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Educational literature has long supported strong correlations between student motivation and academic success. STEM

literature has more recently shown mechatronic experiences to have positive impacts on these constructs, albeit limited

empirical grounding. Therefore, the purpose of this study was to conduct a pilot experiment to empirically quantify

differences in undergraduate studentmotivation and academic success in amechatronic vs. a non-mechatronic experience,

as well as examine the correlation between student motivation and academic success in both groups. We used a quasi-

experimental, non-equivalent control vs. treatment design to collect n = 84 responses from multiple sections of a single

undergraduate course. The multivariate dependent variable of student motivation was measured using the Motivated

Strategies for Learning Questionnaire’smotivational orientation items. Our multivariate dependent variable of academic

success was based on final course grades, final project scores, and quiz scores. Using ANCOVA and differences of

proportions, we found no statistical difference in motivational orientation—specifically value choices and expectancy

beliefs—in the mechatronic vs. non-mechatronic experience. In contrast, statistically significant differences in project

scores and final course grades were observed in the mechatronic experience group. Additionally, we found no significant

correlation between student motivation and academic success. These results indicated that students in the mechatronic

experience, while earning significantly higher grades, did not exhibit different levels of motivation, leading to no

association between student motivation and academic success. Even so, future research is needed to further understand

the nuanced dynamics of motivational orientation within a mechatronic experience.
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1. Introduction

Student motivation is contextual and educators in

all fields have the ability to structure ‘‘. . . the

learning environment [to] increase the number of

students who stay engaged and motivated . . .’’ [1,

p. 7]. Furthermore, real-world projects in the class-

room have the potential to motivate students to

engage in learning [2]. In engineering and technol-

ogy classrooms, mechatronic experiences have
been found to enhance students’ motivation and

learning [3–7].With themulti-disciplinary nature of

robotics, it is not surprising this topic is being

implemented in a growing number of science, tech-

nology, engineering, and mathematics (STEM)

curricula. A systematic review by Haughery and

Raman [8] examined the influences that mechatro-

nic experiences have had on student engagement.
Usingdata frommore than twodecades of engineer-

ing and technology education literature, Haughery

and Raman found positive influences on student

motivation and self-efficacy following mechatronic

experiences. However, gaps in the literature were

highlighted in this review. Specifically, limited usage

of control vs. treatment designs or pre/post data

collection, limited explanation of experimental
methods, only basic descriptive analysis of quanti-

tative results, no treatment effects of dependent

variables (i.e., no effect sizes of academic success
or student motivation), and only anecdotal exam-

ples of qualitative findings were found [8]. There-

fore, more rigorous research is needed to validate

whether mechatronic experiences improve student

motivation and/or academic success.

1.1 Research purpose

Based on the limited empirical evidence supporting

the impacts of mechatronic experiences on student
motivation and academic success, we conducted a

pilot experiment to determine the viability of further

research into these effects. Specifically, our objective

was to quantify differences in undergraduate stu-

dent motivation and academic success in a mecha-

tronic experience vs. a non-mechatronic experience,

which was underpinned by the perspective that a

symbiotic link exists between student motivation
and academic success and that mechatronic experi-

ences have the potential to positively impact this

interplay. Three primary questions guided our

study:

1. Do students in amechatronic experience report
different levels of student motivation and aca-

demic success vs. students in a non-mechatronic

experience?

2. Do mechatronic experiences motivate a differ-
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ent proportion of students vs. non-mechatronic

experiences?

3. What is the relationship between student moti-

vation and academic success when considering

mechatronic vs. non-mechatronic experiences?

1.2 Academic success

According to Meece, ‘‘The goal of any educational

program must be to create a learning environment

that supports or elicits students’ intrinsic interest in

learning’’ [1, p. 34]. While many would argue that

achieving a certain level of learning equates to

academic success, York, Gibson, and Rankin [9]
found this term poorly and ambiguously defined in

the literature. In an attempt to bring clarity, they

used a grounded theory approach to synthesize a

high-level, six-faceted framework of academic suc-

cess that included academic achievement, satisfac-

tion, attainment of learning outcomes, persistence,

career success, acquisition of skills and competen-

cies [9].
Light [10, 11] denoted student engagement (i.e.,

student involvement in learning) as a critical factor

in educational development, while Kamphorst,

Hofman, Jansen, and Terlouw [12] indicated it as

pivotal to student persistence. Wilson et al. [13]

postulated that student engagement is an intermedi-

ate outcome to academic success that is evident in

students sooner than the six facets proposed [9].
Nelson et al. [14], suggested student engagement is

directly proportional to academic achievement,

while Pintrich, Smith, Garcı́a, and McKeachie [15]

suggest engagement to be a function of student

motivation. They indicate that students’ motiva-

tional beliefs affect cognitive engagement.

1.3 Student motivation

Meece defined motivation as the ‘‘desire to work

and learn’’ [1, p. 5]; Clark, borrowing from thework

of Bandura [16], defined motivation as ‘‘. . . the

amount and quality of the ‘mental effort’ people

invest in achieving goals’’ [17, p. 2]; Pintrich and

Schunk defined motivation as ‘‘. . . the process

whereby goal-directed activity is instigated and

sustained’’ [18, p. 4]. In these complementary
descriptions of motivation, one starts to see the

multifaceted nature of motivation.

In Clark’s Choice and Necessary Effort (CANE)

model, he described how an individual’s commit-

ment to, ormotivation towards, a goal is affected by

goal choice and the effort needed to reach that goal.

