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Spatial skills are fundamental to learning and developing expertise in engineering. This paper describes a new virtual and

physical manipulatives (VPM) technology that this research team recently developed to enhance undergraduate

engineering students’ spatial skills. This technology consists of ten manipulatives spanning a variety of levels of

geometrical complexity. Each manipulative is authentic due to its real-world engineering applications that were chosen

to stimulate student interest in engineering. A computer program was developed to connect virtual and physical

manipulatives, allowing students to receive spatial training anytime, anywhere through the Internet. Quasi-experimental

research, involving an intervention group (n = 37) and a control group (n = 34), was conducted. Each group completed a

pre- and post-test using the same assessment instrument that measured students’ spatial skills. Normality tests were

conducted. The results show that the data involved in the present study did not have a normal distribution. Thus, non-

parametric statistical analysis was performed, including descriptive analysis, correlation analysis, and Mann-Whitney U

tests. The results show that the mean value of normalized learning gains is 41.2% for the intervention group, which is 33%

higher than that for the control group (8.2%). A statistically significant difference exists between the intervention and

control groups in terms of normalized learning gains (P < 0.01). The new VPM technology developed from the present

study has a medium effect size (0.34) on improving students’ spatial skills.
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1. Introduction

1.1 Importance of Spatial Skills

Spatial skills are a person’s mental skills of imaging

an object’s spatial orientation, or imaging what the

object looks like from a certain spatial viewpoint. In

some literature [1, 2], spatial skills are used inter-
changeably with the term of ‘‘spatial abilities.’’ In

other literature, only the term of spatial skills [3, 4]

or only the term of spatial abilities [5, 6] is used.

Regardless of the termused, spatial skills or abilities

are essential in many real-life situations. For exam-

ple, a person traveling alone without a Global

Positioning System (GPS) in an unfamiliar city

must know what direction is East, West, South, or
North in order to reach their destination. A person

doing a puzzle game needs to identify correct shapes

in order to connect all pieces successfully.

Spatial skills are especially important in learning

science, technology, engineering, and mathematics

(STEM) subjects [1–6]. In their recent widely-cited

paper, Uttal et al. [3] conducted an extensive meta-

analysis of studies on spatial training. They showed
a positive correlation between spatial skills and

academic achievements. They found that statisti-

cally, high academic achievements of a student

when learning a STEM subject are positively corre-

lated to his/her strong spatial skills. Wai, Lubinski

and Benbow [6] analyzed the data drawn from a
massive longitudinal study that tracked 400,000

U.S. high school students for more than 11 years.

They found that spatial abilities assessed during

adolescence are ‘‘a salient psychological attribute

among those adolescents who subsequently go on

to achieve advanced educational credentials and

occupations in STEM.’’ They suggested including

spatial abilities in modern talent searches to ‘‘iden-
tifymany adolescents with potential for STEMwho

are currently being missed.’’

Spatial skills are essential for learning and devel-

oping expertise in engineering, an essential ‘‘E’’ in

STEM. For example, mechanical engineers create

free-hand sketches and computer graphics of com-

plex machines and components. Civil engineers

create free-hand sketches and computer graphics
of buildings, bridges, and structures. Manufactur-

ing engineers make 3D prints of complex mechan-

ical or electrical parts and components. Solid

spatial skills or abilities are required in all these

examples in order to complete the work tasks

involved.

Studies have also been conducted to identify

important factors affecting students’ spatial skills,
such as individual differences [7, 8] and gender [9].
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Mataix, León and Reinoso [7] recently conducted a

study involving 750 college students from three

majors: Civil Engineering, Chemical Engineering,

and Industrial Electronic Engineering. A spatial

test and a questionnaire survey were administered

at the beginning and the end of the semester. They
found that the factors affecting students’ spatial

skills included general intelligence, problem-solving

ability, gender, construction games, and experience

in technical drawing [7].

