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There is a significant underrepresentation of women in many Science, Technology, Engineering, and Mathematics

(STEM)majors and careers. Prior research has shown that self-efficacy can be a critical factor in student learning, and that

there is a tendency for women to have lower self-efficacy than men in STEM disciplines. This study investigates gender

differences in the relationship between engineering students’ self-efficacy and course grades in foundational courses. By

focusing on engineering students, we examined these gender differences simultaneously in four STEM disciplines

(mathematics, engineering, physics, and chemistry) among the same population. Using survey data collected long-

itudinally at three time points and course grade data from five cohorts of engineering students (3,928 students) at a large

US-based research university, effect sizes of gender differences are calculated using Cohen’s d on two measures: responses

to survey items on discipline-specific self-efficacy and course grades in all first-year foundational courses and second-year

mathematics courses. In engineering, physics, and mathematics courses, we find sizeable discrepancies between self-

efficacy and performance, with men appearing significantly more confident than women despite small or reverse direction

differences in grades. In chemistry, women earn higher grades and have higher self-efficacy. The patterns are consistent

across courses within each discipline. All self-efficacy gender differences close by the fourth year except physics self-

efficacy. The disconnect between self-efficacy and course grades across subjects provides useful clues for targeted

interventions to promote equitable learning environments. The most extreme disconnect occurs in physics and may

help explain the severe underrepresentation of women in ‘‘physics-heavy’’ engineering disciplines, highlighting the

importance of such interventions.
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1. Introduction

Self-efficacy is intertwined with many aspects of

academic life, so understanding both the nature of

self-efficacy itself and its effects is crucial in order to

improve education. Self-efficacy is the belief in one’s

capability to succeed in a particular task or subject
[1–3], and in an academic context it can both affect

and be affected by academic performance, a feed-

back loop that can either promote or hinder student

learning [4–7]. Most importantly here, the feedback

loop can produce growing inequities for those

traditionally underrepresented in engineering [8,

9]. Due to this recursive nature, measuring self-

efficacy and academic performance longitudinally
is vital to understanding their relationship. We

present such a longitudinal analysis of the relation-

ships between self-efficacy and academic perfor-

mance using institutional data and survey

responses from one US-based institution to test

for patterns of gender differences. While the study

is implemented within one US-based engineering

program, the broader methodology described can
be applied at any institution in order to seek sources

of gender inequities inherent in their academic

programs.

1.1 Underrepresentation of Women in Engineering

Fields

The overall underrepresentation of women in

Science, Technology, Engineering, and Mathe-

matics (STEM) careers is largely due to their large

underrepresentation in engineering [10]. Progress

has been made in some fields of engineering, but the

largest engineering majors remain heavily male-

dominated [10]. Many interrelated factors influence
women’s decision to pursue an education in engi-

neering as well as subsequent decisions about which

subfield to study and even whether to remain in

engineering [11–15]. These factors include socio-

cultural factors, motivational factors, and various

aspects of prior education such as quality of teach-

ing [14–23]. In particular, it has been proposed that

cultural bias and stereotypes can negatively impact
the self-efficacy and academic performance of

women in various STEM subjects such as mathe-

matics and physics [15–18]. This is potentially

damaging to prospective women in engineering

* Accepted 25 June 2020.1996

International Journal of Engineering Education Vol. 36, No. 6, pp. 1996–2014, 2020 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2020 TEMPUS Publications.



since success in mathematics and science courses in

high school has a positive impact on students’

choice of and persistence in an engineering major

[24–29] and longer-term career goals [5, 30].

1.2 Discipline-specific Variation of Gender

Differences in Self-Efficacy

Much of the research on self-efficacy has examined

broad discipline self-efficacy (e.g., science or engi-

neering self-efficacy) ormore discipline-specific self-

efficacy (e.g., physics or chemistry self-efficacy),

especially as students become more specialized in
tertiary education (e.g., become chemistry majors

vs. physics majors). Surprisingly, however, there

has been little research comparing self-efficacy in

various disciplines among the same population.

This gap in research comparing discipline-speci-

fic self-efficacy is particularly problematic for engi-

neering. First, large differences in self-efficacy by

gender have been previously found in various
STEM disciplines in which engineering majors

typically take courses [12, 13, 21, 31–36]. These

self-efficacy differences have been implicated in

gender differences in performance, retention, and

choice of major [5, 28-30, 37], which is especially

relevant during the students’ first year. There are

also hints that the size and even direction of self-

efficacy differences vary by academic discipline. For
example, women have equal or slightly higher self-

efficacy in English [38] and equal self-efficacy in

biology [39, 40]. Second, it is difficult to generalize

gender patterns in general-education STEM

courses taken by many non-engineering majors to

engineering students in particular because there are

large variations inwhich students choose to take the

various general STEM courses and because engi-
neering students are potentially different from the

general science major population (e.g., women

choosing to major in the male-dominated engineer-

ing may have atypically high self-efficacy beliefs in

physics and math relative to the general science

major population). Third, variation in gender dif-

ferences in self-efficacy by discipline in later years

might be explained by differential rates of participa-
tion in engineering majors by gender (e.g., male-

dominated electrical and mechanical engineering

vs. more balanced chemical engineering may reflect

differential gender differences in physics vs. chem-

istry self-efficacy).