Clark [17] hypothesized that these two components

are continually re-examined to regulate an indivi-
dual’s level of motivation towards a goal. The first

component, goal choice, is strongly affected by the

factor of goal value, which is comprised of utility

(i.e., the usefulness of a task in light of future goals)

[18], interest (i.e., the enjoyment or intrinsic inquisi-

tiveness towards a task), and importance (i.e., the

significance of succeeding in a were). The second

part, effort, is strongly affected by task assessment.

This factor is comprised of self-efficacy (i.e., Can I

do it?), and personal agency (i.e., Will I control my
destiny?). Finally, positive and negative mood char-

acterizes emotion. Positive mood is directly propor-

tional to goal commitment while negative mood is

inversely proportional [17].

From an expectancy model perspective, Bandura

[16] proposed that an individual’s motivation is

affected by one’s beliefs of self-efficacy and control

of outcomes (i.e., Do I have control of my success or
failure?). In this expectancy model, the component

of self-efficacy is dissected into two distinct ele-

ments: (1) outcome expectations (i.e., the belief

that one’s behaviors affect outcomes), and (2)

efficacy expectations (i.e., the belief that ones’

behaviors can be effectively performed) [19].

Wilson et al. [13] further aligned self-efficacy

theory with student engagement. They state that
the strength of engagement is directly proportional

to the strength of the belief that students have in

their ability to accomplish a task. Many more

suggest that self-efficacy is a strong predictor of

performance, persistence, and engagement [20–23].

Many classify student self-efficacy as a significant

construct within the framework of student motiva-

tion [15–18, 24].
Extending this, Pintrich, Marx, and Boyle [2]

combined expectancy beliefs with value choices and

meta-cognition to form a social cognitive perspective

ofmotivation. In theirmotivation-cognitionmodel,

value choices are comprised of goal orientation,

interest, and importance; expectancy beliefs are

comprised of self-efficacy, attributions, and control

beliefs; and meta-cognition is comprised of self-

regulated learning. This motivation-cognition

model takes the perspective that meta-cognition

and motivation form a symbiotic and dynamic

relationship. A person continually evaluates intrin-

sic and extrinsic feedback to dynamically adjust

their motivation towards learning [25]. When this

happens, a student is said to be self-regulating their

learning (termed self-regulated learning), with the
cognitive ‘‘energy’’ expended being labeled as moti-

vation [25, p. 306]. Self-regulated learning has been

defined to include three primary phases: (1) fore-

thought (including task analysis and self-motivated

beliefs); (2) performance (including self-control and

self-observed strategies); and (3) self-reflection

(including self-judgment and self-reaction) [25, p.

375]. As a person works through these phases,
motivation determines the degree to which each

later phase is performed, and subsequently the

level of achievement that is reached. Therefore,
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student motivation and academic success form a

symbiotic relationship within a student’s mental

cognition.

1.4 Framework of the research

The theoretical framework of this research is

depicted in Fig. 1. It illustrates the connections

between student motivation, student engagement,

academic success, and mechatronic experiences.

The level to which students succeed academically

has been linked to their level of motivation [1]. This

link is often mediated by students’ level of engage-

ment [10, 11], Moreover, mechatronic experiences
have been illustrated as tangible experiences that

impact undergraduate engineering and technology

students’ motivation and academic success [26].

Specifically, the scope of our pilot study was to

quantify differences in student motivation and aca-

demic success in amechatronic experience vs. a non-

mechatronic experience.

2. Materials and methods

2.1 Quasi-experimental design

Our study used a quasi-experimental, non-equiva-
lent control vs. treatment design [28]. The treatment

group (n = 61) experience was administered during

the spring semester of 2016, with the control group

(n = 23) experience occurring the following fall

semester. Our ‘‘quasi’’ designation stemmed from

the non-random assignment of participants to the

treatment and control groups (i.e., we could not

dictate which students enrolled in which course
sections). Using adaptive sample size calculations

[29], we found that a control group sample size of

n� 22was required to statistically support an effect.

This was based on the pwr package [30], initial

treatment group sample of n = 61, power = 0.80,

� = 0.05, and assumed ‘‘medium’’ effect sizes (e.g.,

Cohen’s d = 0.70 and h = 0.70 for research questions

one and two, respectively). Our assumption of

medium effects was due to a lack of published effects

for similar research. Therefore, we followed
Cohen’s suggestion that a medium effect is ‘‘likely

to be visible to the naked eye of a careful observer’’

[31, p. 156], which appeared to be evident in the

literature. Furthermore, our multi-semester, conve-

nience sample design mirrored others [32] who have

conducted similar research using the same instru-

ment to measure motivation (i.e., Pintrich and

colleague’s [24] Motivated Strategies for Learning

Questionnaire (MSLQ)).

2.1.1 Treatment group experience

An eight-week mechatronic experience (see Table 1
semester weeks 8–15) served as our experimental

treatment (n = 61). The first four weeks of the

experience (weeks 8–11) required students to indi-

vidually complete five software (program code) and

hardware (motor and sensor) activities. With this

foundation, students were given the last four weeks

(weeks 12–15) to develop, test, and implement

solutions to the mechatronic project. This project
required groups of three to four students to develop

a software program that integrated the mechanical

and electrical hardware systems of amobile robot to

autonomously navigate through one of three pre-

defined mazes. Fig. 2 illustrates an example maze

used in the mechatronic project, while Appendix A

includes a detailed description of the mechatronic

project requirements. The reader is further pointed
to Haughery and Raman [33] for a detailed descrip-

tion of the capital and labor time and costs asso-

ciated with developing this project. Finally, the

project’s administration was significantly informed
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Fig. 1. Theoretical framework of the relationship between mechatronic experiences, student motivation, student engagement, and
academic success. Dashed arrows indicate the relationships that this study analyzed.



by the methods and lessons learned from others [3–

7, 34, 35].