1.2 Interventions Developed to Improve Students’

Spatial Skills

Training of students’ spatial skills, nevertheless,

have not yet received sufficient attention in STEM

education because it is not a subject explicitly

taught in the classroom [10–12]. To develop and

improve students’ spatial skills, various educational

interventions have been developed, e.g., virtual

reality [13, 14], augmented reality [15, 16] and

digital sketching [17]. Herrera, Pérez, and Ordóñez
[16] developed various virtual technologies includ-

ing augmented reality. They reported that as the

result of their interventions, the course grades (on a

0–100 point scale) of the experimental group were

seven points higher than those of the control group.

Spatial training is often embedded in a computer-

aided design (CAD) course [18–21] or other courses

and workshops that last for either a semester or
several weeks [22–24]. Novoa, Spencer, Hazlewood

and Ortiz [21] provided a series of face-to-face, 2-

hour training sessions for 34 freshman STEM

students over six weeks in a semester. The results

from their pre- and post-test showed that 85% of

student participants improved test scores by nearly

18% on average. The change in test scores was

found to be statistically significant.
Sorby, Casey, Veurink and Dulaney [24] devel-

oped a spatial intervention for freshman engineer-

ing students that consisted of weekly meetings over

the semester in a 1-credit freshman orientation

course. A total of 675 students participated in

their study and were divided into an intervention

group (n = 84) and a comparison group (n = 592).

Their results showed that for students in the inter-
vention group, the average score increased from 16

points on the pre-test to 22.5 points on the post-test.

For students in the comparison group, there was

only a 1.5-point increase from the pre-test score to

the post-test score [24].

1.3 The Innovation and Contribution of the Present

Study

In the previous effort to improve middle school

students’ spatial skills, Ha and Fang [25] developed

the earliest version of an education technology

called virtual and physical manipulatives (VPM).

Unlike other technologies using either virtual

manipulatives alone or physical manipulatives

alone, VPM technology integrates virtual manip-

ulatives with physical manipulatives in a concurrent

and interactive manner, so that students can simul-

taneously use multiple senses to help the brain
process a series of dynamic mental images while

performing spatial tasks. This technology works by

having a student hold a 3D concrete physical object

(i.e., a physical manipulative) in their hands while

sitting at a computer. An electrical sensor board,

which contains an attitude heading reference

system and an embedded microcontroller, is con-

nected to the computer via a USB cable. Any
physical movement of the object is captured by

the sensor board, which sends orientation signals

to the computer for real-time image processing.

The earliest version of VPM technology [25],

which is referred to as the old VPM technology in

this paper, has two major limitations. First, the

manipulatives employed in spatial training were

those with artificially created geometrical features
with no real-world engineering applications. Fig. 1

shows two example manipulatives employed in

spatial training in the previous work (the old

VPM technology) [25]. Students often asked what

those manipulatives were and what purpose they

served. It is necessary to develop authentic manip-

ulatives with real-world engineering applications to

increase student interest and motivation to learn
engineering.

Second, students could play with the manipula-

tives only on school computers, where the VPM

computer program had been installed. This limited

the chances for students to use the VPM computer

program outside the classroom, e.g., at home.

The present study overcomes these two limita-

tions of the old VPM technology and is significantly
different from the previous work [25] in the follow-

ing four regards. First, a new set of manipulatives

that have real-world engineering applications has

been developed in the present study tomotivate and

inspire student interest. By contrast, the manipula-

tives employed in the previous work [25] were those

with artificially created geometrical features with

no real-world engineering applications.
Second, a new computer program for VPM

technology has been developed in the present

study, enabling students to use VPM anywhere

with the Internet, anytime, and at their own pace.

By contrast, the computer program developed in

the previous work [25] was outdated and did not

have this functionality.

Third, student participants in the present study
and the previous work [25] are completely different

in terms of age and exposure to engineering. The

present study focuses on engineering undergradu-
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ates (adults) aged 21–25 years old. The previous
work [25] focused on middle school 8th-grade

students (adolescents) aged 15–16 years old.

