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Women are severely underrepresented in many engineering majors, e.g., Mechanical Engineering and Materials Science

(MEMS). Here, we investigate gender differences in the predictive relationship between students’ high school GPA and

foundational mathematics, science, and engineering courses in the first two years of an undergraduateMEMS curriculum

using ten years of institutional data. We use multi-group Structural Equation Modeling to analyze the strength of these

predictive relationships and gender differences both in these relationships and in course grades.We find a strong predictive

pathway from high school GPA to overall first-year performance to advancedmathematics courses and finally to second-

year MEMS courses. Further, women’s higher average high school GPA than men is consistent with higher grades in all

first-year courses except physics. The underperformance of women majoring in MEMS in physics compared to what is

predicted based upon their high school GPA may be a sign of inequitable and non-inclusive learning environment in

physics courses and is consistent with the low self-efficacy of women in physics throughout their engineering major in our

prior research. These findings can be useful in engaging physics departments to focus on equity and inclusion and devise

strategies to improve the learning environment so that female engineering students do not underperform compared to

what is predicted based upon their high school GPA.
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1. Introduction and Theoretical
Framework

Engineering schools are increasingly recognizing

the importance of evidence-based approaches to
improve student learning to ensure that all students

have sufficient opportunities to excel regardless of

their background [1–20]. Holistic consideration of

how these engineering programs are currently suc-

ceeding in supporting their undergraduate majors is

crucial in order to make appropriate changes to the

curricula and pedagogies based upon metrics

informed by data and ensure that all students are
adequately supported. Data analytics can provide

valuable information that can be useful in making

informed decisions and transforming learning for

all students including those from different demo-

graphics, e.g., based upon gender and ethnicity [21,

22].

Information obtained from data analytics on

large institutional data in these areas can be an
important component of understanding the role

that foundational courses, e.g., in math and science,

play in later engineering performance and deter-

mining whether there are gender differences in

course performance or course relationships. Such

results can aid in contemplating strategies for

improving student support and ensuring that learn-

ing environments are equitable and inclusive so that
all students can thrive. For example, if the institu-

tional data suggest that women in engineering are

performing worse than men in different courses

compared to what is predicted based upon their

high school GPA, it may signify inequitable and

non-inclusive learning environment in those
courses. In order to improve diversity in engineer-

ing, it is important that engineering schools take a

careful look at the extent to which their programs

for the majors are equitable and inclusive and

provide adequate support to all students, especially

for groups that are historically underrepresented in

STEM, namely women and students from diverse

ethnic and racial backgrounds [23, 24].
There is much prior research showing how

gender differences in academic performance and

career decisions of engineering students can result

from biases and stereotypes [2, 25–31]. Many inter-

related factors influence women’s decision to

pursue an education in engineering as well as

subsequent decisions about which engineering

major to study and even whether to remain in
engineering [15, 32–36]. These factors include socio-

cultural factors, motivational factors, and various

aspects of prior education such as quality of teach-

ing [17, 33, 34, 37–43]. In particular, it has been

proposed that cultural bias and stereotypes can

negatively impact the self-efficacy and academic

performance of women in various STEM subjects

including mathematics and physics [17, 33, 42, 43].
This is potentially damaging to prospective women
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in engineering since success in mathematics and

science courses in high school has a positive

impact on students’ choice of and persistence in

an engineering major [41, 44] and longer-term

career goals [45, 46]. Further, success in first-year

college STEM courses continues to provide feed-
back to engineering students and inform their

motivational characteristics [47, 48].

Engineering programs often require students to

complete a common first-year curriculum before

beginning coursework for their chosen engineering

major. This transition from first to second year

when students choose their engineering major is

critical, and in order to make decisions about the
engineering curriculum overall, especially the

extent to which it provides similar support to male

and female engineering students prior to choosing

an engineering major, it is important to study how

students progress through the first-year curriculum

and the extent to which performance in these

foundational courses predicts performance in later

courses, disaggregated by gender. Additionally, it is
important to study gender differences in perfor-

mance in these foundational courses and investigate

the extent towhich these gender differences could be

at least in part explained by prior preparation. If

certain courses show gender differences which

cannot be explained by prior preparation, those

courses could be investigated in depth to identify

what could cause the disparity and design a course
which promotes learning for all students in an

equitable learning environment.

