
A Web-Based Tool for Learning Digital Circuit

High-Level Modeling*

ANDREJ TROST and ANDREJ ŽEMVA
Faculty of Electrical Engineering, University of Ljubljana, Slovenia. E-mail: Andrej.Trost@fe.uni-lj.si

Modeling of increasingly complex digital circuits requires high-level design tools and languages. Design tools based on

standard hardware description languages need substantial training which limits their usage in a typical digital system

design course. In this paper, we propose a small hardware description language SHDL for circuit modeling and present a

novel web-based educational tool. The SHDL includes similar high-level modeling semantics to VHDL but has

substantially simplified syntax. The web-based SHDL modeling and simulation tool enables quick introduction to

language-based circuit modeling. The SHDL model is automatically translated to the equivalent VHDL model. The

proposed tool enables conducting more laboratory and self-learning circuit design experiments important for compre-

hending the design process. A one-semester laboratory hardware modeling lessons are described and educational

experience with the new methodology is discussed.

Keywords: teaching digital design; high-level model; hardware description language; educational web tool

1. Introduction

Digital design is one of the key topics in electrical

and computer engineering education. A fundamen-

tal digital design course covers switching circuits,

logic gates, Boolean equations, combinational and

sequential circuit design and analysis. The curricu-

lum is traditionally based on switching circuits and

logic chips. Due to the advances in digital integrated

circuits technology, programmable logic devices
and hardware description languages (HDL) are

often included in the curriculum. The digital

design teaching books include HDL modeling in

one of the standard languages: VHDL [1] or Verilog

[2]. A recent survey [3] shows that a little more than

half of the electrical and computer engineering

digital courses are HDL based. The digital design

topics are spread over the study programs in courses
from the first year of study to advanced courses for

master students. A digital design course should be

focused on the design principles and not on the

details of the HDL syntax and development tools.

Teaching and learning the high-level circuit model-

ing can benefit from a tool that supports building

the HDL model from a simplified description and

evaluating the design in a web browser.
At our Faculty of Electrical Engineering, we

begin with a basic digital structures course for

sophomore and continue in the next year to

advanced digital integrated circuits and systems.

The lectures are focused on digital integrated circuit

analysis and design of digital systems. The labora-

tory practice coverHDLdesignwith programmable

devices. Hands-on experiments are important for
learning digital design. Traditional experiments

with TTL logic chips on breadboards are today

superseded by logic simulators and programmable
development boards. The subject teachers can

choose among a variety of commercial and free

logic simulators to support supervised practical

work and self-learning [4].

Programmable devices enable conducting a

broad range of experiments, from basic logic cir-

cuits with simple input/output interfaces to systems

with digital controllers and standard interfaces. The
students begin to learn design techniques by exam-

ples of standard digital building blocks and advance

by implementing unique projects on FPGA boards

[5–10]. Projects using VGA graphics port to display

data on a computer monitor are among most

popular because the VGA controller is easy to

implement on the FPGA and the students are

motivated to design simple games or animation
[5–7]. Other common educational FPGA design

project topics are application specific signal and

image processing circuits [8–9] and custom micro-

processor design [10].

Advanced digital systems courses introduce

system-on-chip devices with programmable logic

andmicroprocessor on a single programmable inte-

grated circuit [11]. Programmable devices require a
development environment, referred as back-end

tools, provided by the devicemanufacturer vendors.

The back-end-tools contain HDL synthesis and

technology implementation compilers and

advanced options for efficient digital systems devel-

opment beyond HDL: block design, intellectual

property components and high-level synthesis [12].

These tools are developed for trained engineers and
are not well suited for the digital design introduc-

* Accepted 24 April 2019.1224

International Journal of Engineering Education Vol. 35, No. 4, pp. 1224–1237, 2019 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2019 TEMPUS Publications.

tion. From our experience, the tool installation and

usage complexity discourage the students to set-up

the tool for self-learning. Several web-based educa-

tional tools were developed to support the teaching

of digital logic. System forDigital LogicDesign and

Simulation [13] allows users to design and simulate
switching circuits. A remote laboratory setup can be

used for circuit design and testing [14, 15]. A light-

weight web environment enables fast development

and testing digital designs [16]. Digital simulator is

the main analysis tool for the digital designer and

visualization of simulations supports digital design

education [17].

Students learning digital design with HDL have
difficulties to comprehend the unfamiliar language

syntax and modeling paradigm [18]. The main steps

of the HDL based digital design and prototyping

process are:

(1) design specification,

(2) building the digital circuit model,

(3) verification and prototyping implementation.

The specification describes the task of the digital

circuit and is usually in the natural language form,

which needs to be transformed into the digital

circuit model. The digital model is described on

the register-transfer level (RTL) using hardware

description language. The transformation requires
knowledge of the modeling syntax and semantics as

well as understanding the technology implementa-

tion. Digital circuit model is different to a computer

program in several ways; the logic expressions are

executed in parallel, the timing is specified in terms

of clock cycles and there are many technological

modeling limitations.

The industry standard language VHDL has ver-
bose syntax and the students are required to learn a

lot of keywords and semantic rules even for small

digital circuit models. The semantic rules define

limitations for signal assignments order in concur-

rent or sequential statements. Designing a synthe-

sizable circuit description requires careful modeling

of synchronous and asynchronous logic.

Several tools and languages on the higher
abstraction level were developed to mitigate the

digital design complexity and close the gap between

design efficiency and technology resources [19].