Fourth, research design in the present study and

the previous work [25] is completely different. The

present study has involved two groups of student

participants: an intervention group who was

trained with the new version (rather than the ear-

liest version) of VPM technology and a control
group who was not trained with VPM technology.

The previous work [25] only involved a single group

of student participants who were trained with the

old VPM technology. No control group was

involved in the previous work. Therefore, in terms

of research design, the present study is more rigor-

ous than the previous work.

To differentiate from the old VPM technology
developed in the previous work [25], the VPM

technology developed in the present study is

referred to as the new VPM technology. In the

remaining sections of this paper, the development

of the new VPM technology is described, including

the development of ten manipulatives and a com-

puter program for connecting virtual and physical

manipulatives. Then, research questions, overall
research design, student participants, as well as

data collection and analysis are described. Next,

the research results are presented and analyzed,

followed by discussions and the description of the
limitations of the present study. Conclusions are

made at the end of the paper.

2. Development of the New VPM
Technology

2.1 Design and Manufacture of Ten Manipulatives

A total of ten manipulatives with real-world appli-

cations were designed via Autodesk Inventor Pro-

fessional 2020 (a computer-aided design software

package). The Autodesk Inventor-designed manip-

ulatives were virtual manipulatives that students
could see on a computer screen. Based on these

virtual manipulatives, physical manipulatives were

subsequently manufactured via 3D printing. Stu-

dents then held and rotated physical manipulatives

with their hands during spatial training. The ten

virtual and physical manipulatives developed in the

present study include Geneva wheel, spinner flasks,

component grip, door lock, pulley, wheel bearing
inside a hub, crankshaft, shaft arm valve, compres-

sor wheel, and vacuum pump.

These manipulatives have a variety of levels of

geometrical complexity, ranging from relatively

simple and symmetric to complex and asymmetric.

Fig. 2 shows two example manipulatives, including

a Geneva wheel (Fig. 2a) with geometrically sym-
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Fig. 1. Example manipulatives employed in spatial training in the previous work [25].

Fig. 2. New manipulatives developed in the present study: example (a) Geneva wheel and example (b) vacuum pump.



metric geometry and a vacuum pump (Fig. 2b) with

complex geometry.

Each manipulative has real-world applications.

For example, a Geneva wheel (Fig. 2a) is the

rotating wheel of a gear mechanism called a

Geneva drive, which translates a continuous rota-

tion movement into intermittent rotary motion.

Geneva drives have numerous engineering applica-
tions, e.g., in automated sampling devices, bank-

note counting machines, and film movie projectors.

The Geneva wheel was selected as a manipulative

for the new VPM technology due to its geometri-

cally symmetric features. It requires low to medium

cognitive effort for students to mentally rotate this

manipulative. An additional advantage is that while

students were trained with this manipulative, stu-
dents could also understand how the mechanism

works in a Geneva Drive in terms of fundamental

science and engineering concepts like rotational

motion, intermittent motion, angular speed, and

angular acceleration.

A vacuum pump (Fig. 2b) removes the molecules

of air and other gases from a sealed container or

volume. It has numerous engineering applications,
such as in the automotive and aerospace industries.

The vacuum pump was selected as a manipulative

for the new VPM technology due to its complex

geometry. It requires medium to high cognitive

effort for students to mentally rotate this manip-

ulative. While students were trained with this

manipulative, students could visualize the geome-

trical complexity of vacuum pumps, understand
reasons, and develop an initial understanding of

internal systems inside a vacuum pump.

2.2 Development of a Computer Program for

Connecting Virtual and Physical Manipulatives

A computer software package called Processing (a

new version with P5 Serial Control written for

JavaScript) was employed to develop a computer

program to enable the new VPM technology. This

computer program communicated with a key hard-

ware component to convert the motion of physical

manipulatives in the real world to the motion of

virtual manipulatives on a computer screen. The

key hardware component was an Inertial Measure-

ment Unit (IMU) board 9DoF (Degrees of Free-
dom) Razor IMU M0 manufactured by SparkFun

Electronics. This key hardware component com-

bines a SAMD21 microprocessor with an MPU-

9250 9DoF sensor to create a reprogrammable

IMU. The MPU-9250 9DoF sensor includes three

3-axis sensors to sense linear acceleration, angular

rotation velocity and magnetic field vectors.