Our conceptualization of equity in learning

includes three pillars: equitable access and oppor-

tunity to learn the content, equitable and inclusive

learning environment, and equitable outcomes.

Thus, by equity in learning, we mean that not

only should all students have equitable opportu-
nities and access to resources, they should also have

an equitable and inclusive learning environment

with appropriate support and mentoring so that

they can engage in learning in a meaningful and

enjoyable manner and the learning outcomes

should be equitable. By equitable learning out-

comes, wemean that students from all demographic

groups (e.g., regardless of their gender identity or
race/ethnicity) who have the pre-requisites to enroll

in courses have comparable learning outcomes.

This conceptualization of equitable outcome is

consistent with Rodrigues et. al.’s equity of parity

model [49]. The learning outcomes include student

performance in courses as well as evolution in their

motivational beliefs such as self-efficacy etc.

because regardless of performance, students’ moti-
vational beliefs can influence their short and long-

term retention in their major and careers. In other

words, an equitable and inclusive learning environ-

ment should provide guidance, support and men-

toring to all students as appropriate and ensure that

students from all demographic groups have equal

sense-of-belonging regardless of their prior pre-

paration so long as they have the prerequisite

basic knowledge and skills. An equitable and inclu-
sive learning environment would also ensure that

students from all demographic groups and prior

preparation embrace challenges as learning oppor-

tunity instead of being threatened by them and

enjoy learning. Equitable learning outcomes also

include the ability of the courses to empower

students from all demographic groups and make

them passionate to pursue further learning and
careers in related areas. We note that equitable

access and opportunity to learn, equitable and

inclusive learning environment and equitable out-

comes are strongly entangled with each other. For

example, if the learning environment is not equita-

ble and inclusive in a particular course, the learning

outcomes are unlikely to be equitable.

Here, we report a study which harnesses data
analytics applied to 10 years of institutional data for

Mechanical Engineering and Materials Science

(MEMS) majors at a large state-related university

to investigate how well the performance of MEMS

majors in early foundational courses predicts per-

formance in subsequent engineering courses. The

MEMS curriculum was chosen for this investiga-

tion because the foundational courses in mathe-
matics, physics, and chemistry are likely to be very

important for these students to excel in their stu-

dies. The MEMS curriculum is also ideal to explore

since mechanical engineering is the engineering

program with the largest number of students at

the studied university. We note that materials

science undergraduate majors, though very few in

number at the studied university, are also included
in this analysis since they take the same courses

considered in this study as mechanical engineering

majors through the first two years. These courses

for the majors have been offered for decades under

the assumption that the later courses would build

on the earlier ones coherently to help the majors

build a robust knowledge structure and develop

their problem solving, reasoning, and meta-cogni-
tive skills. Investigating the predictive relationships

between these courses will not only allow us to

measure how well the courses in the curriculum

build upon one another, but will also provide a

structure in which we can test for gender differences

throughout the model, both in grades earned and

the strength of the relationships between courses.

This investigation can be useful for other institu-
tions who may perform similar analyses in order to

contemplate strategies for improving education in

different engineering programs in a holistic manner
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as well as improving equity and inclusion. In

particular, institutions could compare their findings

with the 10-year baseline data provided here from a

large US-based public university for the synergy

observed between courses in amechanical engineer-

ing curriculum, gender differences throughout the
curriculum, or use this analysis as a template for

similar analyses of other engineering curricula.

2. Research Questions

Our research questions regarding the curriculum

forMEMSmajors at a large state-related university

are as follows.

RQ1. Are there gender differences in course perfor-

mance among MEMS majors in first-year foun-

dational courses and second-year courses for the
major?

RQ2. Does performance in first-year foundational

courses and advanced mathematics courses pre-

dict performance in second-yearMEMS courses?

RQ3. Does the degree towhich earlier course grades

predict later course grades differ for men and

women?