Previous work has shown that women tend to

have a lower self-efficacy than men in disciplines

including physics [33–35] and chemistry [36] as well
as mathematics and engineering [12, 13, 21, 31, 32].

However, these studies of physics, chemistry, and

mathematics self-efficacy did not focus on engineer-

ing students.

1.3 Time-varying Gender Differences in Self-

efficacy

Another important gap in the self-efficacy research

of particular relevance to engineering education is

the lack of research on the change in student self-

efficacy across the full course of studies in engineer-

ing. The self-efficacy differences that were in place at

the end of the degree will be most relevant to those
later career transitions. As course grades are gen-

erally higher in the more advanced courses [41] and

experience with success accumulates, gender differ-

ences initially observed in the earlier years may

disappear. On the other hand, due to the negative

effects of having low self-efficacy on exam perfor-

mance, the feedback loop from performance to self-

efficacy, and the potentially negative effect of being
a numerical minority in most courses (at least

within some engineering majors), early gender

differences could actually magnify over time.

A few studies have investigated self-efficacy

changes over the course of two semesters, and

generally found little change in self-efficacy over

that shorter time period [35, 42, 43]. One study

found that over two years, the self-efficacy of
women in engineering showed a positive trend

[44]. Little is known about gender differences in

self-efficacy of graduating engineering students.

1.4 Gender Differences in Alignment of Self-

Efficacy and Academic Performance

There are multiple factors that lead to alignment of

self-efficacy beliefs and academic performance.

First, a central source of self-efficacy beliefs is

prior performance feedback [4]. Second, self-effi-

cacy can influence academic performance [4–7].

Third, factors that directly influence self-efficacy
can also directly influence academic performance.

In particular, stereotype threats that women experi-

ence in many STEM disciplines due to societal

stereotypes and biases can increase their anxiety,

rob them of cognitive resources while solving pro-

blems, and lead to reduced test scores [7]. Addition-

ally, these stereotype threats can lower self-efficacy,

which can result in reduced interest and engage-
ment during learning [5, 45].

However, these factors may influence perfor-

mance and self-efficacy in different manners, so

academic success may not be fully aligned with

self-efficacy. Of particular relevance here, align-

ment between academic performance and self-effi-

cacy may be differential by gender. Women in

STEM may interpret struggle in difficult courses
as being due to inability whereas men may interpret

struggle in these same courses as due to lack of

effort [46]. Further, gendered stereotypes, differen-

tial availability of role models, and consistently
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being in a numerical minority in coursework may

produce biased self-efficacy.

1.5 Research Questions

The current study examined gender differences in

longitudinal measurements of student self-efficacy

and academic performance in math, science, and
engineering courses. Our work extends previous

research by investigating trends within the same

populations (engineering overall and by separate

engineering majors) across four different STEM

disciplines in order to situate any gender differences

observed within the broader context of these stu-

dents’ academics. This research is of particular

importance to engineering given the poor gender
diversity in engineering overall and the negative

role that low self-efficacy can play in students’

academic decisions [11–15].

Our research questions to investigate the trends

in self-efficacy and academic performance are as

follows:

RQ1. Do men and women’s self-efficacy in various

core disciplines change along different trajec-

tories as they progress from their first to their

fourth year?

RQ2. Do gender differences in performance within

foundational STEM courses vary by course dis-
cipline?

RQ3. Is there a match between gender differences in

self-efficacy and gender differences in perfor-

mance?

RQ4. Does being in a male-dominated engineering

major change the gendered trajectories in self-

efficacy relative to students in an more gender-

balanced major?

2. Methodology

2.1 Participants

Using the Carnegie Classification of Institutions of

Higher Education [47] , the US-based university at

which this study was conducted is a public, high-

research doctoral university, with balanced arts and

sciences and professional schools, and a large,
primarily residential undergraduate population

that is full-time, more selective, and lower trans-

fer-in. De-identified demographic data and univer-

sity course grade data were provided by the

university on all first-year engineering students

who had enrolled from Fall 2009 through Spring

2018. We recognize that gender is not a binary

construct; however, the data provided lists gender
only as a binary categorical variable, so we present

our analyses and results accordingly. Since all of

our analyses will involve gender, we have filtered

out students from the sample whose gender is

unknown since they would later be omitted for

each analysis.

