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Many frameworks have been put forth for why women continue to be underrepresented in engineering professions. Here,

we introduce a framework that posits that grade penalty in first year foundational science courses for engineering majors

may be particularly damaging to female studentswho do not have rolemodels and are questioningwhether they havewhat

it takes to excel in an engineering major and career due to pervasive stereotypes. In order to quantify grade penalty, we

define Average Grade Anomaly (AGA) as the difference between a student’s grade in a course under consideration and

their grade point average (GPA) in all other classes thus far. An AGA lower than students’ expected grade based on their

GPA is a grade penalty and higher than expected grade is a grade bonus. Our framework posits that female engineering

majors are more likely to be negatively impacted by a grade penalty in their first-year foundational science courses since

their academic self-concept as an engineering major hinges on them securing a certain grade. In the study presented here,

we examineAGAs of 6,028 first-year engineering students across a number of required courses.We find that students tend

to receive grade bonuses in engineering and English composition courses, and grade penalties in physics, chemistry, and

math courses. These courses with grade penalties tend to be large, lecture-based courses. We also find that in physics

courses, women have larger grade penalties than men, whereas in chemistry and math, men have larger grade penalties.

Thus, physics courses may be most damaging to women out of all of the courses in which they receive grade penalty. We

hypothesize that women’s decisions to pursue an engineering major and career may be affected more by the grade penalty

received in foundational science courses than men’s due to societal stereotypes about who can excel in engineering and

access to other coping mechanisms that may help to rationalize lower-than-expected grades. Furthermore, the grade

penalty measure can be easily computed by the engineering programs concerned with equity. Finally, we provide

recommendations for how engineering programs may mitigate grade penalties in the foundational science courses, which

may be particularly damaging to women.
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1. Introduction and Theoretical
Framework

Gender differences in performance and persistence

in science, technology, engineering, and mathe-

matics (STEM) are well-studied phenomena, espe-

cially in engineering [1–5]. When women leave

STEM disciplines, they often do so with higher
grades than men who remain in the program [6–

8].Women aremore drastically underrepresented in

engineering than many other STEM disciplines [1,

2, 5], so focusing on retention is particularly impor-

tant for this field. If women are leaving engineering

programswith grades thatmeet or exceedminimum

requirements [7, 8], it is likely that many students

who would succeed in engineering careers will
pursue other professional paths.

There are many partial explanations regarding

why women who are meeting or exceeding the

requirements of their programs leave. These include

societal stereotypes and biases about who can excel

in these disciplines that discourage women from

pursuing STEM careers [9–17], gender discrimina-

tion in hiring [18], and differences in STEMmotiva-
tional beliefs such as self-efficacy and sense of

belonging [2, 3, 19–26]. We have been focusing on

how to improve equity and inclusion in STEM,with

a particular focus on motivational factors [27–32].

Here, we focus on first-year engineering majors

and introduce a framework that posits that grade

penalty in first year foundational science courses for

engineering majors may be particularly damaging

to female students who do not have role models and
are questioning whether they have what it takes to

excel in an engineering major and career. We focus

on grade anomaly as a tool to help understand

gender differences in first year engineering grades.

Grade anomaly is the difference between a student’s

grade in a course of interest and their GPA in all

other courses thus far excluding that course. We

divide grade anomalies into ‘‘bonuses’’ and ‘‘penal-
ties’’. A course in which most students earn a lower

grade than usual has a grade penalty, while a course

in which most students earn a higher grade than

usual has a grade bonus.

We propose that grade anomaly is a potential

measure of students’ academic self-concept which is

easy to track, through institutional grade data. Our

framework uses grade penalty as a central construct
instead of grade because students’ self-concept is
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tied to what type of student they think they are. Low

academic self-concept can be particularly detrimen-

tal to women [33–36], so measuring it may be useful

for tracking classeoom equity. Students tend to

have a fairly fixed view of what ‘‘kind’’ of student

they are: for example, students may endorse the
idea that ‘‘If I get As, I must be an A kind of person.