We note that if there are gender differences, we

focus on whether the observed trends could poten-

tially signify lack of equitable and inclusive prac-

tices in learning environment in certain courses.

3. Methodology

3.1 Measures

Using the Carnegie classification system, the uni-
versity at which this study was conducted is a

public, high-research doctoral university, with

balanced arts and sciences and professional

schools, and a large, primarily residential under-

graduate population that is full-time and reason-

ably selective with low transfer-in from other

institutions [50]. De-identified data were provided

by the university on all engineering students who

had enrolled in introductory courses fromFall 2009

through Spring 2019. The data include demo-
graphic information such as gender, which is cen-

tral to this study. We note that gender is not a

binary construct. However, the university data

includes ‘‘gender’’ as a binary categorical variable.

Therefore, that is how the data regarding gender are

represented in these analyses. From the full sample

of undergraduate engineering majors, a sub-sample

was obtained by applying several selection criteria
to select out MEMS majors from other engineering

majors who took some MEMS courses listed in

Table 1 (e.g., bioengineering, chemical engineering,

and industrial engineering students all also take

Mechanics 1). In particular, in order to be kept in

the sample, students were required to meet the

following criteria: (1) enroll in at least one of the

two introductory engineering courses listed in
Table 1, row (2) enroll in Mechanics 2. Note that

all of the courses we consider in this analysis in

Table 1 are required courses in the curriculum for

MEMS majors. After applying the selection cri-

teria, the sample contains 1485 students. The stu-

dents in the sample are 16.4% female and had the

following race/ethnicities: 82.9% White, 7.2%

Asian, 3.8% African American, 2.2% Latinx, and
3.8% Other or Unspecified.

The data also include high school GPA on a

weighted 0–5 scale that includes adjustments to

the standard 0–4 scale for Advanced Placement

and International Baccalaureate courses. Finally,

the data include the grade points and letter grades

earned by students in each course taken at the

university. Grade points are on a 0–4 scale with A
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Table 1.All required first-year courses along with second-year mathematics and selectedMEMS courses are listed. Full course names are
given along with shortened names used elsewhere in this paper and the terms in which the courses are typically taken by MEMS majors

Term Full course name Short name

1 General Chemistry for Engineers 1 Chem 1

Intro to Engineering Analysis Engr 1

Basic Physics for Science and Engineering 1 Phys 1

Analytic Geometry and Calculus 1 Calc 1

2 General Chemistry for Engineers 2 Chem 2

Intro to Engineering Computing Engr 2

Basic Physics for Science and Engineering 2 Phys 2

Analytic Geometry and Calculus 2 Calc 2

3 Analytic Geometry and Calculus 3 Calc 3

Intro to Matrices and Linear Algebra Linear Algebra

Materials Structure and Properties Materials Structure

Statics and Mechanics of Materials 1 Mechanics 1

4 Differential Equations Diff Eq

Statics and Mechanics of Materials 2 Mechanics 2



= 4, B = 3, C = 2, D = 1, F = 0, where the suffixes

‘‘+’’ and ‘‘–’’ respectively add or subtract 0.25 grade

points (e.g., B– = 2.75), with the exception of A+

which is reported as the maximum 4 grade points.

3.2 Analysis

In order to evaluate the grades that MEMS majors

earn in their courses by gender, we grouped students

by the gender variable and computed standard

descriptive statistics (mean, standard deviation,

sample size) separately for each group [51]. Gender

differences in course grades were evaluated using

Cohen’s d to measure the effect size [52, 53], as is
common in education research [54].

The extent to which the performance (i.e., grades

earned) in earlier foundational courses predicts

performance in later MEMS courses was evaluated

using Structural EquationModeling (SEM) [55]. In

the past we have investigated the overall relation-

ships between courses in this engineering curricu-

lum using multiple linear regression [56]. Here, we
extend this research by using SEM in order to

cluster together courses in sequences before analyz-

ing predictive relationships and, using multi-group

SEM, test for gender differences among engineering

majors.