2.1.2 Control group experience

Our control group experience (n= 23)mirrored that

of the treatment group experience, until week 11
(Table 1 bold text). For the control group, instruc-

tion covered serial communication and character

string parsing functionality. Additionally, during

weeks 12–15, students were tasked with a data

analysis project, as detailed in Appendix B. These
tasks required students to solve three distinct data

analysis problems within a computer software

environment (i.e., not in a tangible, hands-on envir-

onment). The same grading rubricwas used for both

groups and is included in Appendix C. Therefore,

the key difference in treatment vs. control groups

was themechatronic vs. non-mechatronic project. It

is also important to note that the same instructor
taught both the control and treatment group experi-

ences. This was intended to remove variation due to

the instructor. However, no mention of mechatro-

nic content was discussed with the control group.

2.2 Survey sample population

The theoretical population for our studywas under-

graduate students enrolled in fundamental engi-

neering, engineering technology, technology, or
applied engineering courses. Within this popula-

tion, we focused on a convenience sample of n =

84 undergraduate students enrolled in a technical

problem-solving course, offered by the Department

ofAgricultural andBiosystems Engineering at Iowa

State University, United States of America (USA).

The term ‘‘fundamental course’’ was defined as a

first-year class that occupied the core requirements
of the department’s Industrial Technology and

Agricultural Systems Technology majors. Eighty-

four percent were pursuing degrees within the

department, while the remaining 16%were pursuing
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Table 1. Detailed semester schedule of treatment and control group experiences (differences in experiences highlighted in bold text)

Weekly Topic Project Requirements

Week Control Treatment Control Treatment

8 Introduction, IDE,
Structure
Variables, Data Types

Introduction, IDE,
Structure
Variables, Data Types

Complete five
Programming Activities

Complete two
Programming & three
Mechatronic Activities

9 Arithmetic, Constants
Flow Control, Switch
Case, Break

Arithmetic, Constants
Flow Control, Switch
Case, Break

10 Digital & Analog I/O,
Time

Digital & Analog I/O,
Time

11 Data Acquisition &
Visualization
Serial Monitor Printing

Data Acquisition &
Visualization
Motor & Sensor Functions

12 Challenge Task
Development

Challenge Task
Development

Complete three Data
Analysis Project tasks

Complete one of the
Mechatronic Project task

13 Challenge Task
Development & Testing

Challenge Task
Development & Testing

1. Counting Significant
Figures

1. Manufacturing Part
Delivery Task

14 Challenge Task Testing Challenge Task Testing 2. Sorting Random
Numbers

2. Agricultural Harvesting
Task

15 Challenge Task
Completion/Presentation

Challenge Task
Completion/Presentation

3. User Interface: Multiple
Equations

3. Animal Science Health
Monitoring Task

16 Finals Week Finals Week

Fig. 2. Treatment (robot) group experience example maze.
Students were tasked with programming the robot to autono-
mously navigate the maze starting at the ‘‘home’’ position,
entering and exiting each ‘‘cell’’ in sequence, and returning to
the ‘‘home’’ position. The robots could not leave the black line or
enter cells 1–3 more than once.



a range of degrees in agricultural business, agricul-

tural exploration, agricultural studies, agronomy,

and food or animal science. Male/female splits were

92% to 8% (compared to our department’s typical

95% to 5% split), respectively, while the ethnicity

split was of 91% non-underrepresented (i.e., White/
Caucasian) students to 11% underrepresented stu-

dents (compared to our department’s typical 10%).

Furthermore, students 18–19 years old made up

82%, students 20–23 years old made up 15%, and

students over 23 years old made up the remaining

3%. Students taking part in this study had a wide

level of previous mechanical, electrical, and compu-

ter systems experience. However, most did not
consider programming skills as a primary goal in

their education.

2.3 Measures

Wemeasured student motivation using the motiva-

tional orientation items of Pintrich and colleague’s

[24] MSLQ. This instrument takes a meta-cognitive

perspective of student motivation and learning

and is predicated on the motivational constructs

of value choices, expectancy beliefs, and self-regula-

tion. Furthermore, it has been validated and gen-

eralized across gender, race, and educational levels
[15] and has a substantial evidence base in the

literature [32]. As endorsed by the MSLQ manual

[24], we used all 14 questions of the value construct

and 12 questions from the expectancy construct of

motivational orientation as our multivariate mea-

sure of student motivation (Table 2). Likert Scale

values for each item (e.g., CLB) were calculated as

the average of the per question responses, ranging
from 1 (‘‘not at all true of me’’) to 7 (‘‘very true of

me’’), for eachof thequestions (e.g., 2, 9, 18, 25). For

more details regarding this instrument, including

full questions, we point the reader to the MSLQ

protocol [24].

Academic success was measured using final

course grades, final project scores, and quiz scores.