These tools translate models to lower level descrip-

tion usable for back-end synthesis and technology

mapping. To efficiently use the abstract tools, the

designer still needs the knowledge of basic logic

elements and practical understanding of the RTL
languages such as VHDL. Several educational lan-

guages and supporting tools were proposed to

introduce HDL based digital design [20, 21], but

none of these languages can be used to guide

students to adopt proper VHDL coding practice.

Knowing industry standard HDL coding should be

one of the digital course outcomes.

We propose a small hardware description lan-

guage SHDL and we developed a web-based educa-

tional tool to boost learning language based high-

level digital circuit design. The web tool enables
SHDLmodeling, simulation and transformation to

functionally equivalent VHDL code. In the next

section, the HDL modeling, SHDL syntax and the

supporting web tool are presented. Introduction

and usage of the proposed methodology in digital

systems design laboratory is discussed in Section 3.

Section 4 concludes the paper with the summary of

the experience and guides for the future.

2. Hardware description languages in
digital systems education

Electrical engineering digital design education is

composed of several courses covering topics from

digital integrated circuits structures and logic build-
ing blocks to digital systems. The initial digital

design course follows a bottom-up approach start-

ing with thorough explanation and analysis of

simple logic structures. Smaller logic circuits can

be adequately described schematically, but a hard-

ware description language is also introduced to set a

firm ground for building larger digital circuits and

systems.
A higher level of abstraction provided by the

hardware description languages is required for the

efficient design of contemporary digital systems.

High-level hardware description languages use

three modeling styles: structural, data-flow and

behavioral. The structural modeling is used for

hierarchical design, where the circuit is composed

of smaller interconnected building blocks. The
structural model is equivalent to low-level digital

schematic design. The development environment

tools allow heterogenous description of a digital

system, which is typically composed of a schematic

for the top level and HDL description for the

operation of building blocks.

Data-flow modeling describes the operation of

thedigital systemwhere input data is transformed to
produce output signals. Transformations are

described using concurrent modeling style where a

series of statements are operating in parallel. The

benefit of a high-level language in data-flowmodels

is a rich set of available data types and operators.

For example, when we use an adder in schematic

design we must select a specific library component

matching input data type and size. The same adder
can be described in HDL with a simple expression.

Behavioral modeling is the highest abstraction

level in a hardware description language. Themodel

describes the circuit operation or algorithm and not

A Web-Based Tool for Learning Digital Circuit High-Level Modeling 1225

explicitly the circuit structure or flow of data.

Behavioral models introduce language constructs

like software languages and a concept of a statement

sequence for describing the algorithm.

The language VHDL used in our digital design

courses has a very verbose syntax and strict typing

rules causing most of the learning problems to the

students. Fig. 1 presents the VHDL topics follow-
ing the bottom-up digital design course. The lan-

guage structures: entities, interfaces, data types,

operators and process must be explained to

model basic combinational or sequential blocks.

Even small logic building block models in VHDL

contain a dozen keywords. Register-transfer level

data-flow circuits introduce concurrent statements

and structural modeling concepts: VHDL compo-
nents and port maps. Structural and discrete event

modeling is used to build simulation test benches.

Design of a state-based sequential circuit, e.g.,

counter or finite-state machine is based on a

VHDL behavioral process. Larger logic models

benefit from advanced data types, generic para-

meters and packages with procedures used for

advanced simulation.

2.1 VHDL topics covering bottom-up digital design

A course on digital systems aims to upgrade the

knowledge based on a top-down digital system

design approach. The students should be able to
develop a model of a digital system according to

specifications and present a working design project.

The practical learning should be focused on the

modeling semantics, but we experience that a lot

of time is wasted for writing syntactically correct

VHDL code. Paying a lot of attention to the syntax

takes time which could be used to improve under-

standing of semantics and reasoning behind the

construction of digital system models.

To augment VHDL design efficiency, we propose
a small hardware description language—SHDL

which has simple syntax rules. Fig. 2 presents the

SHDL topics covering bottom-up digital design

course. The SHDL model of combinational blocks

requires only combinational assignments with

operators and sequential blocks introducing

sequential assignments. To build a simple test

bench we propose a graphical test bench design
tool incorporated in the simulator. Concurrent

statements description rules are used for data-flow

models and conditional statement for behavioral

modeling of the state sequential circuits. The SHDL

should be automatically translated toVHDL for the

back-end implementation tools.

2.2 Small hardware description language

The modeling language SHDL is constructed based

on our experience with hardware description lan-

guages VHDL and Verilog for digital systems

education. Educational usage is typically con-

strained to smaller projects requiring only a limited
set of the language syntax. The SHDL is not

intended tomodel every aspect of the digital systems

Andrej Trost and Andrej Žemva1226

Fig. 1. VHDL teaching topics covering bottom-up digital design course.

Fig. 2. Proposed SHDL topics in bottom-up digital design course.

and is intentionally limited to the most commonly

used behavioral hardware description structures

used in digital systems education. The students

should get a firm understanding of the basic lan-

guage syntax and modeling semantic rules first.

The core of SHDL is composed of themost useful
operators which can be expressed with VHDL

syntax or ANSI C syntax, for the designers more

comfortable with a software language. The opera-

tors include:

� Boolean logic operators: and, or, xor, not in
VHDL (&, |, ^, � in C),

� arithmetic operators: +, – (including unary), * in

VHDL and C and

� relational operators: =, /=, >, >=, <, <= in

VHDL (==, !=, >, >=, <, <= in C).