SEM is the union of two statistical modeling

techniques, namely Confirmatory Factor Analysis

(CFA) and Path Analysis [55]. The CFA portion
tests a model in which observed variables (or

‘‘indicators’’) are grouped into latent variables (or

‘‘factors’’), constructed variables that represent the

variance shared among all indicators that load on a

particular factor [55]. The strength of the relation-

ship between indicators and factors is measured by

the factor loading, �. Further, one of the unstan-
dardized factor loadings per factor is fixed to � = 1
in order to define the units and scale of the factor

itself [55]. The factor loadings of other indicators

are measured relative to this fixed factor loading

[55]. The degree to which each indicator is explained

by the factor is measured by standardizing the

factor loadings, to 0 � � � 1, where �2 gives the
percentage of variance in the indicator explained by

the factor [55].
The Path Analysis portion then tests for the

statistical significance and strength of regression

paths between these factors, simultaneously esti-

mating all regression coefficients, �, throughout the
model [55]. This is an improvement over a multiple

linear regression model in which only a single

response (target or outcome) variable can be pre-

dicted at a time, which problematically disallows
hierarchical structures [57]. By estimating all regres-

sion paths simultaneously, all estimates are able to

be standardized simultaneously, allowing for direct

comparison between standardized � coefficients

throughout the model. In these models, we further

estimate the intercepts (i.e., the mean when control-

ling for all predictors) of all indicators and factors.

Indicator intercepts are denoted by � and factor

intercepts by �.
In this paper, we report the model fit for SEM

using the Comparative Fit Index (CFI), Tucker-

Lewis Index (TLI), andRootMean Square Error of

Approximation (RMSEA) [55, 58]. Commonly

cited standards for goodness of fit using these

indices are as follows: For CFI and TLI, Hu and

Bentler [58] found that many authors [58–60] sug-

gest values above 0.90 and 0.95 indicate a good fit

and a great fit, respectively. For RMSEA, several
authors [58, 61] suggest that values below 0.10, 0.08,

and 0.05 indicate a mediocre, good, and great fit,

respectively.

Finally, these model estimations can be per-

formed separately for different groups of students

(e.g., men and women) using multi-group SEM.

These differences are measured in a series of tests

corresponding to different levels of ‘‘measurement
invariance’’ in the model, with each step fixing

different elements of the model to equality across

the groups and comparing to the previous step via a

Likelihood Ratio Test (LRT) [55]. A non-signifi-

cant p-value at each step indicates that the estimates

are not statistically significantly different across

groups. ‘‘Weak’’ measurement invariance is

demonstrated by fixing the factor loadings to equal-
ity, ‘‘strong’’ invariance is demonstrated by further

fixing to equality the indicator intercepts, and

finally ‘‘strict’’ invariance is demonstrated by

further fixing to equality the residual error variance

of the indicators. If measurement invariance holds

at least through ‘‘strong’’ invariance, then all

remaining differences between the groups occur at

the factor level, either as differences in factor
intercepts or � coefficients [55]. If instead measure-

ment invariance does not hold, then the equality

constraint on estimates (especially factor loadings

and indicator intercepts) between groups can be

relaxed for one estimate at a time in order to find the

set of estimates for which partial measurement

invariance holds. That is, the equality constraint

can still be imposed on a subset of the factor
loadings, intercepts, and/or residual variances,

with the remaining estimates allowed to differ

between groups.

Using SEM, we model student progression

through the second year of the MEMS curriculum

by grouping courses together into factors by their

subject (e.g., introductory physics or advanced

mathematics). Further, we found that all courses
taken in the first year covary to such a degree that

an overall first-year factor that loads on each of the

first-year subject factors produces the best model
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fit. We use multi-group SEM to test for gender

moderation, i.e., to test for gender differences in

the predictive relationships in the model, as well as

mean differences in course grades (indicators) and

course factors [55].

Due to the nature of institutional grade data,
modeling students’ progress through an entire cur-

riculum involves a large amount ofmissing data due

to various reasons. These can include students

receiving credit for courses taken elsewhere (e.g.,

over the summer at a different college), not com-

pleting the curriculum, skipping courses that are

normally required with special permission, and the

inevitable errors that occur in large datasets. The
default approach to missing data in many modeling

programs, listwise deletion, is then not desirable

since it leaves very few students in the sample and

can bias the results [62]. Considering this, we

employed Full Information Maximum Likelihood

(FIML) in order to impute missing data within the

SEM model [55].