The IMU board was connected to a computer
with a serial connection over USB with the baud

rate set to 115,200 bits per second. The IMU board

could also be connected using serial over Bluetooth

with the use of a Li-Po cell and a Bluetooth adapter.

The data sent by the IMU board with its default

firmware and Euler angles toggled on was for-

matted as follows: Time stamp: milliseconds; Accel-

erometers X, Y, and Z: m/s2/9.8; Gyroscopes X, Y,
and Z: Micro Tesla; Euler angles X, Y, and Z:

Degrees. The send rate was set to be 20 HZ in the

new VPM technology.

As an example, Fig. 3 shows a physical manip-

ulative and its corresponding virtual manipulative

(compute image) developed in the present study. A

student can rotate the physical manipulative in

three directions around the x-, y-, and z-axes.
When the student rotates the physical manipulative

to observe it from different orientations, for exam-

ple, 45 degrees clockwise or 180 degrees upside

down, the student can observe how the image of

the exact same virtual manipulative simultaneously

rotates and changes its orientation on the computer

screen.
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manipulative held in the hand.



3. Research Design and Data Collection

3.1 Research Questions and Overall Research

Design

This paper focuses on the assessment of the new
VPM technology. Therefore, the research questions

of the present study are: Does the new virtual and

physical manipulatives (VPM) technology enhance

undergraduate engineering students’ spatial skills?

If yes, to what extent?

Quasi-experimental research design [26, 27] was

adopted to answer the above research questions.

Two groups of student participants were involved:
an intervention groupwhowas trained with the new

VPM technology and a control group who was not

trained with any VPM technology. Both groups

completed a pre- and post-test using the same

assessment instrument called the Revised Purdue

Spatial Visualization Test: Visualization of Rota-

tions (Revised PSVT:R) [28]. Section 3.3 (data

collection) will describe some details of the revised
PSVT:R instrument.

3.2 Student Participants

A total of 71 undergraduate students from the

College of Engineering at Utah State University, a

public research university in the Mountain West

area of the U.S., were recruited to participate in the

present study. Student participants were recruited
through emails and classroom visits. Those who

responded and showed interest in participating in

the present study were contacted to find out if they

could devote a sufficient amount of time to com-

plete necessary tasks designed in the present study.

All student participants signed on the Informed

Consent form approved by the University’s Institu-

tional Review Board before they participated in the
present study.

All 71 student participants were second-year

undergraduates majoring in mechanical engineer-

ing, civil engineering, biological engineering, or

other engineering fields such as aerospace and

environmental engineering. The intervention

group had 37 students. The control group had 34

students. Table 1 shows student demographics of
each group. Among 71 student participants, 56

(79%) were males, and 15 (21%) were females.

Engineering schools across the U.S. typically have

10–25% of female students in their engineering

programs. Therefore, the percentage of female

students involved in the present study was repre-

sentative. In addition, the majority of student

participants involved in the present study majored

either in mechanical engineering (44 students or
62%) or in civil engineering (17 students or 24%).

3.3 Data Collection

Each of the 71 student participants completed a pre-

and post-test using the same measurement instru-

ment called the Revised Purdue Spatial Visualiza-

tion Test: Visualization of Rotations (Revised
PSVT:R) [28]. The instrument consists of 30 multi-

ple-choice items corresponding to 13 symmetrical

and 17 non-symmetrical 3D objects, and quantifies

changes in spatial skills in student participants. The

revised PSVT:R instrument corrected ten figure

errors in the original PSVT:R instrument [29].

With an internal consistency reliability of 0.86, the

revised PVST:R instrument is frequently cited as
the strongest measurement of students’ mental

rotation skills and has been widely used in research

involving undergraduate education [30, 31].