The formal rules for building expression described

in a Backus-Naur form (BNF) are presented in

Fig. 3.The rules define expression parsing algorithm

and the priority of the operators.

In VHDL mode, we include some hardware

design language specific operators connected with

vector data type: concatenation (&) and slicing (:).

These operators model combining or dividing mul-
tiwire bus with zero logic resource usage, which is

important for efficient hardware design.

There are a lot of data types in the VHDL syntax

and libraries, but in practice, only a limited set is

used for building synthesizable circuit models. The

VHDL syntax rules require explicit conversion for

assignment of different data type and smaller set of

data types mitigate several conversions. Basic data

types represent one-bit signals, multi-bit vectors,

signed and unsigned vectors and integers. The

circuit models mainly use vector data types since
they most efficiently represent logic resources. Inte-

ger signal type has limited usage inVHDLbecause it

is synthesized to a 32-bit bus if not specifically

constrained and cannot be concatenated or sliced.

Table 1 presents basic signal data types in VHDL

and corresponding simplified types in SHDL. One-

bit signal declaration in SHDL is either empty

(default) or u1, which is equivalent to one-bit
unsigned vector. The vectors are declared as

signed (uN) or unsigned (sN), where N is the

vector size. An equivalent of the integer in VHDL

is s32.

Literal values in VHDL have a variety of nota-

tions. One-bit values require single quotations,

vector values are binary strings within double

quotations and decimal integers are represented
without quotation marks. Assigning a decimal

number to a vector is not possible without radix

specifier or conversion function, for example: d <=
"0000"; can be expressed as: d <= to_
unsigned(0, 4); and not simply: d <= 0. We

simplify these rules in the SHDL, where an integer

value in decimal, binary or hexadecimal format can

be assigned to signal of any data type. When the

A Web-Based Tool for Learning Digital Circuit High-Level Modeling 1227

Fig. 3. Backus-Naur form syntax of expressions in input high-level language using VHDL mode.

Table 1. Basic signal data types in VHDL and corresponding SHDL

VHDL SHDL

type declaration example value declaration example value binary value

std_logic ’0’, ’1’ empty or u1 0, 1 0b0, 0b1
std_logic_vector (N-1 downto 0) "0010" uN 2, 0b0010 0b0010
signed (N-1 downto 0) "1110" sN -2 0b1110
unsigned (N-1 downto 0) "1010" uN 10, 0b1010 0b1010
integer 5 s32 5 0b101

code is translated to VHDL, the corresponding

binary string notation or conversion function is

used.

The register-transfer level HDL models describe

synchronous digital circuits using expressions for

transfer functions and flip-flop or register models.
Components of a hierarchical digital system are

typically single clock synchronous circuits. The

logic circuits designed for programmable devices

contain one or only a few clock signals due to the

limitation of on-chip clock routing resources. Cir-

cuitswithmore than one clock signal should contain

synchronization logic, are difficult to simulate and

analyze.We are thus avoiding circuits with multiple
clocks for the introductory course of digital design.

Synchronous circuits update registers either on

rising or on the falling edge of the clock signal. Only

some specific interface circuits require both types of

registers whilemost sequential components use only

rising edge registers.Models of sequential circuits in

SHDLare constrained to a single clock signal which

enables further simplification of the language
syntax. We define two assignment operators: com-

binational assignment is declared with operator ‘=’

and synchronous sequential assignment with ‘<=’,

as described in BNF:

<assignment_statement> :== <target_
name> ’=’ | ’<=’ <expression>

The combinational assignment is used to model

logic which is driving the target signal. The synchro-

nous sequential assignment adds a register to the

logic and the target signal gets updated on the rising

edge of the clock. The assignment operator syntax is

borrowed from the language Verilog, where non-

blocking assignment ‘<=’ is used for sequential

building blocks and continuous assignment ‘=’ for
combinational.

Behavioral models in HDL have a concept of

sequential statement blocks, e.g., process in VHDL

where the order of statements is important in

contrast to concurrent statements in the data-flow

model. In a sequence of assignment statements with

the same target signal, only the last assignment will

be executed. Such assignments should be inside
conditional statements to produce useful code.

The conditional statement syntax is presented in

Fig. 4.

2.3 Web tool for SHDL

Aweb tool was developed to support modeling with

small hardware description language. The web

scripting language JavaScript is powerful enough

to build a complete design environment targeting

educational usage. The advantage of the web-based

tool is that it requires no specific tool installation, its

availability in different platforms regardless of size
and operating system. We have previous good

experience in specific web tools for digital circuit

education; we already designed Graphical Test

Bench, Micro-operation design tool and educa-

tional central processing unit compiler.

The web tool is based on JavaScript (ES6),

HTML 5 and W3CSS. The tool is freely available

online [22]. The JavaScript code [23] is divided into 7
modules:

� Userint.js—user interface functions, connections
with HTML,

� Vector.js—define 64 bit signed/unsigned vector

and operations,

� Model.js—methods for high-level circuit model,

� Lexer.js—code lexical analysis,

� Parsesim.js—code parser and discrete event

simulator,

� Wave.js—simulation waveform methods and
� Vhdl.js—code translation to VHDL.

A screenshot of the web tool is presented in Fig. 5.
The tool has an easy to use interface where the main

design steps are connected with buttons: Parse—

parsing the SHDL code, Run—running simulation,

Ports – opening signal table, VHDL—translating

SHDL to VHDL and TestBench—generating

VHDL test bench code.