Values for these measures were normalized to a
range of 0.00 to 1.00 by dividing the graded score

by the total possible score or each assignment. The

final course grades were assessed using a weighted

combination of ten quizzes (10%), 15 in-class activ-

ities (15%), 12 essay questions (25%), one mid-term

project (30%), and one final project (i.e., mechatro-

nic project and data analysis project; 20%), all of

which focused on applying a systematic, data-

drivenmethodology for solving technical problems.

Scores for the activities, essay questions, mid-term

project, and the final project were evaluated by the
course instructor and teaching assistants using the

same rubrics for the control and treatment groups.

All students were provided these rubrics before the

completion of each assignment. Quiz scores were

calculated as an average across five programming-

centric quizzes. The grading of these quizzes was

assessed using close-ended answer keys. This mea-

sure was used to answer our first and third research
questions. Additionally, the academic preparedness

of our experimental groups were not significantly

different, based on a two-sample t-test of composite

ACT scores (USA standardized placement test) for

control (M = 23.39, SD = 2.98) vs. treatment (M =

23.31, SD = 3.26, t(43) = 0.1066, p-value = 0.9156)

groups.

We also included a multinomial response ques-
tion asking students whether the mechatronic pro-

ject motivated them. Students were first presented

with Meece, Clark, and Pintrich and Schunk’s

definitions of motivation (see 1.3 Student motiva-

tion subsection above), and then asked to answer

‘‘Yes’’, ‘‘No’’, or ‘‘Neither’’. These responses

formed a single-item measure of student motiva-

tion.

2.4 Data collection

Pre/post surveys were collected during the spring

(treatment) and fall (control) semesters of 2016. All
surveys were administered through Qualtrics

(Provo, UT), with the pre-survey collection occur-

ring during week eight of the semester, and the post-

survey collection occurring during week 16. Incen-

tives, capped at 1% of the students’ course grade,

were awarded to participants who completed both

pre/post surveys. The pre- responses were linked to

post- responses via the unique last five digits of
students’ identification numbers. Once this data

linkwasmade, and before the results were analyzed,

all identifying information was removed from our

data set. Additionally, all students received an

informed consent allowing them to ‘‘agree’’ or
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Table 2.MSLQ sub-scale item questions used to measure student motivation

Subscale Item Questions

Value Components Intrinsic Goal Orientation (IGO) 1, 16, 22, 24
Extrinsic Goal Orientation (EGO) 7, 11, 13, 30
Task Value (TV) 4, 10, 17, 23, 26, 27

Expectancy Components Control of Learning Beliefs (CLB) 2, 9, 18, 25
Self-Efficacy for Learning and Performance (SE) 5, 6, 12, 15, 20, 21, 29, 31



‘‘not agree’’ to participate in the surveys. No stu-

dents under 18 years of age, or who responded, ‘‘not

agree’’, were included in the dataset. This collection

methodology was approved by our institution’s

Institutional Review Board (IRB) as an exempt

study under the human subject protections regula-
tion, 45 CFR 46.101(b).

2.5 Data analysis

All statistical analyses were performed using R

version 3.3.3 (RFoundation for StatisticalComput-

ing, Vienna, Austria) and RStudio (RStudio, Inc.,

Boston, MA). All quantitative variables met the

assumptions of quasi-random sampling and inde-
pendent observations. While our sample sizes were

unequal (control n = 23; treatment n = 63), this did

not negatively impact the homogeneity of variance,

therefore satisfying this model assumption [36].

Decisions of statistical significance for our two-

tailed hypothesis tests were based on Bonferroni

adjusted � values, as shown by Equation 1,

� ¼ 0:05

ntests
ð1Þ

where ntests is the number of statistical tests per-

formed per the research question. While the use of

multivariate analyses (e.g., MANOVA) is often

used in this scenario, repeated univariate analyses
(e.g., ANOVA), with adjustments to guard against

inflation of evidence, are an accepted statistical

alternative that enables a simpler, more straight

forward interpretation of the results [37]. Adjusted

� values for each repeat test are included with our

results. Furthermore, the effect of clustering (e.g.,

student groups, student interactions) was not con-

sidered in our analysis.
To answer the question of how student motiva-

tion and academic success were different following a

mechatronic experience, we calculated descriptive

statistics with the psych package [38] and one-way

between-groupAnalysis ofCovariance (ANCOVA)

tests, using Type I Sums of Squares. Analyzing the

effects on the multivariate dependent variable of

student motivation, we used the categorical predic-
tor variable of group assignment (treatment or

control). To control for pre-existing differences

between groups, we included the covariates of pre-

survey student motivation, previous semester GPA,

and composite ACT scores. Examining the effects

on the multivariate dependent variable of academic

success, we used the same predictor and covariate

variables, less pre-survey studentmotivation scores.
The assumptions of normality, linearity, homoge-

neity of variance, homogeneity of regression slopes,

and reliability of covariate usage were satisfied once

missing values (15%) of students’ composite ACT

scores were imputed (five datasets were generated

using predictive-mean-matching) using the Multi-

variate Imputation by Chained Equations (MICE)

package [39] and post-survey MSLQ results were

square transformed for normality. One dataset was

randomly selected, from the five imputed datasets of
composite ACT scores, for use in our ANCOVA

analysis. Where statistically significant differences

were found, Cohen’s d [31] was used to calculate the

size of effect for ANOVA tests using the effsize

package [40] and interpreted per Cohen’s proposed

small = 0.20, medium = 0.50, and large = 0.80 [31].

