erative Learning in Engineering,The International Journal of
Engineering Education, 26(5), pp. 1097–1110, 2010.

11. J. J. Marquez, M. L. Martinez, G. Romero and J. M. Perez,
New Methodology for Integrating Teams into Multidisci-
plinary Project Based Learning, The International Journal of
Engineering Education, 27(4), pp. 746–756, 2011.

12. H. C. Huang, S. G. Shih and W. C. Lai, Cooperative
Learning in Engineering Education: a Game Theory-Based
Approach, The International Journal of Engineering Educa-
tion, 27(4), pp. 875–884, 2011.

13. J. Tan and J. Phillips, Challenges of Real-world Projects in
Team-based Courses, Journal of Computers in Education,
19(2), pp. 265–277, 2003.

14. Á. F. Blanco, D. Lerı́s, M. L. Sein-Echaluce and F. Garcı́a,
Monitoring Indicators for CTMTC: Comprehensive Train-
ing Model of the Teamwork Competence in Engineering
Domain,The International Journal of EngineeringEducation,
27(4), pp. 829–838, 2011.

15. UPC iTIC OpenCourseWare, https://ocwitic.epsem.upc.
edu, Accessed 1 June 2017.

16. Programming Technologies course notes, https://ocwitic.
epsem.upc.edu/assignatures/tecpro, Accessed 1 June 2017.

17. M. H. Goldwasser and D. Letscher, Teaching Object-
oriented Programming in Python, SIGCSE Bull, 39(3), pp.
365–366, 2007.

An Interdisciplinary Approach to Motivate Students to Learn Digital Systems and Computing Engineering 517



18. SimulAVR. MCU AVR Simulator, Programming Technolo-
gies course notes, https://ocwitic.epsem.upc.edu/assignatures/
tecpro/laboratori-material/tecpro.-projecte-de-curs/, Accessed
1 June 2017.

19. M. Morris, Computer Engineering: Hardware Design, Pre-
ntice Hall, 1988.

20. T. A. Andrew and S. Tanenbaum, Structured Computer
Organization, English, 6th edition, Pearson, 2012.

21. Atmel AVR 8- and 32-bit, http://www.atmel.com/products/
avr, Accessed 1 June 2017.

22. Intel. Hexadecimal Object File Format Specification, http://
microsym.com/editor/assets/intelhex.pdf, Accessed 6 Janu-
ary 2017.

23. IntelHex Project, https://launchpad.net/intelhex, Accessed 1
June 2017.

24. AVRA—Assembler for the Atmel AVR microcontroller
family, http://avra.sourceforge.net, Accessed 1 June 2017.

25. UPCTransparency indicators, https://gpaq.upc.edu/lldades/
quadrecomandament.asp?codiCentre=330, Accessed 1 June
2017.

Marta I. Tarrés-Puertas received the PhD degree in Software and the Master’s degree in Computer Science Engineering

from the Universitat Politècnica de Catalunya (UPC). Since 2005 she is a lecturer at the UPC. Her research and teaching

activity is mainly related to computing, software design and innovation in learning methodologies.

Alexis López-Riera received the Eng. Tec. Telecommun. and Master in Electronic Eng. degrees from the Universitat

Politècnica de Catalunya (UPC). He was a part-time assistant professor at the UPC (2010–2013). He is currently working

towards his PhD in the area of super regenerative receivers and he is Professor of Digital Systems.

Pere Palà-Schönwälder received the Eng. Telecommun. and PhD degrees from the Universitat Politècnica de Catalunya

(UPC).He is currently anAssociate Professor at theUPC.He is the contact person ofUPC’sCommunicationCircuits and

Systems Research group and has been the project leader of several government and industry-funded research projects.

Sebastià Vila-Marta is an associate professor of Computer Science at the Universitat Politècnica de Catalunya (UPC),

Manresa, Catalonia. His research interests include solid modelling, geometric constraint solving, high level languages for

geometric representations and graphic user interfaces for CAD.

Marta I. Tarrés-Puertas et al.518