Student participants in the intervention group

were trained with the new VPM technology over a

five-week period in the semester. On average, two

physical manipulatives were provided to each stu-

dent per week. Student participants were provided
access to the new VPM technology over the Inter-

net, so they could run all manipulatives remotely on

their own computers. To ensure students complete

their training, each student participant was also

provided a comprehensive workbook to use while

they were trained with the new VPM technology.

The workbook contains a set of multiple-choice

questions corresponding to each of the ten manip-
ulatives developed in the present study. While

students were using the new VPM technology,

they were required to answer those multi-choice

questions, which enhanced the effectiveness of

spatial training. Fig. 4 shows one representative

example of worksheets included in the workbook.

To help student participants in the intervention

group get started, we provided them initial gui-
dance on how to use virtual and physical manip-

ulatives. We also helped them solve computer

hardware and software issues. After this initial
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Table 1. Student demographics

Student groups
Number of
students Male Female

Mechanical
engineering
major

Civil
engineering
major

Biological
engineering
major

Other
engineering
major

Intervention group 37 29 8 21 9 3 4

Control group 34 27 7 23 8 2 1

Two-group total 71 56 15 44 17 5 5



assistance, student participants in the intervention
group trained themselves with VPM technology

over the five-week period in the semester. Each

week, they were exposed to two manipulatives.

The training with 10 manipulatives was completed

at the end of the fifth week.

In addition to pre- and post-test scores, the

cumulative grade point average (GPA) data of

each student participant was also collected. The
purpose was to determine if GPA was statistically

significantly different between student participants

in the intervention and control groups. If GPAwere

significantly different between the two groups, the

two groups were not comparable.

4. Data Analysis and Results

4.1 Normality Tests

Normality tests on the data collected in the present

study were first conducted to determine if para-

metric or non-parametric statistics should be

employed. If the data had a normal distribution,

parametric statistics would be employed. Other-

wise, non-parametric statistics would be employed.

Table 2 summarizes the results of normality tests
for grade point average (GPA), pre-test scores,

post-test scores, and normalized learning gains for

the intervention and control groups. The normality

tests conducted in the present study included both

Kolmogorov-Smirnov tests and Shapiro-Wilk tests
[27].

In Table 2, based on the pre- and post-test scores

of each student participant, the normalized learning

gain was calculated as [32]:

Normalized learning gain (%) =

Posttest score ð%Þ � Pretest score ð%Þ
100%� Pretest score ð%Þ

In his widely-cited paper [32], Hake proposed the

term of normalized learning gain in which both pre-

and post-test scores are expressed in percentages,

rather than absolute numbers. Although this term

includes the word ‘‘normalized,’’ it does not mean
data distribution is always ‘‘normal.’’ The ‘‘normal-

ized’’ learning gain is a non-statistical term defined

by Hake [32]. A ‘‘normal’’ distribution is a statis-

tical term.

In Table 2, a p-value (i.e., the Sig. value in

columns 4 and 7) less than 0.05 indicates a non-

normal distribution of data. FromTable 2, it can be

seen clearly that GPA, pre- and post-test scores are
not in a normal distribution for both intervention

and control groups. The p-value for normalized

learning gains is 0.2 (greater than 0.05) for the

intervention group based on Kolmogorov-Smirnov

tests, and 0.172 (greater than 0.05) for the control

group based on Shapiro-Wilk tests. Further obser-
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vations of normal Q-Q plots and analysis of homo-

geneity of variances [27] demonstrated that normal-

ized learning gains do not have a normal
distribution. Therefore, non-parametric statistical

analysis was subsequently conducted for all data

involved in the present study.

4.2 Descriptive Analysis

Table 3 summarizes the results of descriptive analysis,

including mean, median, standard deviation, mini-
mum, maximum, interquartile range, skewness, and

kurtosis.Median and interquartile range are typically

involved in non-parametric statistical analysis.