In addition to the aforementioned benefits of
using SEM such as simultaneous estimation of all

model elements and the ability to use FIML for

missing data estimation, the basic structure of SEM

also provides benefits to the modeling process. In

particular, by first using CFA to group indicators

into factors and then performing path analysis on

those factors, the effect of measurement error is

minimized since the error variance will be left at the
indicator level and does not contribute to the

estimation of regression coefficients at the factor

level [55].

All analyses were conducted usingR [63], making

use of the package lavaan [64] for the SEM analysis

and the package tidyverse [65] for data manipula-

tion and descriptive statistics.

4. Results

RQ1: Gender Differences in Course Performance

In order to investigate for gender differences in

course grades and answer RQ1, we grouped stu-

dents by the gender variable and first calculated the
standardized mean difference, Cohen’s d, to mea-

sure the effect size of the gender differences [52, 53].

Table 2 shows these results for all MEMS students

who at least continued through Mechanics 2 (typi-

cally taken in the fourth term). Note that since

enrollment in Mechanics 2 was used as a selection

criterion, the population in every other course is less

than that in Mechanics 2, since students may be
missing grades for previous courses for a variety of

reasons. We find that, on average, women per-

formed similar to or slightly better than men in all

courses except introductory physics (Physics 1 and

2). This general pattern matches that of high school

GPA, though the effect sizes of the gender differ-

ences in the courses is small, with the highest

difference occurring in Linear Algebra a small

effect size (d = 0.24), and a medium effect size in

high school GPA (d = 0.47). Though still small in

effect size, the gender differences seen in introduc-
tory physics are the only ones in which men earn

higher grades on average, despite the same popula-

tion showing women performing better than men in

high school GPA and grades in other courses.

Looking at the patterns of gender differences in

Table 2 by subject shows that in the second year

(terms 3 and 4), this pattern of women earning

higher grades than men is still present in advanced
mathematics and is on par with the strongest gender

differences observed in the first year. On the other

hand, in their MEMS courses, men and women are

earning more similar grades, except women earning

slightly higher grades in Mechanics 1.

The full grade distributions as described on

average in Table 2 are shown in Fig. 1 (first-year

courses) and Fig. 2 (second-year courses). In these
distributions, we can see that in most courses,

especially the second year courses in Fig. 2,

women earn A and A+ grades at a slightly higher

rate than men, who in turn have a slightly higher

rate in earning lower grades. As noted in the

preceding discussion of Table 2, physics was the

only subject with appreciable grade differences

favoring men, and that can be seen again in Fig.
1, with men earning higher rates of grades B+ and

higher, and women earning higher rates of B grades

and lower.

In some courses where we saw very little mean

gender differences in Table 2, we can still observe

some interesting grade distributions. For example,

Calculus 2 in Fig. 1 has an alternating pattern of

men and women earning higher rates of the various
letter grades. Further, the course with the gender

difference closest to that of high school GPA,

namely Linear Algebra in Table 2, has a noticeably

large rate of A grades earned by both men and

women, but especially large for women. This may

be because Linear Algebra is the only course in the

MEMS curriculum that has been consistently

taught by a female professor, and this could have
an impact on female students’ performance. How-

ever, we do not have adequate data to investigate

the in detail the impact of the gender of the

instructor. Finally, the courses in both Figs. 1 and

2 display a general trend of peaks of varying sizes at

A, B, and C grades with the exception of Engineer-

ing 1, which shows an especially high mean with a

single peak at A.

RQ2: Predictive Relationships Between Courses

Turning then to RQ2, we use SEM to test for the
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degree to which performance in earlier courses

predicts that of later courses in the curriculum.

The full 1485 student sample was used in all
stages of SEM, with FIML employed to impute

missing data [55]. We grouped first-year courses by

their subject (Calculus, Chemistry, Engineering,

and Physics), then further grouped these four sub-

jects into a ‘‘First Year’’ factor. Second-yearmathe-

matics courses are grouped together into an

‘‘Advanced Math’’ factor, and MEMS courses are

left ungrouped in order to separately predict the
grades in each of these courses, as well as to allow

the term 3 courses (Mechanics 1 and Materials

Structure) to predict the term 4 course (Mechanics

2).