If I get a C, I am a C kind of person’’ [7, 8]. Grade

anomalies may challenge or reinforce students’

ideas about what kind of student they are, and if

they are capable of succeeding in their chosen

major. Many students who leave STEM majors

explicitly cite lower grades than they are used to

as a reason for doing so [7, 8]. Grade penalties are
more common and extreme in STEM disciplines

than in humanities or social science departments [8,

37–39], andwomen aremore affected by these grade

penalties due to stereotypes and lack of role models,

and they are more likely to leave their majors or

career aspirations with fewer and smaller grade

penalties than men are [8, 37].

In this paper, we use Situated Expectancy Value
Theory (SEVT), studies about why students leave

STEM, and previous work on grade anomalies to

explore if grade anomalies in first-year founda-

tional courses affect male and female engineering

majors differently, making grade anomalies an

equity issue in engineering. We also posit that

grade anomaly may be a better measure of self-

concept [36] than raw grades and students are more
likely to question whether they should continue in

disciplines in which the foundational courses

involve grade penalty because it is a uniquemeasure

of ‘‘within-student’’ frame of reference (i.e., stu-

dents are comparing their own grades across differ-

ent courses as opposed to comparing their grades

with others) [34].

1.1 Prior Work on Grade Anomaly

Several studies [38–40] have utilized ‘‘grade anom-

aly’’, the difference between a student’s GPA

excluding a course of interest and their grade in

all courses thus far. Huberth et al. [40] developed

this measure, but Koester et al. [39] conducted the

first study we know of that focuses on average grade
anomaly (AGA). They used AGA because it was

perceived to be a better measure of how students

view their comparative performance than their raw

grades across different courses. They found that, at

their institution, grade penalties were greater for

STEM than non-STEM courses. Further, within

STEM courses, grade penalties were smaller for

men than women. In particular, they found that
physics courses had the largest grade penalty and

largest gender difference in AGA. The researchers

theorized that large grade penalties and gender

differences may be partially attributed to high-

stakes assessments [41–44] and stereotype threat

[45]. High-stakes assessments like exams are

shown to have larger gender differences in grades

than low-stakes assessments like problem sets or

quizzes [41–44], while stereotype threat (a students’

feeling of risk associated with confirming a negative
stereotype, for example a woman who fears con-

firming the stereotype that women are bad at math)

takes up cognitive resources of students from

underrepresented groups [45]. The Matz et al. [38]

study had similar findings but with a larger student

sample across multiple institutions. Across five

universities, STEM courses had larger grade penal-

ties and larger gender differences in AGA that
usually favored men. Their study also raised con-

cerns over high-stakes assessments. They empha-

sized that large grade anomalies often reflect

grading decisions made by instructors, rather than

being an accurate measure of student learning.

Thus, past work provides evidence for the exis-

tence of grade anomalies in STEM courses, and the

existence of gender differences in these anomalies.
Here, we present an investigation that focuses on

grade anomaly in first-year foundational courses in

engineering in which we analyze data to study if

these trends hold in a more homogeneous popula-

tion of first-year engineering students at a single

university, rather than combining students across

institutions and majors. This focus on first-year

engineering students can help control for potential
confounding factors. This study is particularly

important because first year foundational courses

in engineering play a critical role in students’ short

and long-term professional trajectories.

1.2 Situated Expectancy Value Theory Framework

Expectancy Value Theory (EVT) [33] and Situated
Expectancy Value Theory (SEVT) [36] are frame-

works to understand student achievement, persis-

tence, and choice of tasks in a domain (e.g.,

engineering). EVT posits that performance and

persistence is determined by someone’s expectation

of success and the extent to which they value that

task. If a student expects they will succeed in a task

and believes that task will be valuable to them (for
personal interest, as a path to achieve another goal,

etc.) they are more likely to pursue that task. If they

do not expect to succeed and do not value a task,

they are unlikely to attempt it. Here, we will focus

primarily on student expectancies, though value is

also important to understandingwhy some students

may persist while others do not.