Although mean and standard deviation are typically

involved in parametric statistical analysis, they are

still included in Table 3 because they have been most

widely employed in the literature to describe and

explain the results of a statistical analysis.
As can be seen from Table 3, all the values of

mean, median, standard deviation, and interquar-

tile range values of GPA are close for the interven-

tion and control groups. For pre-test scores, the

mean value is 23.62 for the intervention group and
1.5 points greater (25.12) for the control group. The

median value is the same (26) for the two groups.

For post-test scores, the mean value is nearly the

same (25.97 and 26) for the two groups. However,

the median value is 28 for the intervention group

and 2 points less (26) for the control group.

For normalized learning gains, the mean value is

41.2% for the intervention group, which is 33%
higher than that for the control group (8.2%). The

median value is 50% for the intervention group,

which is 41.6% higher than that for the control

group (8.4%). The values of standard deviation and

interquartile range for the control group are higher

than those for the intervention group.

4.3 Correlation Analysis

Spearmen’s correlation coefficients [27] were calcu-
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Table 2. Results of normality tests

Variables

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig.b Statistic df Sig.b

Grade point average (GPA)

Intervention 0.151 37 0.034 0.904 37 0.004

Control 0.158 34 0.031 0.864 34 0.001

Pre-test scores

Intervention 0.284 37 0.000 0.832 37 0.000

Control 0.154 34 0.039 0.888 34 0.002

Post-test scores

Intervention 0.204 37 0.000 0.849 37 0.000

Control 0.158 34 0.031 0.919 34 0.015

Normalized learning gains (%)

Intervention 0.111 37 0.200 0.939 37 0.044

Control 0.174 34 0.010 0.955 34 0.172

a Lilliefors significance correction.
bA p-value less than 0.05 indicates a non-normal distribution of data.

Table 3. Results of descriptive analysis

Variables Mean Median SDa Min. Max. IQRb Skewness Kurtosis

Grade point average (GPA)

Intervention 3.56 3.69 0.38 2.55 4.00 0.54 –0.94 0.16

Control 3.67 3.76 0.33 3.00 4.00 0.48 –0.88 –0.36

Pre-test scores

Intervention 23.62 26 4.83 14 29 8.50 –0.77 –0.98

Control 25.15 26 3.29 18 29 4.30 –0.92 0.01

Post-test scores

Intervention 25.97 28 4.08 14 30 5.50 –1.37 1.64

Control 26 26 2.87 18 30 3.00 –0.98 0.86

Normalized learning gains (%)

Intervention 41.2 50 41.6 –66.7 100 51.1 –0.59 0.33

Control 8.2 8.4 53.1 –100 100 68.4 –0.34 –0.03

a SD stands for standard deviation.
b IQR stands for interquartile range.



lated for non-parametric statistical analysis in the

present study. Table 4 shows how student groups

(intervention or control) correlate to GPA, pre-test

scores, post-test scores, and normalized learning

gains.

Based on p-values (i.e., Sig. values listed in the
third row of Table 4), student groups (intervention

or control) are not statistically significantly corre-

lated to GPA, pre- and post-test scores. However,

student groups (intervention or control) are statis-

tically significantly correlated to normalized learn-

ing gains (P = 0.003). Student participants in the

intervention group were trained with the new VPM

technology; whilst those in the control group were
not trained with the new VPM technology. There-

fore, it can be concluded that whether or not the

new VPM technology was employed in spatial

training is statistically significantly correlated to

normalized learning gains.

4.4 Median Tests and Mann-Whitney U Tests

Median tests and Mann-Whitney U tests [27] for

non-parametric statistical analysis were conducted

to determine if there exists a statistically significant

difference between the intervention and control

groups in terms of GPA, pre-test scores, post-test
scores, and normalized learning gains. Table 5

shows the results of independent-samples median

tests. Table 6 shows the results of independent-

samples Mann-Whitney U tests.

As can be seen from p-values in Tables 5 and 6

(i.e., asymptotic sig. values in the fourth column),

there exists no statistically significant difference

between the intervention and control groups in

terms of GPA and pre-test scores. This implies

that the intervention and control groups are com-
parable. There exists no statistically significant

difference between the intervention and control

groups in terms of post-test scores either.