Our second research question asked students to

selectwhether they hadbeenmotivatedor not by the
experience. To answer this, we analyzed the differ-

ence in the proportion (�̂) of students who reported,
‘‘Yes’’ vs. those who reported, ‘‘No’’ or ‘‘Neither’’

(combined as ‘‘Not_Yes’’) using a Fisher’s Exact

test [41]. This consolidation was used due to the

small low counts of aggregate responses for ‘‘No’’

(5, 6%) and ‘‘Neither’’ (6, 7%).We reportedCohen’s

h as a measure of the effect size (strength of associa-
tion) of our odds ratio test, as appropriate (i.e.,

statistically significant results). Again, we inter-

preted values per Cohen’s suggested small = 0.20,

medium = 0.50, and large = 0.80 [31].

The third research question examined the rela-

tionship between student motivation and the level

of academic success, for both control and treat-

ment groups. To answer this, partial Pearson’s
correlations (r) were used to explore the relation-

ship between academic success (final project

scores) and student motivation (post-survey levels

minus pre-survey levels), while controlling for

students’ previous semester GPA. We found no

violations of the assumptions of normality, linear-

ity, and homoscedasticity after missing values

(14%) of students’ previous semester GPA scores
(e.g., first semester freshman) were imputed (five

datasets were generated using predictive-mean-

matching) using the MICE package [39], post-

survey MSLQ results were square transformed

for normality, and course grades were Box-Cox

transformed using the car package [42]. One data-

set was randomly selected, from the five imputed

datasets of previous semester GPA scores, for use
in our correlation analysis. We also used paired-

sample t-tests to test whether there was a signifi-

cant difference between the correlation coefficients

of the control group compared to the treatment

group (i.e., r1 vs. r2) for each subscale and item of

student motivation. We used the cocor package

[43] for this and reported z statistic for these tests,

per Fisher [44]. Effect sizes for difference in group
correlation coefficients were reported using

Cohen’s q (i.e., small = 0.10, medium = 0.30, and

large = 0.50) [31].
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3. Results

3.1 Levels of motivation and academic success

The objective of this study was to examine differ-
ences in studentmotivation and academic success in

a treatment (robotic) vs. control (non-robotic)

groups. To accomplish this, we first analyzed the

influence of outliers and found no significant

impact. This was based on a paired-sample t-test

of post-survey studentmotivationmeans (M= 5.45,

SD = 0.16) vs. 5% trimmed means (M= 5.48, SD =

0.16, t(8) = –0.2849, p-value = 0.7830) and academic
successmeans (M= 0.86, SD= 0.04) vs. 5% trimmed

means (M= 0.87, SD = 0.04, t(4) = –0.3308, p-value

= 0.7575). Turning to descriptive statistics of unad-

justed student motivation scores (Table 3), we

found means for all subscales and items (except

EGO and quiz scores) were higher in the treatment

vs. control group. However, when we controlled for

differences in pre-experience student motivation
(i.e., pre-survey MSLQ scores) and prior academic

achievement (i.e., GPAs and ACTs), we found no

statistical evidence that these mean scores were

higher in the mechatronic experience [F(6,77) =

0.03, p-value = 0.8630] (� = 0.0500). This was

based on a one-way between-groups ANCOVA.

Further testing the value and expectancy subscales

separately, we again found no statistical difference
betweenmean scores for either value [F(6,77)= 0.13,

p-value = 0.7224] or expectancy [F(6,77) = 0.38, p-

value = 0.5408] (�= 0.0167).Moreover, no evidence

was found that mean scores for the individual items

of IGO, EGO, TV, CLB or SE were higher follow-

ing the mechatronic experience [all tests:

F(6,77)� 2.66, p-value� 0.1069] (� = 0.0063). In

short, we were not able to claim that the gains in
mean student motivation in Table 3 were due to the

mechatronic experience. The higher mean scores of

student motivation in our treatment group could be

due to confounding variables or chance. We would

need a combined sample size of roughly 800 (expec-

tancy) and 2,300 (value), to statistically claim a

difference (with an 80% probability of being cor-

rect). To our knowledge, no previous literature has

indicated the need for sample sizes of these magni-
tudes.

Next, we examined differences in academic suc-

cess. While the means of course grades and project

scores were higher in the treatment vs. the control

group, the means of quiz scores were lower (Table

3). Controlling for GPA and ACT scores using a

one-way between-groups ANCOVA, we found

strong statistical evidence that mean course grades
were higher in the mechatronic experience group

[F(5,78) = 7.76, p-value = 0.0067, 1-� = 0.81] (� =

0.0500). This resulted in a medium effect size (d =

0.70, d95%CI = 0.20 to 1.20). Statistical evidence was

also found that project scores were higher in the

mechatronic experience group [F(5,78) = 6.51, p-

value = 0.0127, 1-� = 0.50] (� = 0.0167). This

resulted in a small effect size (d = 0.48, d95%CI =
0.00 to 0.98). In contrast, the mechatronic experi-

ence did not exhibit statistical evidence of an effect

on quiz scores [F(5,78) = 0.25, p-value > 0.6150] (�=
0.0167). There were no appreciable interaction

effects between academic success and GPAs or

ACTs either [all tests: F(5,78)<2.32, p-value >

0.1315].