The work area is divided into code window, ports

and signals table, parser messages window and
waveform canvas. The designer can graphically set

input values in the waveform and observe results

after running simulation.

Fig. 6 presents the main tasks and data in the

SHDL modeling design flow. The parser inputs are

SHDL code and data from the signal table. If

parsing is successful, an internal circuit model is

produced along with a resource utilization report.
The report summarizes circuit components that

were identified during code parsing: number of

input/output pins and flip-flops, number of logic

Andrej Trost and Andrej Žemva1228

Fig. 4. BNF syntax of conditional statement and statement block in SHDL.

gates, arithmetic and comparison blocks extracted

from operators and number of multiplexers. This is

like the VHDL tools synthesis report, but on a

higher abstraction level, since the tool lacks infor-

mation about the target technology. It can be used

by the designer as a guideline for the complexity of

the produced circuit and comparison of different

coding approaches.

Waveform signals are displayed with their default

(zero) values after initial parsing the code. To prepare

the simulation, the designer should set the number of

clock cycles and input values. The tool supports

intuitive graphical setting of the input values on the

waveform canvas. Running the simulation evaluates

the model for all cycles and presents output and

internal signal values on the waveform. The circuit
designer’s task is to check the responses of the circuit

to the input stimuli. The tool supports zooming and

panning the waveform and three data display modes

forvector signals: integer, binaryandanalog.Accord-

ing to the results, the designer decides to convert the

model to VHDL code or upgrade the SHDL and re-

run the parsing and simulation. The tool also pro-

duces the test bench which can be used for VHDL
simulation with the same waveform settings.

3. SHDL in the digital systems design
laboratory

Our students enrolled in digital systems design

already learned the basics of VHDL circuit model-

ing. In the laboratory practice, they design some

educational digital building blocks, develop a

AWeb-Based Tool for Learning Digital Circuit High-Level Modeling 1229

Fig. 5.Web tool user interface with SHDL code editor and parser messages on the left, ports & signals table and resource report on the
right, and simulation waveform at the bottom.

Fig. 6. SHDL modeling design flow tasks (bold rectangles)
connected with the web tool data components (ovals).

custommicroprocessor andfinally a project on their

own.

3.1 Introduction tutorial

We consider a 2–4 binary decoder circuit design to

introduce the SHDL logic level and behavioral

modeling concepts and the usage of the SHDL
web tool.

Fig. 7 presents a declaration of one 2-bit unsigned

input signal (a) and four one-bit output signals (y0,

y1, y2 and y3). The digital circuit can be described

with a logic diagram or with hardware description

language using logic expressions, as presented in

Fig. 8.We describe themodel in the web-based tool,

parse the model and check the operation with the
integrated logic simulator. For the simulation, we

manually set the input values and observe the out-

puts on the waveform as presented in Fig. 8c.

This is a low-level logic model of a circuit based

on Boolean equations. The model can be automa-

tically translated to VHDL model and the VHDL

test bench as presented in Fig. 9.

The assignment statements with logic expressions

in VHDL are almost the same as in our model with

an exception of the SHDL combinational assign-

ment operator. The most notable difference is in the

Andrej Trost and Andrej Žemva1230

Fig. 7. Example of port and signal declaration for 2–4 binary
decoder.

Fig. 8. (a) Logic diagram, (b) SHDL logic expressions and (c) simulation of a 2–4 binary decoder.

Fig. 9. Output VHDL code and test bench for 2-4 binary decoder.

VHDL language verbosity and structure, where

VHDL requires libraries and specific modeling

constructs (entity, port, architecture).

The port signals are transformed to internal

signals in the VHDL test bench and the circuit

instance is defined using a port map. The test
bench generator parses waveform and outputs a

process with the sequence of assignments to the

input ports and wait statements with the corre-

sponding cycle delay.

The test bench can be used to verify the generated

VHDL model in the external VHDL simulator

which should produce identical results. The

designer can also use declaration and port map
statements from the test bench to include the

generated VHDL model as a component in struc-

tural design.

A high-level model of the same circuit defines the

behaviour of the binary decoder: if input combina-

tion is 0, the output y0 is active and others are 0, if a

combination is 1, the output y1 is active, etc. The

circuit can be described in SHDL using four if
statements:

if (a=0) {y0=1; y1=0; y2=0; y3=0}
if (a=1) {y0=0; y1=1; y2=0; y3=0}
if (a=2) {y0=0; y1=0; y2=1; y3=0}
if (a=3) {y0=0; y1=0; y2=0; y3=1}

The modeling language is using the concise syntax

of if statements like C-language which is translated
to the verbose syntax of VHDL. For example, the

first statement translates to:

if a = 0 then y0 <= ’1’; y1 <= ’0’; y2 <= ’0’;
y3 <= ’0’; end if;

We can further improve the readability of the

model: instead of setting all outputs in every if

statement, we define default values at the beginning

and describe only change of the outputs. Since

conditions refer to the same input signal, we
choose an if-else structure and omit the last condi-

tion. Fig.10 presents themodel and an excerpt of the

generated VHDL code with a combinational pro-

cess. The VHDL converter detects a sequence of

conditional statements where the same variable is

compared to different values and translates the

sequence to a case statement in the output code.

A sequence of conditional statements is also used
to model a priority encoder, where the order of

comparison is important. The circuit model and

generated VHDL combinational process are pre-

sented in Fig. 11. The VHDL process includes if-

elsif structure and data type conversion functions are

used toassign integer values to2-bit unsignedoutput.