The final model is shown in Fig. 3 (CFI = 0.972,

TLI = 0.968, RMSEA= 0.042, all indicating a great

model fit [58–61]), in which non-significant regres-

sion paths have been trimmed from themodel. Note

that since there are gender differences present, all

values shown are the unstandardized values, for

which a majority of the factor loadings, intercepts,
and regression coefficients have been fixed to equal-

ity [55]. The primary flow of predictive paths is such

that each first year subject loads strongly on the

overall First Year factor. This First Year factor

then strongly predicts the Advanced Math factor,

which in turn strongly predicts each of the MEMS

courses. There are two smaller additional regression

paths, with Chemistry predicting Materials Struc-
ture and Materials Structure predicting Mechanics

2, both over and above the primary predictive paths

from Advanced Math.

RQ3: Gender Differences in the Structural

Equation Model

To test for gender differences and answer RQ3, we

used multi-group SEM to test for differences in the

Kyle M. Whitcomb et al.1266

Table 2.Descriptive statistics are reported for grades in courses taken byMEMSmajors through the second year, on a 0-4 scale, and high
school GPA on a weighted 0-5 scale. Only students who have taken Mechanics 2 are reported in order to restrict to MEMS majors.
Reported are the sample size (N), mean grade points earned (�), and standard deviation of grade points (�) for men and women
separately, alongwith Cohen’s dmeasuring the effect size [52, 53] of the gender difference. d< 0 indicates themean formen is higher, d> 0
indicates the mean for women is higher

Course Gender N � � d

High School GPA F 243 4.07 0.37 0.47

M 1242 3.88 0.44

Chemistry 1 F 191 2.76 0.80 0.09

M 933 2.68 0.90

Chemistry 2 F 185 2.67 0.82 0.19

M 873 2.51 0.83

Engineering 1 F 187 3.63 0.40 0.18

M 937 3.55 0.45

Engineering 2 F 197 3.28 0.65 –0.01

M 978 3.28 0.65

Physics 1 F 192 2.79 0.68 –0.15

M 927 2.90 0.72

Physics 2 F 201 2.67 0.73 –0.08

M 1040 2.73 0.80

Calculus 1 F 140 3.16 0.68 0.18

M 719 3.03 0.70

Calculus 2 F 170 2.90 0.84 0.01

M 871 2.89 0.84

Calculus 3 F 228 2.94 0.86 0.14

M 1157 2.81 0.92

Linear Algebra F 222 3.26 0.79 0.24

M 1184 3.06 0.88

Diff Eq F 235 3.01 0.83 0.19

M 1204 2.84 0.95

Materials
Structure

F 220 2.92 0.89 0.01

M 1204 2.92 0.93

Mechanics 1 F 243 3.25 0.74 0.08

M 1236 3.19 0.78

Mechanics 2 F 243 2.94 0.95 0.00

M 1242 2.94 1.03



model [55], first testing factor loadings, then indi-

cator intercepts, then residual variances, and finally
regression paths. The estimates that differed for

men and women are reported in Fig. 3. In each

step, themodel fit was great, with CFI > 0.95, TLI>

0.95, and RMSEA < 0.05 [58–61]. We did not find

full measurement invariance at either the factor

loading (‘‘weak’’) or item intercept (‘‘strong’’)

stages [55]. That is, when fixing all factor loadings

to equality, the Likelihood Ratio Test (LRT)
showed significant differences in the model with p

< 0.05 unless some estimates were allowed to vary

between men and women [55]. In particular, Fig. 3

shows that the factor loading (�) of Physics on the
First Year factor is slightly lower for women (�F =
0.84) than for men (�M= 0.89). Though seemingly a

small difference, this gender difference in factor

loading is sufficient to account for men’s higher
performance in physics courses overall (Table 2 and

Fig. 1). Further, three courses showed differences in

their intercepts (�): Physics 1 (�F = 0.62, �M = 0.71),

Engineering 2 (�F = 1.02, �M = 1.16), and Linear
Algebra (�F = 0.63, �M = 0.51). Each of these

indicates deviations from the course grade gender

differences that would be predicted solely by the

difference in high school GPA and, in the case of

Physics 1, the aforementioned factor loading differ-

ence.