3.2 Proportion of motivated students

Looking at Table 4, we see that 55 (90%) of the

treatment group students reported that the mecha-
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Table 3. Unadjusted descriptive statistics of student motivation and academic success

Control (n = 23) Treatment (n = 61)

Dependent Variable M SD Mtrim Min Max M SD Mtrim Min Max

Value/Expectancy 5.35 0.75 5.38 3.75 6.70 5.49 0.75 5.53 3.82 7.00
Value 5.37 0.68 5.39 4.00 6.58 5.46 0.83 5.48 3.58 7.00
Expectancy 5.33 0.89 5.38 3.50 6.81 5.53 0.75 5.57 3.69 7.00
IGO 5.20 0.80 5.17 4.00 6.50 5.40 0.91 5.42 3.50 7.00
EGO 5.66 0.66 5.67 4.25 7.00 5.46 0.98 5.49 2.75 7.00
TV 5.26 1.03 5.30 3.00 6.83 5.51 1.16 5.62 1.50 7.00
CLB 5.14 1.00 5.21 2.75 6.75 5.31 0.92 5.35 3.00 7.00
SE 5.52 0.82 5.57 3.75 6.88 5.74 0.77 5.76 3.88 7.00

Course Grade 0.87 0.07 0.88 0.64 0.97 0.90 0.08 0.91 0.56 0.99
Project Score 0.81 0.18 0.83 0.40 1.00 0.89 0.08 0.91 0.49 1.00
Quiz Score 0.83 0.08 0.84 0.67 0.98 0.82 0.10 0.83 0.55 0.94

Table 4. 2 � 2 contingency table for whether students were
motivated by the experience

Response

Group
Not
Motivated Motivated Total

Control 5 18 23
Treatment 6 55 61
Total 11 73 84



tronic experiencewasmotivating (perMeece,Clark,

and Pintrich and Schunk’s definitions). In compar-

ison, 18 (78%) of the control group students felt that

the non-mechatronic experience motivated them
(per the same definitions of motivation). To test

whether there was statistical evidence that these

proportions were different, we used a Fisher’s

Exact test. We found no evidence that the propor-

tion of motivated students in the treatment group

[�̂ = 0.90] was different than in the control group

[�̂1 � �̂2 = 0.12, p-value = 0.1634, OR = 2.51, h =

0.33] (� = 0.0500). To be able to state statistical
evidence of a difference (based on our data and 80%

power), we would have needed a combined sample

size of close to 300. To our knowledge, recommen-

dations of this sample size have not previously been

published.

3.3 Relationship between motivation and academic

success

To understand the relationship between each sub-

scale and item of student motivation, as well as final
project scores, we calculated Pearson’s partial cor-

relation coefficients (r), while adjusting for students’

previous semester GPA (Table 5). In the control

group, every value of rwasnot significantly different

from zero, except for the value/expectancy vs. final

project score [r = 0.47, p-value = 0.0291] relation-

ship. However, more interesting than the control’s

value/expectancy result was what we found for the
treatment group. There was no significant relation-

ship between students’ final project scores and the

value they placed on the final project or the belief(s)

they held in their ability to effectively complete it.

This resultwas true for eachof the itemswithin value

and expectancy as well [all tests: p-value>�]. Using
paired-sample t-tests, we statistically confirmed

there to be no difference between our control and
treatment group’s r values [all tests: r1 � r2� 0.46,

p-value>0.0417]. This was true for all the student

motivation subscales and items (Table 6). Even so,

itis interesting to point out that, while not statisti-

cally significant (� = 0.0063), the relationship

between SE and final project scores was below the

common significance level for single hypothesis a

priori research questions [control r = 0.54, treatment
r = 0.08, p-value = 0.0417]. While we cannot claim a

significant difference, there appears to be a mean-

ingful relationship between self-efficacy and aca-

demic success (when adjusting for GPAs).

4. Discussion

Fig. 3 graphically represents the relationships found

fromour pilot experiment examining the differences

and relationships betweenmechatronic experiences,

student motivation, and academic success. A

detailed discussion follows.

4.1 Levels of motivation and academic success

Our first research question asked whether there was

a difference in student motivation and/or academic

success in the treatment (robotic) vs. control (non-

robotic) groups. Considering student motivation,

we did not observe a difference (top left dashed line

of Fig. 3). While this is in contrast to current
literature that has stated improvements to student

motivation following mechatronic experiences, we

posit that the research designs undergirding these

findings appeared to have been predicated on single
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Table 5.Within-group Pearson’s partial correlations of student motivation and final project scores, while adjusting for previous semester
GPA

Control (n = 23) Treatment (n = 61)

r Statistic p-value r Statistic p-value Adjusted �

Value/Expectancy 0.47 2.35 0.0291 0.07 0.52 0.6048 0.0500
Value 0.13 0.58 0.5679 0.08 0.64 0.5226 0.0167
Expectancy 0.27 1.26 0.2207 –0.01 –0.07 0.9444 0.0167
IGO 0.07 0.30 0.7702 0.14 1.07 0.2871 0.0063
EGO 0.07 0.33 0.7421 –0.02 –0.12 0.9016 0.0063
TV –0.12 –0.55 0.5901 –0.07 –0.50 0.6169 0.0063
CLB 0.25 1.18 0.2531 –0.10 –0.79 0.4315 0.0063
SE 0.54 2.90 0.0089 0.08 0.62 0.5351 0.0063

Note: n = 84; H0: r = 0.00.