The sample of engineering students for whom we

have gender and grade data consists of 3,928

students. A subset of this sample also participated

in surveys administered by the School of Engineer-
ing from Spring 2014 through Spring 2017 at the

end of their first, second, and/or fourth years. The

average response rate for each year was 79%. The

full sample of students was 27% female and had the

following race/ethnicities: 80% White, 8% Asian,

5% African American, 2% Latinx, and 5% Other.

The mean age at the beginning of the students’ first

year was 18.9 years (SD = 1.7 years), reflecting a
population of students who predominantly are

attending college immediately after completing

high school.

2.2 Measures

Grades. The data provided include the grade points

(GPs) earned in all courses at the university, the
semester and class in which the course was taken,

and the grade point distributions (mean and stan-

dard deviation) for each class. GPs are on a 0-4 scale

(F = 0, D= 1, C = 2, B = 3, andA= 4) where ‘+’ and

‘–’ suffixes add or subtract 0.25 (e.g., B+ = 3.25)

except for A+, which is recorded with a GP of 4.

Declared major. We also have the declared

major(s) for each student for every semester. At
this university, engineering students initially choose

an engineering major only at the end of their first

year. Therefore, the first declared major is likely an

accurate measure for most students. Possible

majors are: Mechanical Engineering and Materials

Science, Electrical and Computer Engineering,

Chemical and Petroleum Engineering, Civil and

Environmental Engineering, Bioengineering, or
Industrial Engineering.

Discipline-specific Self-efficacy. The self-efficacy

data were collected as part of an online survey that

the engineering school gives to all engineering

students at the end of the spring semester of their

first, second, and fourth years. Students are given a

few reminders to complete the survey and are told

that this survey is important for evaluating the
effectiveness of the engineering program, resulting

in a completion rate exceeding 75% and sometimes

higher than 90%. The four analyzed items asked

students to ‘‘Please rate your level of confidence in

the following knowledge and skill areas: My ability

to use my knowledge of [mathematics/engineering/

physics/chemistry] to solve relevant engineering

problems.’’ It is considered best practice in the
design of self-efficacy ratings to identify a particular

task context to allow respondents to make reliable

judgments [4]. The use of the phrase ‘‘to solve

relevant engineering problems’’ in each survey

Kyle M. Whitcomb et al.1998



question serves this purpose, in addition to increas-

ing the relevance of the judgments to engineering

education.

The students were given five options – ‘‘poor,’’

‘‘fair,’’ ‘‘good,’’ ‘‘very good,’’ and ‘‘excellent’’ –

recoded as 1 to 5. Although some survey scales
produce non-interval data that should not be ana-

lyzed as interval data, the Likert rating scales for

measuring self-efficacy typically produce normally

distributed data, as they did in the current study (see

Appendix A). Further, these self-efficacy scales are

always analyzed as interval data (e.g., by computing

means, using t-tests and linear regressions).

In smaller scale research studies, a survey scale
often has multiple items so that scale reliability can

be calculated (e.g., Cronbach’s alpha). In larger

scale longitudinal studies, survey fatigue becomes

a major concern as students stop responding with

having to repeatedly do long surveys, and it is not

uncommon to use only one survey item per scale

[48–49]. In our case, the self-efficacy items were

embedded in a larger survey and asking students
three to five questions on self-efficacy per domain

would have been received negatively. The main

disadvantage of one-item scales is the increase in

measurement noise (i.e., a problem of reliability,

not a problem of validity), which reduces the ability

to detect effects. This deficit is overcome by using a

large sample, as in the current study.

To validate the use of these single-item scales, a
subset of students (N= 446) also completed amulti-

item physics self-efficacy survey within their Physics

2 class around the time that they were also complet-

ing the general engineering attitudinal survey, and

the two measures were highly correlated (r = 0.60).

Finally, the general physics self-efficacy survey

showed a similar gender effect size (measured by

Cohen’s d) as the engineering-context physics self-
efficacy (d = 0.76 in the physics context vs. d = 0.84

in the engineering context).

2.3 Analysis

Grouping by gender and major cluster. For the

entirety of this analysis, students are grouped by

their reported gender in order to investigate gender
differences in the perception of and performance in

foundational subjects in engineering. To investigate

whether these gender differences differ across dif-

ferent engineering departments, we used the first

major declared by these engineering students, which

typically occurs at the end of their first year when

the students move from the standard first-year

courses to a specific engineering department’s cur-
riculum.

Students were grouped into three clusters of

engineering majors determined by the proportion

of women in those majors. Typically, these engi-

neering students first declare their major at the end

of their first year. The specific majors that went into

each cluster were determined by the proportions of

women and men who declared that major. Table 1

shows the engineering majors in each major cluster

as well as the number of students and percentage of
that number that are women, both for the full

sample and the sample of survey takers.

Self-efficacy differences by gender. In order to test

for statistically significant differences in self-efficacy

scores, we performed t-tests comparing self-efficacy

scores of men and women in engineering. Effect

sizes of the gender differences were calculated in

standard deviation units via Cohen’s d [50]. Ana-
lyses of gender differences in self-efficacy were run

separately for each of the four disciplines (mathe-

matics, engineering, physics, and chemistry) at each

time point (but averaging across the five cohorts of

students). Furthermore, these tests were run for all

available students first, then separately for the men

and women in each major cluster.