Expectancies are a combination of academic self-
concept, expectations for success, and perceptions

of task difficulty [33–36]. Academic self-concept is

the most stable and the least task and domain-

dependent of the three, and it is based primarily
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on grades and outside (e.g., from parents, peers, and

instructors) feedback [33–36, 46]. Grades inform

academic self-concept as both an external (‘‘How

good at math am I compared to other students?’’)

and internal (‘‘How good am I at math compared to

English?’’) frame of reference [33–35].
Expectations of success are more domain and

task specific, and refer to a student’s belief in their

ability to complete a specific task, whichwill include

considerations such as skill in the subject, time

allotted, and experience in a subject ([33–36].

Expectancy for success most closely relates to

Bandura’s theory of self-efficacy [35, 36, 47]. A

student may have a positive academic self-concept
in math, but may have low expectancy for success if

they take amath test on very newmaterial they have

not had adequate time to learn. The third expec-

tancy, perceptions of task difficulty, is more

straightforward; most students have less faith in

their ability to dowell on an exam if their peers have

reported it to be particularly difficult [33].

In EVT, the three expectancy concepts were
collapsed into one factor. However, the updated

framework, SEVT, has called to separate these

three concepts [36]. According to Eccles and Wig-

field [36], combining academic self-concept, expec-

tancies for success, and perceived task difficulty has

led to a lack of understanding of the unique devel-

opmental mechanisms of each and how the three

concepts relate.
We propose that grade anomalies can act as a

proxy for student’s internal frame of reference.

Additionally, past research has found that during

times of transition, the usually-stable academic self-

concept becomes more dependent on grade feed-

back and less dependent on outsider (e.g., parental)

feedback [34]. We study first-year engineering stu-

dents because they are more likely to have an
unstable academic self-concept due to the transition

from high school to university and can be impacted

by their performance in first-year courses in college.

2. Research Questions

We aim to answer the following research questions

regarding grade anomalies for first-year engineer-

ing students:

RQ1. For which of their first-year courses do engi-

neering students receive a ‘‘grade penalty’’ and for

which courses do they receive a ‘‘grade bonus’’?

RQ2. Do male and female engineering students

have different ‘‘grade anomalies’’ in their first-
year courses?

RQ3. If there are gender differences in ‘‘grade

anomalies’’, do they follow the same trends as

gendered grade differences?

3. Methodology

3.1 Participants

This study takes place at the University of Pitts-

burgh, a large (19,017 degree-seeking undergradu-

ates in 2019), public, urban, predominantly-white

institution (78% in 2019) in the northeastern United

States [48]. The participants were students enrolled
in the School of Engineering, who were in their first

or second semester at the university, and took

calculus-based physics 1 as well as other mandatory

first year courses taken by engineering majors

between Spring semester of 2006 and Fall semester

of 2019. We excluded courses that were taken

during the summer semester. This left us with

6,028 engineering majors who took 48,116 courses
during their first and second semesters of college.

The sample was 29.9% women and 70.1% men.

Students who did not list their gender were excluded

from the study as theymade up less than 0.1% of the

sample. Students identified with the following

races/ethnicities: 79% White, 9% Asian, 3% Hispa-

nic/Latinx, 3% multiracial, 5% African American/

Black, and 1% unknown or unspecified. Demo-
graphic data were provided through deidentified

university records. This research was carried out in

accordance with the principles outlined in the

University of Pittsburgh Institutional Review

Board (IRB) ethical policy.

3.2 Procedures

We chose the courses to include in our investigation

by reviewing the engineering first-year curriculum,

which is standardized for students at our institu-

tion, and confirming that the majority of students

took these courses during their first or second
semester of college. Chemistry 1 and Chemistry 2

were offered by the Department of Chemistry, but

are reserved for engineering students. Physics 1 and

Physics 2 were offered by theDepartment of Physics

and Astronomy, and Calculus 1 and Calculus 2

were offered by the Department of Mathematics.