A multiplexer circuit with enable input signal is

an example of a combinational circuit used to
demonstrate semantic rules in behavioral modeling.

Fig. 12 presents three models of a 4–1multiplexer in

SHDL. The first model contains a sequence of

conditions describingmultiplexer inside enable con-

dition to produce regular output or zero if enable is

not active. Combinational circuitmodelmust define

output in all cases and to obey this semantic rule a

complete form of conditional statement is used with
assignments to output in if and else blocks. If the

outputs are not defined in all cases, the HDL code

AWeb-Based Tool for Learning Digital Circuit High-Level Modeling 1231

Fig. 10. SHDL model of 2-4 binary decoder and translation to VHDL combinational process.

Fig. 11. SHDL model of priority encoder and translation to VHDL.

synthesis tool generates a latch to hold the last

defined value and the synthesized circuit is not

combinational.

A model in Fig. 12b introduces negated enable

condition after the sequence of conditions describ-

ing the multiplexer. The sequence connects the

output to one of the inputs, but if the enable signal
is not active (en=0), the output is 0. The order of

these conditional statements is important in SHDL

as well as in VHDL. An inexperienced designer

would try to write enable condition at the beginning

producing failure in the model.

The third behavioral model presented in Fig. 12c

defines a default value of the output before a

sequence of conditional statements. This is a
common good practice of describing combinational

circuits with a set of not complete conditions. The

default value ensures that the combinational seman-

tic rule is fulfilled.

Sequential building blocks: registers and flip-

flops are described in SHDL with a simple sequen-

tial assignment:

q <= d

A binary counter is defined as:

cnt <= cnt + 1

and a corresponding data type declaration in ports

and signals table. By adding conditional statements,

students can quickly create models of registers and

counters with reset and enable control signals,

modulo counters etc. These circuits are already

part of the laboratory design exercises.

3.2 Laboratory circuit design exercises

Table 2 presents a selection of laboratory exer-

cises for a one-semester course on digital systems.

The initial exercises are typical educational exam-

ples: data comparison and sorting circuit, serial

registers and counters. The student’s task is to

develop a circuit model according to specifica-

tions, verify the model with the simulator, synthe-
size the circuit from the VHDL description and

test on the FPGA development board. The stu-

dents can either develop models directly in

VHDL or use SHDL and the web-tool for the

first design steps.

Columns in Table 2 report amount of lines (LI) in

SHDL and the corresponding amount of lines and

keywords (KEY) in VHDL. The SHDL model has

on average 4-times fewer lines of code compared to

the VHDL model. The high-level circuit model

characteristics are represented by the number of

input/output signals (IO), flip-flops (FF), operators
(OP) and multiplexers (MUX).

The next three laboratory exercises are examples

of data-flow synchronous sequential circuits. Pulse-

with modulator (PWM) is a useful digital system

building block. A basic model of the 3-bit PWM

circuit generating pulses of different width on the

output is presented in Fig. 13. The pulse widths are

defined by the input vector w compared to the
modulo-6 counter producing output waveform pre-

sented in Fig. 13c. The SHDLmodel is considerably

smaller than VHDL enabling students to spend

more time experimenting with the circuit operation.

For the laboratory exercise, they design advanced

PWM and test the circuit using switches and LEDs

on the development board.

Numerically controlled oscillator (NCO) is a
digital oscillator generating periodic signals with

variable frequency. The NCO circuit uses the over-

flow of an accumulator for the phase signal and a

look-up table to produce output signal samples. It is

a basic building block of a digital function generator

or a source of data for signal processing circuits, for

example, digital filters.

Afinite-response filter (FIR) structure has a series
of registers for delay line and multiply-add opera-

tors to compute the response. Filter coefficients are

real numbers which require a complex circuit for the

operators, but in many cases, we can use approx-

imate computation with N-bit integers. If input and

output data are integer numbers, we can scale the

coefficients with 2N, compute the response using

rounded integer values and apply integer 2N divi-
sion. A small 4-tap FIR can be expressed in SHDL

in only five lines of code:

x1 <= x0
x2 <= x1
x3 <= x2
sum <= x0*157+x1*355+x2*355+x3*157
res = sum(17:10)

Andrej Trost and Andrej Žemva1232

Fig. 12. Three behavioural SHDL models of 4-1 multiplexer with enable input.

Fig. 14 presents the online simulation of the FIR

using a sinus sweep generator and analog display of

input and output waveform.

The last two sets of the laboratory exercises are a

VGAgraphics controller and a small processor used

to build digital system for the student’s final pro-
jects.

The video graphics controller is composed of a

VGA timing generator circuit, a sprite display and a

coordinate transformation logic. The circuit com-

ponents are separately designed and verified on the

simulator. The final circuit is described in VHDL

using structural modeling and tested on the FPGA
board connected to a computer monitor. The stu-

A Web-Based Tool for Learning Digital Circuit High-Level Modeling 1233

Table 2.A selection of laboratory circuit design exercises with SHDL and VHDLmodel features: LI—code lines, IO—input/output pins,
FF—flip-flops, OP—sumof high-level operators,MUX—multiplexers,KEY—number of differentVHDLkeywords and reservedwords
in the model.