Table 6. Between-group t-tests of difference in Pearson’s partial
correlations of student motivation and final project scores, while
adjusting for previous semester GPA

r1–r2 z-value p-value
Adjusted
�

Value/Expectancy 0.40 1.68 0.0929 0.0500
Value 0.04 0.17 0.8619 0.0167
Expectancy 0.28 1.11 0.2663 0.0167
IGO –0.07 –0.29 0.7741 0.0063
EGO 0.09 0.35 0.7261 0.0063
TV –0.06 –0.22 0.8286 0.0063
CLB 0.36 1.40 0.1604 0.0063
SE 0.46 2.04 0.0417 0.0063

Note: n = 84; H0: r1 6¼ r2.



item questionnaires that were most often adminis-

tered once [3–7]. Pre/post surveys and/or control vs.

treatment group methodologies were not used.

Therefore, we argue for two alternative explana-
tions: (1) previously observed effects ofmechatronic

experiences on the value and expectancy dimensions

may not be as drastic as thought, and (2) previously

observed impacts on value and expectancy may not

have been due tomechatronic experiences. Looking

at more historic research, it is well documented that

motivation has a tendency to decrease over time

[45]. Additionally, interest (i.e., intrinsic goal orien-
tation) has been found to peak during the middle of

a project, and wane towards the end [46]. While

these do not speak directly to the statistical similar-

ity of mean scores observed in our study, they do

indicate the dynamic nature of motivation that

could be confounding a positive change in student

motivation.Doesmotivation change at similar rates

or degrees for mechatronic vs. non-mechatronic
experiences? Are peaks in motivation the same, or

do they occur at similar points in an experience?

Future work is required to answer these questions.

However, it is important to highlight thatwe did not

observe a negative impact on student motivation in

the mechatronic experience group. This would

indicate that implementing this type of rigorous,

domain spanning experience did not demotivate
students.

Considering post levels of academic success

between groups, we found significant differences in

course grades and project scores (solid line of Fig.

3). Studentswho engaged in themechatronic experi-

ence averaged three percentage points higher on

course grades and eight percentage points higher

on final project scores. This translated to an average
course grade of A– in the treatment group vs. B+ in

the control group, and an average final project score

of a B+ in the treatment group vs. a B- in the control

group. From a student’s perspective, this is a

practically significant difference, especially those

applying for scholarships. This aligns with the

concept that a medium effect is ‘‘likely to be visible

to the naked eye of a careful observer’’ [31, p. 156].

While this does not prove causality (assignment to

experimental groups was not random, thus no
directional arrow in Fig. 3), it does reveal an

association between mechatronic experiences and

improved academic success in open-ended problem-

solving projects and courses. This is not surprising,

as these experiences require students to integrate

divergent technical domains towards an effective

solution. Harnessing this skill is central to authentic

problem-solving. This aligns with various studies
that have linked mechatronic experiences with

motivation, or motivation with engagement, or

engagement with academic success (as indicated

by Fig. 1). More significantly, our findings make a

strong connection between each end, thus support-

ing the link between the parts, as indicated by

Duncan and McKeachie [32]. However, when con-

sidering quiz scores, academic success was not
different for the treatment vs. control group. This

would indicate that students’ knowledge of content

(specifically programming syntax) was not affected

by themechatronic experience. This is juxtaposed to

research that found students’ knowledge of content

(specifically electronic sensors) to be higher follow-

ing a mechatronic experience compared to the same

students’ levels after a baseline experience [5]. This
study did not compare scores against a separate

control group, possibly leading to differing results.

Another explanation could be that mechatronic

experiences impact knowledge retention differently

for different content domains. As a note of compar-

ison, the same grading rubrics and schemes were

used to measure course grades, project scores, and

quiz scores for the control and treatment groups.
This was done to mitigate confounding variability

when measuring these variables.

As an interesting side note, we did find a slight

interaction (p-value = 0.0332) between previous

semester GPA and group assignment, when con-

sidering the dependent variable TV. It appeared
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Fig. 3. Framework of the relationship between mechatronic experiences, student motivation and academic success, based on research
findings. Solid lines indicated statistically significant relationships, while dashed lines indicated statistically insignificant relationships.



that, in the treatment group, higher-achieving stu-

dents placed less value on the mechatronic experi-

ence vs. lower-achieving students. While we cannot

claim statistical evidence of a difference in TV (p-

value >�), this does parallel the inverse relationship
often found between students’ prior level of knowl-
edge and the level of effort exerted towards a goal

[17]. Could it be that the value placed on a mecha-

tronic experience is mediated by students’ previous

level of academic achievement (i.e., higher achieving

students are less motivated by mechatronic experi-

ences)? Again, future research is needed to under-

stand these relationships.

4.2 Proportion of motivated students

Our second research question looked at differences

in the proportion of students who reported being

motivated in the treatment vs. control group. We

found no difference (again, top left dashed line in

Fig. 3). This corroborates the results found for our

first research question. Just as we did not find a
difference in reported levels of student motivation,

we did not find a difference in the proportion of

students that were motivated. The hands-on, multi-

disciplinary, technical nature ofmechatronic hadno

significant impact on motivation. Therefore, wise

consideration is called for when deciding to imple-

ment these experiences, especially if the purpose is to

impact student motivation, as defined by Meece,
Clark, and Pintrich and Schunk (see Motivation

subsection above).