Course performance differences by gender. Simi-
larly, using t-tests [51, 52], we investigated gender

differences in course performance on the grade

points earned by men and women in each of the

foundational courses. Again, the magnitudes of

differences were calculated in standard deviation

units. The courses we investigated were the founda-

tional courses taken by the largest number of

students in the School of Engineering, namely all
of the common first-year courses in engineering,

physics, chemistry, and mathematics as well as a

selection of second-year mathematics courses taken

by students in a variety of engineering departments:

two in chemistry, two in physics, two in engineering,

and five in mathematics. We note that the intro-

ductory engineering sequence at the studied uni-

versity is a two-course sequence designed to teach
the students computer programming skills in an

engineering context, and in particular teaches the

students to use MATLAB, C++, and Python to

solve engineering problems. Further, we recognize

Comparison of Self-efficacy and Performance of Engineering Undergraduate Women and Men 1999

Table 1. The sample size of students in each major cluster, along
with the percentage of women in that sample. Two samples are
reported for each cluster, one for all students for which we have
grade data and another for the subset for which we have survey
data. Survey takers counted here may have taken any combina-
tion of the first year, second year, and fourth year surveys.



that the content of such a course, or of the intro-

ductory curriculum as a whole, may vary from

country to country and even institution to institu-

tion within a country. Thus, the investigation

presented here provides a methodology for investi-

gating these relationships within any particular
curriculum, and the results presented here may be

used as a comparison to a particular institution with

a strictly enforced first-year engineering curriculum

that includes courses in chemistry, engineering,

mathematics, and physics.

3. Results and Discussion

3.1 Longitudinal Gender Differences in Self-Efficacy

In order to understand the perceptions of these

engineering students about their foundational

course work and answer Research Question 1,

and specifically address how these perceptions

differ for men and women, we plot in Fig. 1 the
mean self-efficacy scores of men and women in

engineering in each of the four foundational sub-

jects (mathematics, engineering, physics, and chem-

istry) at each time point (end of the first, second,

and fourth years). The full distributions of

responses to these prompts are available in Appen-

dix A. Looking at the data for the first year, there is

a statistically significant gender gap favoringmen in
self-efficacy scores for applying mathematics, engi-

neering, and physics to their work in engineering,

and no difference in chemistry. Both mathematics

and engineering follow a similar trajectory in that

the initial gap remains in the second year and is

eliminated by the fourth year. In sharp contrast, the

gap shrinks but remains relatively large in physics

even by the end of the fourth year. At no point is

there a significant gender difference in chemistry
self-efficacy.

Although we do not focus on this issue here, we

note that self-efficacy of both men and women

appears to grow, as expected, over years; the lack

of growth in chemistry self-efficacy may reflect the

relatively small role chemistry plays in the largest

majors within the six engineering departments.

Note that there is relatively little change in
majors after students declare majors in their

second years, nor is there much attrition overall

in Engineering at this university after the second

year. Thus, the changes between second and

fourth years are unlikely to be caused by major

switching or attrition. These arguments are further

supported by follow-up analyses that included

only data from students completed surveys at all
three time points.

3.2 Performance Differences in Foundational

Courses

Gender differences in performance were investi-

gated across the foundational first year engineering

curriculum and selected common second-year
mathematics courses to answer Research Question

2. Table 2 reports the summary statistics (popula-

tion N, mean �, and standard deviation �) for each
course along with a p-value from a t-test comparing

the grades earned bymen and women in that course

and the effect size (Cohen’s d).

For all but one course, there were statistically

significant gender differences, with all but one of
those statistically significant results satisfying

p < 0:01. Most interestingly, the direction of the

differences varied by discipline. Only for the two

introductory physics courses didmen receive higher

grades on average than women. In all the courses in

the other three disciplines, women received higher

grades on average than did men (and statistically

significantly so except for Engineering 2). More-
over, although the lowest mean grades occurred in

physics, the gender patterns in physics cannot be

explained by physics being the most difficult course

because students had similarly low grades in chem-

istry and calculus but with opposite gender differ-

ences (with women on average performing better

than men in all chemistry and mathematics

courses). Similarly, the differences could not be
explained in terms of the stronger role of mathe-

matics in physics versus chemistry because women

had higher grades in every single mathematics

course. Further, these gender differences in course

Kyle M. Whitcomb et al.2000

Fig. 1.Themean self-efficacy scores of engineering students at the
end of their first, second, and fourth years in each of the
foundational subjects in engineering are plotted along with
their standard error. Self-efficacy was measured on a Likert
scale from 1 to 5. The vertical range of self-efficacy scores has
been restricted to better show the gender differences. Above each
pair of points, Cohen’s d is reported (with d < 0 indicating
women have a higher mean and d > 0 indicating men have a
higher mean) along with the statistical significance of the gender
difference according to a t-test, with *p < 0:05, **p < 0:01,
***p < 0:001, and nsp > 0:05.



grades could have implications for future success in

engineering. Our previous study of engineering
students’ performance in these foundational

courses at the same university found strong rela-

tionships between the grades earned in introductory

courses and advanced mathematics courses, which

in turn were statistically significant predictors of

performance mechanical engineering and materials

science courses [53].