All other courses were offered by the school of

engineering. Some courses, such as ‘‘Composition
Seminar’’, a writing course for first-semester engi-

neering students, have fewer students than other

courses. This is a result of changes in the writing

part of the curriculum over the thirteen-year data

collection period. All curriculum changes resulted

in a very general requirement becoming more

specific (for example, students were once required

to take one general education course in humanities
before graduation, but are now required to take

‘‘Composition Seminar’’ during their first seme-

ster). In situations involving these cases, we only

included the newer andmore specific requirement in

our analysis.
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3.3 Measures

3.3.1 Course Grade

Course grades were based on the 0–4 scale used at

our university, with A= 4, B = 3, C = 2, D= 1, F = 0

or W (late withdrawal), where the suffixes ‘+’ and

‘–’, respectively, add or subtract 0.25 grade points

(e.g., B– = 2.75 and B+ = 3.25), except for the A+,

which is also reported as 4. Due to the wide variety

of courses sampled and the time frame of the study,

we are unable to report grading schemes of each
instructor, type of course (i.e., traditional lectures

or active learning), or any other detailed course-

level information.

3.3.2 Grade Anomaly (GA)

GA was found by first finding each student’s grade
point average excluding the course of interest

(GPAexc). This was done by using the equation

GPAexc ¼
ðGPAc �UnitscÞ � ðGrade�UnitsÞ

Unitsc �Units
ð1Þ

where GPAc is the student’s cumulative GPA,

Unitsc is the cumulative number of units the student

has taken,Grade is the grade the student received in
the course of interest, and Units is the number of

units associated with the course of interest. After

finding GPAexc we can calculate grade anomaly

(GA) by finding the difference between a student’s

GPAexc and the grade received in that class:

GA ¼ GPAexc � Grade: ð2Þ

Thus, if a student has a negative GA, that means
they received a lower grade in the course of interest

than in their other classes. We call this a ‘‘grade

penalty’’. If a student has a positive GA, that means

they received a higher grade in the course of interest

than in their other classes. We call this a ‘‘grade

bonus’’.

3.4 Analysis

To characterize both average grade anomaly

(AGA) and grades, we found the sample size,

mean, standard deviation, and standard error of

each measure for each course of interest. We

calculated these statistics for women and men

separately, and then for all students combined.

We also compared the effect size of gender on
both grade and grade anomaly, using Cohen’s d

to describe the size of the mean differences and

unpaired t-tests to evaluate the statistical robust-

ness of the differences. Cohen’s d is calculated as

follows:

d ¼ �1 � �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�21 þ �22Þ=2

q ð3Þ

where �1 and �2 are the means of the two groups �1
and �2 are the standard deviations [49]. Cohen’s d is
considered small if d � 0:2, medium if d � 0:5, and
large if d � 0:8 [50]. We used a significance level of
0.05 in the t-tests and as a balance between Type I

(falsely rejecting a null hypothesis) and Type II

(falsely accepting a null hypothesis) errors [49].

All analysis was conducted using R [51], using the

package plotrix [52] for descriptive statistics, lsr [53]

for effect sizes, and ggplot2 [54] to create plots.

4. Results

4.1 For which of their first-year courses do

Engineering Students receive a ‘‘Grade Penalty’’

and for which do they receive a ‘‘Grade Bonus’’?

To answerRQ1, we calculated average grade anom-
aly (AGA) for each course engineering students are

required to take during their first and second

semester at the university. We show the descriptive

statistics for both grades and AGA in Table 1 and

Fig. 1. The largest student sample can be found for

Physics 1, because this is the class we used to select
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Table 1.Grades and AGA for each course of interest, including the department that offered it and semester in which it was offered. The
following words are abbreviated: Seminar (Sem.), Computing (Comp.), Communication (Com.), Professional (Prof.), and Standard
Deviation (SD)

Course Semester Department

Grade AGA

N Mean SD Mean SD

Composition Sem. Fall English 787 3.51 0.72 0.48 0.70

Intro to Analysis Fall Engineering 5352 3.52 0.53 0.55 0.54

Chemistry 1 Fall Engineering 4185 2.55 0.99 –0.62 0.85

Physics 1 Fall Physics 6022 2.73 0.79 –0.47 0.72

Calculus 1 Fall Mathematics 4381 2.81 1.01 –0.23 1.08

Intro to Comp. Spring Engineering 4672 3.29 0.73 0.27 0.62

Prof. Com. Spring English 338 3.81 0.31 0.63 0.55

Chemistry 2 Spring Chemistry 3385 2.52 0.91 –0.59 0.68

Physics 2 Spring Physics 4762 2.58 0.91 –0.58 0.70

Calculus 2 Spring Mathematics 4601 2.63 1.13 –0.48 0.99



engineering students for our sample. We find that

students generally receive grade penalties in the

courses offered by the departments of Chemistry,

Mathematics, and Physics, while students receive

grade bonuses in first-year courses offered by the
department of English and School of Engineering.