Notably, Fig. 3 shows that apart from the mean

difference in high school GPA (�F = 4.07, �M =
3.88), there are no additional gender differences

present in any regression paths leading to calculus,

chemistry, or MEMS courses. This does not mean

that the model predicts no gender differences in

these courses. Rather, this means that the gender

differences observed in these courses are consistent

with the gender difference observed in high school

GPA propagating through the model’s predictive
paths to each course. That is, the women MEMS

majors are coming in with a higher high school

Examining Gender Differences in a Mechanical Engineering and Materials Science Curriculum 1267

Fig. 1.Grade distributions ofMEMSmajors in first-year courses, plotted separately for men and women. The proportion of each gender
group that earns each letter grade is plotted along with the standard error of a proportion [51].
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Fig. 2.Grade distributions ofMEMSmajors in second-yearmathematics and engineering courses, plotted separately formen andwomen.
The proportion of each gender group that earns each letter grade is plotted along with the standard error of a proportion [51].

Fig. 3. A diagram of the SEM model designed to test for the relationships between courses in the MEMS curriculum, as well as gender
differences therein. All 1485 students in the sample were included in themodel, with FIMLused to estimatemissing data. Reported next to
each line are the unstandardized values for factor loadings, regression coefficients, and covariances. Estimates that differ between female
(subscript ‘‘F’’) andmale (subscript ‘‘M’’) students are reported separately for each gender, in this model these are differences in intercepts
(�) and factor loadings (�). High School GPA (HS GPA) and all first-year factors were allowed to regress on Advanced Math and the
second-year engineering courses, but many paths were not statistically significant (p < 0.05) and thus are not shown. All drawn paths are
significant to the p < 0.001 level except the one denoted with a superscript *, which is significant to the p < 0.01 level. All missing paths are
not statistically significant, with p > 0.05. Line styles indicate the type of relationship between connected items, with factor loadings,
regression paths, and covariances represented by dotted, solid, and dashed lines, respectively (please see legends on the left hand side for
details).



GPA than men and earning higher grades than men

in the majority of their courses consistent with that

high school GPA difference. The exceptions to this

occur only in four courses, with the largest depar-

ture from high school GPA occurring in the physics

sequence, and especially in Physics 1 (in which the
students learn mechanics).

5. Discussion

Our results indicate an overall pattern of strong

cohesion through the first two years of this MEMS

curriculum (Fig. 3). In particular, the strong pre-
dictive pathway from high school GPA to the First

Year factor to the Advanced Math factor to each

MEMS course shows a robust cohesion throughout

this curriculum. Further, we see that the First Year

factor itself is loaded on very strongly by each of the

first-year courses, though notably least strongly by

first-year engineering courses (which consists of a

sequence focusing on introduction to programming
for engineers and other engineering basics), perhaps

due to the high grades overall and narrow grade

distributions in those courses.

Turning to gender differences in these courses, we

find that women tended to earn similar or slightly

higher grades on average thanmen inmost subjects.

This pattern is consistent with their average high

school GPA, where these same women have a
higher GPA than the men. The only subject that

does not fit this pattern is physics, in which, on

average, the men are earning higher grades despite

having a lower high school GPA and women earn-

ing higher grades in every other concurrent course.

However, we find that in physics, instead of the

gender gap merely diminishing relative to high

school GPA similar to other college courses,
women are now earning lower grades than men,

inconsistent with high school GPA and all other

course grades (where women always earn higher or

comparable grades compared to men).