It should be acknowledged, however, that none
of the gender differences in course performance was

large. Instead, what is surprising is the pattern of

large gender differences in self-efficacy despite small

differences in performance as well as performance

and self-efficacy scores showing opposite trends

(e.g., in mathematics and engineering, women on

average have better grades but have lower self-

efficacy than men). This contrast is directly exam-
ined in the next section.

3.3 The Relationship Between Self-Efficacy and

Course Performance

In order to answer Research Question 3 and inves-

tigate the relationship between self-efficacy and

performance, we combined the two previous ana-

lyses for Research Questions 1 and 2 to plot the

effect sizes of gender differences in both self-efficacy

and course grades (Fig. 2). For each point in the
plot, we used only the subsample for which we had

both a course grade (Ns varying from 579 for

Linear Algebra to 1,163 for Engineering 1) and a

self-efficacy score in the nearest survey (first year for

the introductory courses, and second year for the

second-year mathematics courses), a restriction

which slightly alters the effect sizes from those of

the full samples in Fig. 1 and Table 2. In addition to
dashed lines along d ¼ 0 on both axes, there is a

dotted line along dSE ¼ dCG (where the effect size of

self-efficacy differences equals the effect size of

course grade differences), which represents where

the data would fall if there was a one-to-one

relationship between the effect sizes of self-efficacy

and course grade. In addition, a vertical line is

shown from the center of each discipline to the
dSE ¼ dCG line, which represents the deviation of

self-efficacy differences from academic performance

differences.

Here we see the trends among the foundational

subjects shine through strongly. As before, we see

that engineering and mathematics are more similar

than the other two disciplines. However, it is highly

noteworthy that the directions of the self-efficacy

Comparison of Self-efficacy and Performance of Engineering Undergraduate Women and Men 2001

Table 2. Reported are the performance differences between female (F) and male (M)
engineering students for grades earned in introductory courses in engineering, physics,
chemistry, and mathematics as well as second-year mathematics courses. We report the
sample size N, mean M, and standard deviation SD separated for men and women, as well
as the p-value from a t-test comparing the grades earned and Cohen’s d measuring the effect
size, both for the individual courses and for each of the four subjects overall. The sign
convention for Cohen’s d matches that of Fig. 1.



and performance gender differences for all courses

within two subjects are in direct opposition. In both

engineering and mathematics, men have a higher

self-efficacy, while women earn higher grades on

average.

In Fig. 1, chemistry was the only subject in which

there was no gender difference in self-efficacy,

though we did see a performance difference favor-
ing women. In Fig. 2, with the subset of the

population for which we have both self-efficacy

scores and course grade data, we see that chemistry

falls right along the dSE ¼ dCG line. That is, for the

populations completing the surveys, there is direct

correspondence between self-efficacy and perfor-

mance: women have higher self-efficacy in chemis-

try to the exact same extent to which they also

outperform men in chemistry.

Fig. 2 also shows an interesting contrast between

quadrant and deviation from the matching self-

efficacy/performance line. Both chemistry and phy-

sics are in ‘match’ quadrants of the figure, but while

chemistry is precisely on the dSE ¼ dCG line, physics

is not. On the one hand, men have higher self-
efficacy in applying physics to engineering and do

have higher performance, which is roughly amatch.

On the other hand, effect sizes are completely

mismatched: the self-efficacy gap is much larger

than the course grade gap leading to physics lying

further away from the dSE ¼ dCG line than any

other discipline.

Kyle M. Whitcomb et al.2002

Fig. 2. The effect sizes (Cohen’s d, sign convention matching Fig. 1) of gender
differences in self-efficacy (dSE) and course grades (dCG) are plotted for each of the
introductory courses as well as second-year mathematics courses. Dashed lines for
d ¼ 0 on both axes as well as a dotted line along dSE ¼ dCG have been added. Ellipses
group all courses in each subject. Each point contains the data of only those students
for which both a grade and self-efficacy score were available. Introductory course
grades (the first and second courses in a sequence) are pairedwith first-year self-efficacy
scores, while second-year mathematics course grades are paired with second-year self-
efficacy scores. Vertical lines have been added showing the distance along the self-
efficacy axis from the center of each subject (defined as the average position of the
constituent courses) to the dSE ¼ dCG line.