Exercise SHDL model VHDL model

LI IO FF OP MUX LI KEY

Magnitude comparators
(a) Comparator with flags 6 6 0 3 2 18 22
(b) 3-input sorting circuit 16 24 0 3 6 48 23

Registers
(a) Serial in serial out shift register 10 3 4 1 4 38 22
(b) Linear feedback shift register 10 5 4 2 4 37 23

Counters
(a) binary enable 2 6 4 3 1 29 26
(b) modulo counter 9 7 4 4 2 45 26

Pulse width modulator 8 4 7 3 2 34 25

Numerically controlled oscillator
(a) Phase accumulator 3 5 10 1 0 26 23
(b) Oscillator with sinus table 23 8 10 18 2 70 28

Digital filter: 4-tap FIR 5 17 42 7 0 32 23

VGA
(a) timing generator 11 26 24 10 4 51 25
(b) sprite 8 60 1 5 1 36 24
(c) coordinate transformation 6 14 0 5 2 39 22

Small CPU
(a) control logic state machine 14 20 13 7 3 56 28
(b) decoder and arithmetic unit 23 20 41 23 6 89 30
(c) input/output unit 27 45 54 25 7 102 30

Fig. 13. Pulse width modulator: (a) SHDL model, (b) generated VHDL and (c) simulation.

dents designing components with SHDL can reuse

the component instantiation code from the gener-

ated test bench to quickly assemble the VHDL
structural model.

Design of a small educational central processing

unit (CPU) is divided into several steps. The stu-

dents develop an accumulator-based CPU with 16

machine instructions [24]. We developed an on-line

assembler, simulator and a small C compiler to help

the students developing CPU hardware and soft-

ware [25].
The CPU first exercise is a finite state machine

control unit used to define the instruction execution

stage. The next step is instruction decoding and

arithmetic operations logic. The CPU model is

tested on the simulator using a read-only memory

(ROM)model with small test programs for verifica-

tion of the implemented instructions. The final

exercise is the design of an input/output unit and
logic for the corresponding instructions.

3.3 Experience with SHDL and web-tool

3.3.1 Teaching experience

We are teaching the HDL-based digital systems

laboratory for 8 years. From the beginning, we
used only the FPGA development tools and the

VHDL language for the laboratory experiments.

The students who already learned VHDLmodeling

of the basic logic structures requested help regard-

ing language syntax to complete their circuit

models. A lot of time was spent on the VHDL

syntax issues and the complex tools discouraged

the students to install the software at home for self-
learning. We considered providing web-tools and

simplified hardware description language to

improve teaching and learning.

The proposed tool was introduced to laboratory

practice for two elective module courses: Integrated

circuits and Design of digital electronic systems.

Themodule is taught one semester in the 3rd year of

the 1st cycle professional study program. The
number of enrolled students is 20–25 each year

and they have different pre-knowledge. The stu-

dents of electronics already learned the VHDL

modeling basics, but several students of other pro-

grams know only the fundamentals of the digital

structures. The students had difficulties to catch up

on basic HDL modeling skills due to verbose and

complex VHDL syntax rules and unfamiliar design
environment. This was our initial motivation to

search for educational design entry tools supporting

VHDL and finally developing our own SHDL

modeling methodology.

Table 3 presents a schedule of the laboratory

lessons and a comparison of the exercises in the

old and new laboratory program. The students have

two to four hours each week to complete the lesson
and present designed circuit operation on the simu-

lator or on the programmable prototyping board.

At the end, they have three weeks for individual

project work.

The lessons begin with an introduction to HDL

modeling and simulation tool and combinational

logic exercises. The SHDL introduction tutorial

described in Chapter 3.1 is used to explain the
SHDL modeling basis and web-tool operation.

The VHDL syntax and good coding practice are

gradually explained on the automatically translated

code. Due to the efficiency of the SHDL modeling,

students were able to complete more exercises in the

same time frame and finish the lessons aweek earlier

to have more time for the final project. The addi-

tional exercises and parts of the lessons completed
earlier are in Table 3 denoted with a bold text.

The final project is a VGA game or animation

designed by each student on the FPGA develop-

ment board. TheCPU is used in the digital system to

control sprites displayed on the VGAmonitor. The

students upgrade the VGA controller with various

sprites and line graphics, connect the controller with

the upgraded input/output unit of the CPU and
develop game control hardware and software com-

ponents. Finally, they deliver a short project report

and present the designed digital system.

An assessment of the laboratory practice is done

by oral examination where the students explain

details of the designed system structure and opera-

tion, design decisions and possible upgrades. The

laboratory project is only a part of the course
requirements. When the students complete the

project, they receive a grade from the scale: satis-

factory, good and excellent. The laboratory project

Andrej Trost and Andrej Žemva1234

Fig. 14. Simulation waveform of a digital sine sweep generator (s) and FIR filter output (izh).

grades compare the students within the module and

do not significantly differ from year to year, but the

presented projects in the new program have more
digital components, better structure, and less unfin-

ished work.

Recently, we introduced the proposed design tool

to a Digital electronics systems course in the 2nd

year of the 1st cycle university study program

attended by 40 students. The course topics are

modeling of digital circuits, introduction to HDL,

circuit design and synthesis methodology and digi-
tal system design. The laboratory consists of ten

two-hour lessons divided into basic HDL exercises

and a digital system project. The project goal is to

explain the partitioning of a digital system into

interface, control, and signal processing compo-

nents and design the required components. Each

year we select a project topic, for example small

digital storage oscilloscope, logic analyzer, graphics
generator, signal generator or electronic piano.

Digital component development according to spe-

cifications is a challenge to the students with a little

experience in the digital design. Solving the exercise

required not only understanding the specification

and proposed circuit model, but also developing

code in VHDL and use the complex design tools.