However, Tables 5 and 6 show that there exists a

statistically significant difference between the inter-

vention and control groups in terms of normalized

learning gains (P = 0.005 in median tests and P =

0.004 inMann-Whitney U tests). Based on the data
shown in Table 6, the effect size of the new VPM

technology was further calculated as [33]:

Effect size ¼ Standardized test statistic scoreffiffiffiffi
N

p

whereN is the number of student participants, which

is 71 in the present study. The results of calculations
show the effect size of the new VPM technology is

0.34, which represents a medium effect [33].

5. Discussions

The results described in the above section have

demonstrated the effectiveness of the new VPM

technology on improving students’ spatial skills.

One might ask how the new VPM technology

Enhancing Undergraduate Engineering Students’ Spatial Skills Through a New VPM Technology 97

Table 4. Spearmen’s correlation coefficients between student groups (intervention or control) and other variables

Grade point average
(GPA) Pre-test scores Post-test scores

Normalized learning
gains

Correlation coefficients 0.166 0.123 –0.082 –0.344*

Sig. (2-tailed) 0.167 0.308 0.494 0.003

N 71 71 71 71

*Correlation is statistically significant at the 0.01 level (2-tailed).

Table 5. Results of independent-samples median tests (N = 71)

Variables Median Test statistic Asymptotic sig.a

Grade point average (GPA) 3.71 0.347 0.556

Pre-test scores 26.00 0.024 0.877

Post-test scores 27.00 1.857 0.173

Normalized learning gains 33.30 7.839 0.005

a A p-value less than 0.05 indicates the statistically significant difference between the intervention and control groups.

Table 6. Results of independent-samples Mann-Whitney U tests (N = 71)

Variables Mann-Whitney U Standardized test statistic Asymptotic sig.a

Grade point average (GPA) 749.500 1.389 0.165

Pre-test scores 717.500 1.027 0.304

Post-test scores 569.500 –0.690 0.490

Normalized learning gains 380.000 –2.881 0.004

a A p-value less than 0.05 indicates the statistically significant difference between the intervention and control groups.



compares to the old VPM technology in terms of

students’ learning gains. In the previous work [25],

the old VPM technology was employed, and the

results showed that the group-average normalized

learning gain was 21.3%. In comparison, the new

VPM technology developed in the present study led
to a group-average normalized learning gain of

41.2%, nearly doubling the learning gain achieved

by using the old VPM technology.

One might also ask how the new VPM technol-

ogy compares to other existing technologies or

methods that have been developed to improve

students’ spatial skills. To make the comparison

reasonable, the same assessment instrument must
be employed in the studies involved. This is because

learning gains measured by different assessment

instruments can be quite different [6]. The assess-

ment instrument employed in the present study was

the Revised Purdue Spatial Visualization Test:

Visualization of Rotations (Revised PSVT:R) [28].

Extensive literature reviews using popular literature

database, such as Scopus andGoogle Scholar, show
that the vast majority of existing research involving

the use of the Revised PSVT:R instrument have not

provided relevant learning gain data because no

post-tests were involved. The Revised PSVT:R

instrument was employed to measure students’

spatial skills and correlate them to student’s aca-

demic performance or gender [28, 31, 34].

One exception is a recent study in which the
Revised PSVT:R instrument was employed in two

undergraduate engineering courses – computer-

aided design (CAD) and computer-aided manufac-

turing (CAM) [35]. In these two courses, students

rotated and visualized 2D and 3D objects from

different orientations, which involved a significant

amount of training and development of students’

spatial visualization skills. A pre- and post-test
using the Revised PSVT:R instrument was admi-

nistered to measure students’ spatial skills before

and after these two courses in two semesters.

Student participants in the above study [35] were

undergraduates in theManufacturing andMechan-

ical Engineering Technology program at a public

research university in the U.S. Table 1 of the paper

[35] provided students’ average pre- and post-test
scores in the two courses:

� Students’ average pre-test scores in semester 1:

26.1 (CAD) and 24.2 (CAM).
� Students’ average post-test scores in semester 1:

25.2 (CAD) and 23.0 (CAM).