3.4 Self-Efficacy Time Trends for Different Major

Clusters

In Fig. 3, as in Fig. 1, we plot the mean self-efficacy

scores of men and women in each of the four

foundational subjects, but now separately for each

major cluster. The three clusters of majors consid-

ered are (1) mechanical/materials science and elec-

trical/computer engineering; (2) chemical and

environmental/civil engineering; and (3) bioengi-

neering and industrial engineering (see Table 1).

The mean responses in each subject for each of the
six majors separately are in Appendix B. Looking

first at mathematics and engineering, we observe

some small differences across the major groups,

namely clusters 1 and 2 have self-efficacy differences

Comparison of Self-efficacy and Performance of Engineering Undergraduate Women and Men 2003

Fig. 3. As in Fig. 1, the mean self-efficacy scores of engineering students at the end of their first, second, and fourth years in each of the
foundational subjects in engineering are plotted along with their standard error separately for students in each of the three clusters of
majors. Self-efficacy was measured on a Likert scale from 1 to 5. The range of self-efficacy scores has been restricted to better show the
gender differences. Each column contains the graphs for the different major groups while each row contains the graphs for self-efficacy in
the different foundational subjects. Above each pair of points, effect size (Cohen’s d, sign convention matching Fig. 1) is reported along
with the statistical significance of the gender difference according to a t-test, with *p < 0:05, **p < 0:01, ***p < 0:001, and nsp > 0:05.



in the first and second years that close by senior year

while cluster 3 shows no self-efficacy differences in

mathematics or engineering except a marginally

significant gap in mathematics self-efficacy in the

fourth year. As before there is a high degree of

similarity between the responses in relation to
mathematics and engineering within each cluster,

suggesting that the strong tie in engineering stu-

dents’ perceptions of their abilities in mathematics

and engineering is true for all engineering students,

even despite overall differences between cluster 3

and clusters 1 and 2.

The third row of Fig. 3, showing responses for

physics self-efficacy, shows a higher physics self-
efficacy among students who choose physics-

oriented majors such as electrical and mechanical

engineering than students in other majors. Most

importantly, Fig. 3 sheds additional light on likely

causes of the unusually large and not closed gender

gap in physics self-efficacy across majors. The

cluster with the highest percentage of women

(bioengineering/industrial engineering) is actually
the only subset where the physics self-efficacy gap

remains open by the fourth year. In other words,

being in courses that are male dominant (at least by

numbers) does not appear to be the central cause of

the effect.

A related point has to do with ruling out simple

exposure to physics content. If the gender effect in

physics were simply a result of a relative exposure to
physics content, then we should expect that men in

cluster 3 also have lower physics self-efficacy than

students in cluster 1. While that is somewhat true

for the first two years – possibly driven by a

selection effect with the students that have the

highest physics self-efficacy being most likely to

choose a mechanical, electrical, or computer engi-

neering major – that gap closes for men in cluster 3
by the fourth year, but not for women in the same

majors. Further, it is noteworthy that the women in

the physics-oriented majors in cluster 1 display a

remarkably similar trend in physics self-efficacy to

the men in clusters 2 and 3.

Finally, the fourth row of Fig. 3 shows the

chemistry self-efficacy scores for each of the major

groups, again showing a disparity based on chosen
major. Cluster 2, which includes chemical engineer-

ing, has the highest chemistry self-efficacy across all

years, followed by cluster 3, and finally cluster 1,

students in which seem to display a decrease in their

perceived to applying chemistry to engineering that

persists through the fourth year. Despite having no

gender gaps, Fig. 3 does show strong differences

between the threemajor clusters, consistent with the
idea that self-efficacy may play an important role in

major selection (i.e., the highest self-efficacies occur

from the start in students who selected chemical

engineering). Turning to lower exposure/experience

effects, Cluster 1’s chemistry self-efficacy scores are

the only ones which remain below 3 on the Likert

scale even through their fourth year. Interestingly, a

very small (albeit non-significant) gender gap in

chemistry self-efficacy emerges in all groups by the
fourth year, with men on average having a slightly

higher chemistry self-efficacy than women in clus-

ters 2 and 3 (including chemical engineering and

bioengineering) and women on average having a

higher chemistry self-efficacy than men in cluster 1.

However, none of these differences by gender or

time in chemistry self-efficacy were large.

4. General Discussion

Research Question 1 considers gender differences

and temporal persistence of gender differences in

engineering students’ self-efficacy within four core

disciplines. We observed no significant gender dif-

ferences in chemistry self-efficacy in this under-
graduate engineering population while that same

population showed consistent differences in mathe-

matics, engineering, and physics, with men tending

to have a higher average self-efficacy in the first two

years and the gap reducing by the fourth year.

These effects were very small in mathematics and

engineering, but large in physics. Given that a

shared population of students was investigated
(and they were all engineering students), this was

the first clue that that are discipline-specific biases

at play underlying gender differences in self-effi-

cacy.