4.3 Relationship between motivation and academic

success

Looking at research question three, we asked if

therewas a relationship between studentmotivation

and academic success (bottomdashed line in Fig. 3).
Limited correlations were found. The only excep-

tion was a positive relationship between value/

expectancy and final project scores in the control

group. This indicated that, in the control group,

students who reported higher levels of student

motivation earned higher final project scores. This

is not surprising, as these subscales are considered

adaptive motivational beliefs and have been posi-
tively linked to academic success [45]. However, this

positive relationship did not hold true for the

individual subscale items or in the treatment

group. Moreover, we found no difference in the

relationship between students’ value choices or

expectancy beliefs and final project scores when

comparing the control vs. treatment groups. This

would indicate that the mechatronic experience had
no impact on the relationship between students’

level of motivation and academic success. While

much literature has found a positive relationship

between these variables (e.g., the more a student is

motivated towards an academic goal the higher the

level of achievement they attain for that goal) [47],

we concluded that the mechatronic experience had

no effect, positive or negative, on the strength of

relationship between student motivation and aca-

demic success. This was not surprising, as this again
confirms results found from our first two research

questions.

4.4 Limitations

While we strove for rigor in our study, limitations
still existed. First, our measures of motivation were

based on students’ self-reported responses. While

one can argue that the use of this type of data is

limiting, there is a well-established record of litera-

ture that has used the same instrument andmethods

to measure motivation [32]. Therefore, we did not

feel it was unreasonable to inform our conclusions

based on self-reported responses.
Next, we did not consider the limitations due to

our non-random quasi-experimental design unrea-

listic. This is a common scenario found in educa-

tional research [28], and only encumbers how

broadly one can generalize our findings.

Another limitation was the non-equivalent

sample size of the control and treatment groups.

While this is often considered an issue for ANOVA/
ANCOVA, it is only an issue when it adversely

affects the assumption of homogeneity of variance

[36]. Our data did not violate this assumption.

However, this did add to our inability to find a

statistically significant difference in student motiva-

tion, even though this was beyond our control

(sample size needs have not been previously pub-

lished for this topic area).
Finally, the same instructor taught the control

and treatment groups. While this consistency was

used to mitigate confounding variability of instruc-

tor differences, it did not account for the instructor’s

engagement level. The instructor was highly moti-

vated to engage with and motivate the students,

regardless of the content being taught (e.g., mecha-

tronic or non-robotics). While we felt this removed
variability of instructor differences, instructor

engagement may still have overshadowed the

effect of the mechatronic experience on student

motivation results.

4.5 Recommendations

From the results of our pilot experiment, we recom-

mend further research that examines the following:

� Effects size of mechatronic experiences on stu-

dent motivation.

� Change in student motivation in mechatronic

experiences vs. change in time.
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� Interaction effects of Task Value and academic

preparedness in mechatronic experiences.

� Impact of major, age, class level, previous tech-

nical experience, ethnicity, and/or gender identi-

fication on student motivation and academic

success.
� Impact of instructional quality and motivation

on student motivation in mechatronic experi-

ences.

Expanding on the above, we did not find statis-

tical differences in motivation orientation between

the control vs. treatment group. While higher mean

scores were observed in the treatment group, our

sample or effect sizes were not large enough to find

statistical significance. As previously noted, current

literature lacks empirical sample and/or effect sizes

for similar mechatronic experiences. Furthermore,
motivation has been found to be dynamic through-

out a project, peaking during the middle and drop-

ping at the end. This raised several questions: Does

motivation change at similar rates for mechatronic

vs. non-mechatronic experiences?Dopeaks inmoti-

vation have the same magnitude, and occur at the

same time, for mechatronic vs. non-mechatronic

experiences? When examining Task Value, we
found slight interactions between GPA and group

assignment. While we cannot claim statistical sig-

nificance, this may indicate that higher-achieving

students find less value in mechatronic experiences

vs. lower-achieving students (vice versa for the

control group). Put another way, does academic

achievement mediate students’ motivational value

of mechatronic experiences? While we did find
statistical differences for academic success, GPA

and ACT scores were the only covariates included

in the ANCOVA model. Future analyses could

extend this model to include variables of major,

age, class level, previous technical experience, eth-

nicity, and/or gender identification. Finally, we

recommend that future research be conducted to

examine the affect that instructor variability (e.g.,
instructional quality) has on student motivation

and academic success. Literature has found that

students with engaged instructors have higher

levels of student motivation and academic success

[48]. Therefore, including this covariate could

improve our model’s sensitivity to discerning differ-

ences in student motivation.

5. Conclusions

This pilot experiment empirically quantified the
differences in undergraduate student motivation

and academic success for a mechatronic experience

(treatment) vs. a non-mechatronic (control) experi-

ence. Considering the first research question, we

found no statistical differences in reported motiva-

tion. In contrast, there were differences in academic

success, with the treatment group scoring an aver-

age of three percentage points higher on course

grades. Answering the second research question,

we found that the proportion of students motivated
by the course project was not different for the

treatment vs. control group. Furthermore, there

was no association between students’ level of moti-

vation and their level of academic success, which

answered our final research question. Synthesizing

these results, we are encouraged: students in the

more rigorous mechatronic experience did not have

lower levels of student motivation. Even more
encouraging, project scores and final course grades

were higher in the mechatronic experience group.

Not only do these findings provide empirical evi-

dence explicating differences in student motivation

and academic success in mechatronic experiences,

but they also encourage further investigation into

the nuances of these constructs.
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