� Students’ average pre-test scores in semester 2:

24.3 (CAD) and 24.7 (CAM).

� Students’ average post-test scores in semester 2:

23.7 (CAD) and 24.5 (CAM).

Based on the above data, the class-average nor-

malized learning gain in semester 1 was –48.7% for

the CAD course and –45.8% for the CAM course.

The learning gains were negative because the post-

test score was less than the pre-test score. The class-

average normalized learning gain in semester 2 was

positive: 7% for the CAD course and 12.7% for the
CAM course. These two percentage numbers, how-

ever, are significantly lower than the 42.1% of the

normalized learning gain achieved by the new VPM

technology developed in the present study. This

comparison further demonstrates the effectiveness

of the new VPM technology.

It is also worth mentioning that the students in

the intervention group were trained with the new
VPM technology for only five weeks between the

pre- and post-test. This short time span (5-weeks)

also demonstrates the effectiveness of the new VPM

technology. According to relevant literature [3],

spatial training with different techniques or meth-

ods involves a wide range of time frames from

several weeks to several semesters. Few research

studies have discussed how long is sufficient for
spatial training to be effective. The results of the

present study imply that as long as techniques for

spatial training are powerful, the period of training

can be reduced to just a few weeks.

The limitations of the present study need to be

discussed. First, the sample size (n = 71 for two

groups) is not large. Because each student partici-

pant in the intervention group must be committed
to spending a significant amount of time over a five-

week period, among their busy school schedules, in

receiving spatial training with the new VPM tech-

nology, student recruitment turned out to be chal-

lenging. Some students did not participate in the

present study because they could not make suffi-

cient time commitment to receiving the training and

completing pre- and post-tests.
Second, although the results of the present study

have shown the effectiveness of the new VPM

technology on enhancing undergraduate engineer-

ing students’ spatial skills, it is unclear why the

effectiveness of training (i.e., normalized learning

gains) varies to different extents among different

students. In the future work, each student partici-

pant’s background and experience as well as the
way in which he or she employs the new VPM

technology during training will be examined. Qua-

litative research through interviews would also be

helpful to explain why the effectiveness of training

varies from one student to another.

6. Conclusions

In spite of the importance of spatial skills in

learning and developing expertise in engineering,

the training of students’ spatial skills has not
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received sufficient attention. Except for computer

graphic and computer-aided design courses, few

engineering courses teach students how to develop

spatial skills. This paper has described the new

VPM technology that we recently developed to

enhance undergraduate engineering students’ spa-
tial skills. Quasi-experimental research involving an

intervention group (n = 37) and a control group

(n = 34) has also been conducted. The following

paragraphs summarize major research findings

made in the present study:

1. The mean value of normalized learning gains is

41.2% for the intervention group, which is 33%

higher than that for the control group (8.2%).

The median value of normalized learning gains

is 50% for the intervention group, which is

41.6% higher than that for the control group
(8.4%).

2. Whether or not the new VPM technology was

employed in spatial training is statistically

significantly correlated to normalized learning

gains (P < 0.01).

3. There exists no statistically significant differ-

ence between the intervention and control

groups in terms of GPA, pre- and post-test
scores.

4. A statistically significant difference exists

between the intervention and control groups

in terms of normalized learning gains (P <

0.01).

5. The new VPM technology has a medium effect

size (0.34) on improving students’ spatial skills.
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14. J. M. Gutiérrez, M. G. Domı́nguez and C. R. González, Using 3D virtual technologies to train spatial skills in engineering,

International Journal of Engineering Education, 31(1), pp. 323–334, 2015.

15. A. Sheharyar, A. R. Srinivasa and E. Masad, Enhancing 3-D spatial skills of engineering students using augmented reality,

Proceedings of the 2020 ASEE Virtual Annual Conference, 2020.
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