Turning to RQ2, we also observed consistent

gender differences in course grades in each of the

four core disciplines. Here however, women per-

formed slightly better than men on average in
mathematics, engineering, and chemistry. Such

course differences were consistent with trends

within this population for high school GPA differ-

ences by gender, and somewhat consistent with

national trends [54], where mathematics shows

mixed gender differences across institutions,

although the same study finds men earn higher

grades on average in chemistry. In contrast, men
performed slightly better on average than did

women in the two physics core courses that were

examined. Thus, both self-efficacy and performance

display substantial variation in gender differences

by core STEM discipline, but not in consistent

ways.

Focusing more specifically on alignment of self-

efficacy with performance for RQ3, we observed
three different patterns: (1) complete alignment

with chemistry; (2) opposing direction small effects

in mathematics and engineering; and (3) consistent

direction but mismatching effect sizes in Physics
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(i.e., large self-efficacy effects but small perfor-

mance differences). Thus, in answer to RQ3,

gender differences in self-efficacy are inconsistently

aligned with performance differences, strongly sug-

gestive of some source of bias by gender in self-

efficacy estimates that is discipline specific.
RQ4 investigated one possible source of such

biases in self-efficacy: the experience of being a

numerical minority in course work [8–9]. Here the

self-efficacy trends through the later years was most

relevant because it is via those courses that the

experience of engineering students varies by

major. However, the data did not support an

effect of being a numerical minority: the change
patterns were generally similar across majors. The

one exception actually went in the opposite direc-

tion: the large physics self-efficacy gender difference

was primarily found in the majors with the highest

proportion of women.

While these analyses are inherently correlational,

the correlational pattern has ruled out some com-

monly offered explanations for gender differences in
performance and self-efficacy. First, the self-efficacy

gender differences cannot be a simple reflection of

actual performance differences; if anything, the

pattern is more consistent with self-efficacy biases

causing performance differences. Second, perfor-

mance differences in physics cannot be attributed to

deficits in mathematical ability: among engineering

students, women outperform men on average in
every singlemathematics course. Third, self-efficacy

differences by gender do not seem to be driven by

the experience of being a numerical minority in

coursework.

4.1 Implications for Instruction and Future

Research

The observed correlational findings have important

implications for research and practice. We divide

those implications around the sources of initial

differences by discipline and then the differential

change over the years by discipline. Focusing first

on the initial differences, other work [33–35] has

shown that engineers show large physics self-effi-

cacy differences by gender even in the first few
weeks of class in their first year. Physics tends to

involve particularly strong beliefs that talent is

required for doing well and the common cultural

stereotype is that males are the ones that have such

talent [55–57]. Regardless of the source of these

beliefs, counter programming in secondary schools

should be introduced to broadly address stereo-

types and improve women’s self-efficacy for physics
(e.g., using growth mindset interventions [58–60]).

If broadly distributed, the number of women appli-

cants to engineering schools could rise. If more

narrowly targeted to incoming engineering first-

year students (a task more in the control of uni-

versities), prior biases might be lessened just in time

to reduce stereotype-threat effects within the early

coursework.

Turning to the differential changes in self-efficacy

during the undergraduate years, at least the studied
institution could perhaps be congratulated for

having been able to reduce and sometimes entirely

eliminate initial gender differences in self-efficacy.

Future research should examine how broadly engi-

neering programs around the world are able to

achieve this outcome. Retention patterns at this

university were not unusual by national US trends

[10], which suggests that many US-based universi-
ties have also been similarly successful.

However, there are still important challenges:

differences in self-efficacy remained overall, parti-

cularly in bioengineering and industrial engineer-

ing majors. Additional research should now focus

on the experience of these students to understand

why their physics self-efficacy remains so low.

Physics is an important foundation to bioengi-
neering overall and to many aspects of industrial

engineering. Along these lines, replications at

other universities are needed to examine whether

these patterns are characteristics of those majors

more generally or whether they come from depart-

ment-specific messaging and coursework at this

US-based university.

Another gap to acknowledge in the current study
is the exclusive focus on gender and gender as a

binary construct. Engineering is not only male-

dominated: there is also underrepresentation by

other gender identities and by sexual orientation,

by race/ethnicity, and there can be additional effects

at the intersection of race/ethnicity and gender (e.g.,

larger gender effects within underrepresented mino-

rities) [61–64]. The current study offers an analytic
framework that could equally well be applied to

better understand those other domains of under-

representation, even if they potentially have differ-

ent explanations.

5. Conclusions

Self-efficacy is a specific attitude that can play a

strong role in influencing student performance in

both the short-run (by undermining studying and

exam performance) and in the long-run (by influen-

cing degree persistence). In this study, we add

important nuances to the common previous finding

of lower self-efficacy by women in STEM. On a

positive note, we observed reductions in the self-
efficacy gap over time (RQ1), but the early gender

gaps are still important because they can affect

differential attrition, which is generally highest in

the early years of the engineering degree. However,
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we find that the self-efficacy gender difference varies

by specific STEM topic (RQ2), even within a

particular sample of engineering students, with

especially large differences in physics self-efficacy.