Testing these gender differences further using

multi-group SEM provided further support for

these interpretations. In nearly all courses, the

gender differences in high school GPA were suffi-
cient to predict course grade gender differences. In

two individual courses there were small additional

gender differences found, namely Engineering 2 in

which women and men earned the same grades on

average (and so the course-level gender difference

slightly favors men controlling for high school

GPA), and Linear Algebra in which women earn

slightly higher grades than otherwise predicted.
These single-course differences may simply be

normal noise or may have an underlying cause

(e.g., Linear Algebra having been taught by a

female faculty member over the years when the

data were collected), but neither fits a larger pat-

tern. On the other hand, introductory physics

shows a gender difference affecting both Physics 1

and Physics 2 (namely, the � difference from the

First Year factor to the Physics factor) in addition

to an intercept difference in Physics 1.
With regards to what may be partly responsible

for introductory physics standing out as having

significant gender differences and what may be

done to ameliorate the situation, our prior research

on students’ self-efficacy in these courses reveals a

similar pattern where female students in introduc-

tory physics have significantly worse self-efficacy

than male students even after controlling for per-
formance [48]. The same is not true for other

courses in the MEMS curriculum. Additionally,

physics may be a field in which practitioners are

more likely to believe that innate talent (i.e., ‘‘bril-

liance’’) is required for excelling in the field, which

may have a disproportionate negative effect on the

performance of women due to stereotype threat

[70]. Since prior research has found a feedback
loop between grades and self-efficacy [45, 66, 71–

76] and grades play a key role in students’ crucial

decisions about whether to remain in college and

which major to pursue [41, 44–46], it is important

for physics departments to engage in serious efforts

towards improving equity and inclusion in intro-

ductory physics courses, including interventions

designed to boost students’ self-efficacy, growth
mindset and sense of belonging in physics [77–81].

While our research suggests that self-efficacy is

related to students’ grades in introductory physics,

we note that these psychological factors of self-

efficacy, growth mindset and a sense of belonging

are interrelated [48, 49, 82–86], and any interven-

tion intending to impact one of the factors could

impact the others as well.

6. Conclusion and Future Research

In all of our gender analysis, the introductory

physics sequence is standing out as a source of

gender differences in this curriculum. This could

be indicative of strong stereotype threats due to
societal biases associated with physics as well as an

inequitable or non-inclusive environment in these

introductory physics courses that is disproportio-

nately negatively affecting women. Future research

can use what has been found here (the gender

differences in Physics First Year Module Results)

as an excellent starting point for a deeper investiga-

tion into the possible causes of this result, and more
informed suggestions for future change. For exam-

ple, one can examine in-depth the experiences of

women taking these courses and how they perceive

their physics courses as compared to other courses
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in the MEMS curriculum. For example, students

could be asked how the courses are taught and

assessed and whether there are any distinguishing

features in the learning environment of physics

which marks it differently from other MEMS

courses. This could be done at several points in
theMEMS curriculum and incorporate surveys and

extended follow-up interviews.

We also note that our analysis focused on those

students who, when entering the second-year,

chose to major in a ‘‘physics-heavy’’ engineering

major and still we observed these gender differ-

ences surrounding introductory physics. A future

study could investigate whether the gender differ-
ences in course grades in introductory physics are

even more pronounced among the students in less

physics heavy engineering majors such as bioengi-

neering, chemical engineering, or industrial engi-

neering.

In conclusion, the underperformance of women

majoring in MEMs in physics courses compared to

what is predicted based upon their high schoolGPA
may be a sign of inequitable and non-inclusive

learning environment in physics courses and is

consistent with the low self-efficacy of women in

physics throughout their engineering major in our

prior research. These findings can be useful in

engaging physics departments to focus on equity

and inclusion and devise strategies to improve the

learning environment so that female engineering

students do not underperform compared to what is
predicted based upon their high school GPA.

In future, SEM will be used to evaluate the

cohesiveness of a curriculum by examining the

predictive relationships between course grades for

students with different demographics backgrounds,

including not only gender, but also their race and

ethnicity, low socioeconomic status, and first-gen-

eration college status. Further, course grade differ-
ences can be evaluated at the same time across the

full curriculum, and how later gender differences

are explained by earlier gender differences in the

curriculum. These studies can provide insight into

the best practices to address such disparities and

improve equity and inclusion in the learning envir-

onment.
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