The students needed a lot of guidance and help in

the laboratory. When using our web-tool and

SHDL they can perform more modeling experi-
ments on their own. For example, a numerically

controlled oscillator used as a piano tone generator

is described in SHDL with considerably fewer lines

of code compared to VHDL (Table 2). In the same

laboratory exercise time-frame, the students can

explore different circuit models and better under-

stand the proposed model structure.

We are now able to assign small practical home-
work exercises which can be solved even on amobile

device. The exercises are focused to teach digital

modeling semantics. The exercise questions encou-

rage students to experiment with different solutions,

for example:

� How to describe a combinational adder with

saturation output and avoid a combinational

loop?

� What is the correct way to introduce reset to a

sequential modulo counter?

By answering the questions, the students better

understand how to design good digital circuit

models.

A Web-Based Tool for Learning Digital Circuit High-Level Modeling 1235

Table 3.Weekly schedule of electivemodule laboratory lessons in an old programusing VHDL and new program introducing SHDLand
VHDL.

Week Old lessons (VHDL only) New lessons (SHDL and VHDL)

1 Combinational VHDL introduction:
� adder, comparator
� decoder, ALE with flags

Combinational HDL introduction:
� adder, comparator, maximum, data sorting
� ALE with flags

2 Sequential basics:
� flip-flop, SISO register
� clock divider, LED counter

Sequential basics:
� SISO register, LFSR random generator
� clock divider, LED counter

3 Sequential circuits:
� clock divider, decoder
� microsequencer (semaphore)

Sequential circuits:
� divider, PWM
� microsequencer (Morse code)

4 CPU I:
� control logic
� datapath load, add

CPU I:
� control logic, ROM
� datapath load, add, conditional jump

5 CPU II:
� program memory: ROM and RAM
� data store instruction

CPU II:
� RAM, data store, logic instructions
� I/O unit

6 CPU III:
� I/O unit
� logic or shift or conditional jump

CPU III:
� RAM IP
� shift and conditional carry jump

7 VGA:
� timing generator, test image

VGA:
� timing generator, ROM image

8 VGA:
� ROM image

System:
� CPU, VGA and IO unit integration

9 System:
� CPU and VGA integration

System:
� advanced IO, control software

10 System:
� advanced IO, control software

Individual project work

3.3.2 Learning experience

Digital system projects implemented on program-

mable development boards are motivating the stu-

dents to experiment and learn logic design using

hardware description languages, but the standard

languages like VHDL are difficult to learn. We

identified the problem of learning efficiency and

asked the students about high-level modeling in
the VHDL. The students respond that the VHDL

language is difficult due to:

� complex and verbose syntax,
� parallel modeling paradigm,

� variety of data type and type conversion rules and

� the lack of simple tools for self-learning.

We received promising feedback when introducing

the new tool to the laboratory practice on the digital

systems design course. The design exercises specify

circuit interface and behavior and not modeling

language. The students were able to use both

SHDL and VHDL to complete their assignments.

Some of the students decided to use only VHDL

modeling language, but the majority (85%) used
SHDL for the initial experiments and finalize the

assignment in the VHDL. We summarized our

experience with the new design methodology:

� Most of the students benefit from the SHDL and

were able to finish their assignments faster and

with less help of the tutor.

� The SHDL can be introduced to the laboratory

with minimal overhead due to simple syntax and

VHDL-like operators.

� User-friendly web tool allowed more modeling

and verification experiments leading to better
final designs.

� The students used automatic SHDL to VHDL

translation even for upgrading the existing

VHDL models where they must merge produced

code with the existing one.

4. Conclusions

Hardware description language based digital cir-
cuits design is a skill required in the digital electro-

nics industry and consequently an important

outcome of the digital design education. We use

VHDL in several electrical engineering digital

design courses. Digital circuit teaching follows the

bottom-up approach, where the students simulta-

neously learn basic digital structures and their

VHDLmodels. In the digital systems design labora-
tory, we experienced problems with the complexity

of the standard language VHDL and related devel-

opment tools. A considerable amount of time was

spent repeating the language syntax rules and help-

ing the students to produce correct models.

To improve the teaching experience, we devel-

oped a digital modeling methodology based on the

small hardware description language and the corre-

sponding web tool. The new tool is used for high-

level circuit design, simulation and efficient devel-

opment of digital system components. The substan-
tially simplified modeling language syntax enables

quick introduction to laboratory practice. The

typical laboratory exercise models have in SHDL

4-times fewer lines of code which enables the stu-

dents to develop more circuits. The web tool produ-

cing properly formatted VHDL code can be

seamlessly integrated into the VHDL modeling

and prototyping design flow.
The students learned the HDL circuit design with

the new methodology faster and finished their

assignments on their own. Their final projects

have more components and better structure. The

freely available user-friendly web tool can be used in

self-learning experiments. In the future, we plan to

connect the tool with assignments database and

automatic simulation response to further encourage
online learning.

References

1. W. J.Dally,R.C.Harting andT.M.Aamodt,Digital Design
Using VHDL, Cambridge University Press, Cambridge,
2016.

2. J. F. Wakerly, Digital Design: Principles and Practices, 5th
Edition, Pearson, New York, 2018.

3. H. A. Ochoa and M. V. Shirvaikar, A Survey of Digital
Systems Curriculum and Pedagogy in Electrical and Com-
puter Engineering Programs, ASEE Gulf-Southwest Section
Annual Conference, Austin, 2018.