Further, we also draw attention to the non-norma-

tivity of these self-efficacy gender differences:
women sometimes have lower self-efficacy even

when they have higher performance such as in

engineering and mathematics courses (RQ3).

Finally, we show that although there is some

variation in these patterns by engineering major,

there is no support for larger gender-based self-

efficacy gaps being found in majors where women

are a numerical minority (RQ4).
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55. M. N. Delisle, F. Guay, C. Senécal and S. Larose, Predicting stereotype endorsement and academic motivation in women in science

programs: A longitudinal model, Learning and Individual Differences, 19(4), pp. 468–475, 2009.

56. C. Good, A. Rattan, and C. S. Dweck, Why do women opt out? Sense of belonging and women’s representation in mathematics,

Journal of Personality and Social Psychology, 102(4), pp. 700–717, 2012.

57. G. C. Marchand and G. Taasoobshirazi, Stereotype threat and women’s performance in physics, International Journal of Science

Education, 35(18), pp. 3050–3061, 2013.

58. C. Good, J. Aronson andM. Inzlicht, Improving adolescents’ standardized test performance: An intervention to reduce the effects of

stereotype threat, Journal of Applied Developmental Psychology, 24(6), pp. 645–662, 2003.

59. D. S. Yeager andG.M.Walton, Social-psychological interventions in education: They’re notmagic, Review of Educational Research,

81(2), pp. 267–301, 2011.

60. D. Paunesku,G.M.Walton,C.Romero, E.N. Smith,D. S.Yeager, andC. S.Dweck,Mind-set interventions are a scalable treatment

for academic underachievement, Psychological Science, 26(6), pp. 784–793, 2015.

61. K. L. Tonso, On the Outskirts of Engineering: Learning Identity, Gender, and Power via Engineering Practice, Brill Sense, 2007.

62. D. M. Riley, LGBT-friendly workplaces in engineering, Leadership and Management in Engineering, 8(1), pp. 19–23, 2008.

63. T. J. Atherton, R. S. Barthelemy,W. Deconinck, M. L. Falk, S. Garmon, E. Long, M. Plisch, E. H. Simmons and K. Reeves, LGBT

Climate in Physics: Building an Inclusive Community. American Physical Society, College Park, MD, 2016.

64. B. E. Hughes, Coming out in STEM: Factors affecting retention of sexual minority STEM students, Science Advances, 4(3), p.

eaao6373, 2018.

Comparison of Self-efficacy and Performance of Engineering Undergraduate Women and Men 2007



Kyle M. Whitcomb et al.2008

APPENDIX A: Self-Efficacy Distributions

Fig. 4.Distribution of responses to the chemistry self-efficacy prompts the surveys taken by students
in their (a)1st year, (b) 2nd year, and (c) 3rd year. The fraction of men and women, respectively, who
answered each of the five options are plotted along with the standard error.
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Fig. 5.Distribution of responses to the engineering self-efficacy prompts the surveys taken by students
in their (a)1st year, (b) 2nd year, and (c) 3rd year. The fraction of men and women, respectively, who
answered each of the five options are plotted along with the standard error.
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Fig. 6. Distribution of responses to the mathematics self-efficacy prompts the surveys taken by
students in their (a)1st year, (b) 2nd year, and (c) 3rd year. The fraction of men and women,
respectively, who answered each of the five options are plotted along with the standard error.
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Fig. 7.Distribution of responses to the physics self-efficacy prompts the surveys taken by students in
their (a)1st year, (b) 2nd year, and (c) 3rd year. The fraction of men and women, respectively, who
answered each of the five options are plotted along with the standard error.
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APPENDIX B: Self-Efficacy Over Time by Major

Fig. 8. As in Fig. 3, the mean self-efficacy scores of engineering students at the end of their first, second, and fourth years in each of the
foundational subjects in engineering are plotted along with their standard error. These results are now plotted separately for students in
each of the six majors (the three majors with the lowest percentage of women in this figure and the three with the highest percentages of
women in Fig. 6). Self-efficacywas measured on a Likert scale from 1 to 5. Each column contains the graphs for the different majors while
each row contains the graphs for self-efficacy in the different foundational subjects.
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Fig. 9. As in Fig. 3, the mean self-efficacy scores of engineering students at the end of their first, second, and fourth years in each of the
foundational subjects in engineering are plotted along with their standard error. These results are now plotted separately for students in
each of the sixmajors (the threemajors with the lowest percentage of women in Fig. 5 and the three with the highest percentages of women
in this figure). Self-efficacywasmeasured on aLikert scale from1 to 5. Each column contains the graphs for the differentmajorswhile each
row contains the graphs for self-efficacy in the different foundational subjects.
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