4. B. Nikolic, Z. Radivojevic, J. Djordjevic and Veljko Miluti-
novic: A Survey and Evaluation of Simulators Suitable for
Teaching Courses in Computer Architecture and Organiza-
tion, IEEE Transactions on Education, 52(4), pp. 449–458,
2009.

5. D. Hanna and R. E. Haskell, Learning Digital Systems
Design in VHDL by Example in a Junior Course, Proceed-
ings of the ASEENorth Central Section Conference, Charles-
ton, March 30–31, 2007.

6. D. Zhang, P. Qian, L. Wang, Y. Guo and C. Sun, Experi-
mental Case Design of Digital Logic Based on Through-
Type Teaching, 13th International Conference on Computer
Science&Education (ICCSE), Colombo, pp. 552–555, 2018.

7. F.Machado, S. Borromeo andN.Malpica (Madrid), Project
Based Learning Experience in VHDL Digital Electronic
Circuit Design, IEEE International Conference on Micro-
electronic Systems Education, San Francisco, pp. 49–52,
2009.

8. J. M. P. Cardoso, A teaching strategy for developing
application specific architectures for FPGAs, International
Journal of Engineering Education, 24(4), pp. 833–842, 2008.

9. A. Trost and A. Žemva, Teaching design of video processing
circuits, International Journal of Electrical Engineering Edu-
cation, 49(2), pp. 170–178, 2012.

10. O. B. Adamo, P. Guturu andM. R. Varanasi, An innovative
methodof teachingdigital systemdesign in anundergraduate
electrical and computer engineering curriculum, IEEE Inter-
national Conference on Microelectronic Systems Education,
San Francisco, 2009.

11. E. Magdaleno, M. Rodrı́guez, D. Hernandez, E Rodrigues
and F. Perez, Teaching methodology of the subject design of
electronic systems using FPGA in the new master of indus-

Andrej Trost and Andrej Žemva1236

trial engineering, Technologies Applied to Electronics Teach-
ing (TAEE), Seville, pp. 1–6, 2016.

12. Xilinx Inc., Vivado Design Suite—HLx Editions, Available
from: https://www.xilinx.com/products/design-tools/vivado.
html, Accessed 14 January 2019.

13. Z. Stanisavljevic, V. Pavlovic, B. Nikolic and J. Djordjevic,
SDLDS—System for Digital Logic Design and Simulation,
IEEE Transactions on Education, 56(2), pp. 235–245, 2013.

14. Zubia, WebLab-Deusto-CPLD: A Practical Experience,
International Journal of Online Engineering, Wien, pp. 17–
18, 2012.

15. Y. Ding and S. Li, A Web-Based System for Digital Logic
Experiments, International Conference on Computer Science
& Education (ICCSE), Colombo, pp. 800–803, 2018.

16. A.Kumar,R.C. Panicker andA.Kassim,EnhancingVHDL
Learning through a Light-weight Integrated Environment
for Development and Automated Checking, IEEE Interna-
tional Conference on Teaching, Assessment and Learning for
Engineering, Bali, pp. 570–575, 2013.

17. G. R. Garay, A. Tchernykh, A. Yu. Drozdov, S. N. Gar-
ichev, S. Nesmachnow and M. Torres-Martinez, Visualiza-
tion of VHDL-based simulations as a pedagogical tool for
supporting computer science education, Journal of Computa-
tional Science, in press, Available online 2017.

18. G. Wang, Lessons and Experiences of Teaching VHDL,
American Society for Engineering Education Annual Confer-
ence, Honolulu, 2007.

19. W. Meeus, K. Van Beeck, T. Goedeme, J. Meel and D.
Stroobandt, An overview of today’s high-level synthesis
tools, Design Automation for Embedded Systems, 16(3),
2012, pp. 31–51.

20. S. Schocken, N. Nisan andMArmoni, A synthesis course in
hardware architecture, compilers, and software engineering,
Proceedings of the 40th ACM Technical Symposium on
Computer Science Education, New York, pp. 443–447, 2009.

21. K. Becker, A web based tool for teaching hardware design
based on the plain simple hardware description language,
EDUCON, Istanbul, pp. 88–93, 2014.

22. SHDL online, http://lniv.fe.uni-lj.si/shdl/, Accessed 14 Jan-
uary 2019.

23. High-level logic modeling JavaScript sources, https://
github.com/andrejtrost/dig-model-sim, Accessed 14 January
2019.

24. A. Trost and A. Žemva, Design of custom processors for the
FPGA devices, Elektrotehniški vestnik, 79(1–2), pp. 55–60,
2012.

25. LNIV Virtual LAB, http://lniv.fe.uni-lj.si/cpu.html,
Accessed 14 January 2019.

Andrej Trost received his PhD degree in 2000 from the Faculty of Electrical Engineering, University of Ljubljana.

Currently he works at the same faculty as an associate professor teaching high-level design techniques on several graduate

and post-graduate study levels. His research interests include the FPGA technology and digital systems design for

academic and industrial applications.

Andrej Žemva received his BSc, MSc and PhD degrees in electrical engineering from the University of Ljubljana in 1989,

1993 and 1996, respectively. He is Professor at the Faculty of Electrical Engineering. His current research interests include

digital signal processing,HW/SWco-design, ECGsignal analysis, logic synthesis andoptimization, test pattern generation

and fault modeling.

A Web-Based Tool for Learning Digital Circuit High-Level Modeling 1237