The courses in which students receive a grade

penalty are (in order from largest to smallest pen-

alty): Chemistry 1, Chemistry 2 and Physics 2 (tie),

Calculus 2 and Physics 1 (tie), and Calculus 1. The

courses that students receive a grade bonus are (in

order from smallest to largest bonus): Introduction

to Computing, Composition Seminar, Introduction
to Analysis, and Engineering Communication in a

Professional Context.

4.2 Do Male and Female Engineering Students

have different ‘‘Grade Anomalies’’ in their first-year

courses?

To find if there are differences in grade anomalies

for men and women, we grouped students by their

self-reported gender and calculated the average

grade anomaly for both groups for each course of

interest. We then calculated Cohen’s d as a measure

of effect size between the two groups [49], which can

be seen in Table 2.Women had indistinguishable or
favorable AGA outcomes (e.g., smaller grade

penalties or larger grade bonuses) compared to

men, with three exceptions (see Fig. 2). For Intro

to Computing, Physics 1, and Physics 2, men have

smaller grade penalties or larger grade bonuses than

women.

For both men and women, Professional Com-

munication, a writing course, provided the largest
grade bonus. For men, the courses that provided

the largest grade penalties are Chemistry 1 and

Chemistry 2, with grade penalties of –0.62 and

–0.64, respectively. This means that men tended to

receive over half a letter grade lower in this course

than in their other courses. For women, the course

that provided the largest grade penalty is Physics 2,

with an AGA of –0.71.
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Fig. 1. Average grade anomaly (AGA) of all students by course. The following words are abbreviated: Seminar (Sem.), Computing
(Comp.), Communication (Com.), and Professional (Prof.). Ranges represent standard error of the mean.

Fig. 2. Comparison of average grade anomaly (AGA) between men and women. The following words are abbreviated: Seminar (Sem.),
Computing (Comp.), Communication (Com.), Professional (Prof.), and Standard deviation (SD). Ranges represent standard error of the
mean.



4.3 If there are Gender Differences in ‘‘Grade

Anomalies’’, do they follow the same trends as

Gendered Grade Differences?

There are some classes that show similar trends for

grades and AGA, which can be seen in Table 2. We

define similar trends as having a similar effect size
(small, medium, or large) and a similar p-value.

These include

Composition Seminar, Chemistry 1, Chemistry 2,

Calculus 1, and Calculus 2. There are courses with a

larger gender difference in grade than AGA. These

include Intro to Computing, Intro to Analysis, and

Engineering Communication in a Professional

Context. There are courses with a larger gender
difference in AGA than grade. These include Phy-

sics 1 and Physics 2.

5. Discussion

Our results show that there are grade penalties in

all science and math courses studied, and bonuses

in all engineering and English courses. We note

that, similar to other studies that focus on AGA

[38, 39], science and math courses have large grade

penalties, while humanities courses have grade

bonuses. Our results differ from past studies
because first year courses offered by the engineer-

ing school have grade bonuses as opposed to

penalties. In this section, we discuss: the potential

harms of grade anomalies, what gender differences

in grade anomalies can reveal about course equity,

how grade anomaly related to academic self-con-

cept; concerns about unequal access to coping

mechanisms (methods that students use to persist
in an environment with large grade penalties)

regarding grade penalties, and why grade anoma-

lies are a useful measure above and beyond raw

grades.

First, we discuss why grade anomalies can be

harmful. Lower than expected grades, even in a

single course, can be a catalyst for students to leave

STEM majors [7, 8]. This does not just include D
and F grades or withdrawal from the course, but

grades that were high enough to continue the

program that did not meet a student’s personal

expectations [7, 8]. This was a particular issue

among high-achieving students, who were more

likely to endorse perfectionism and feeling that

their identity as ‘‘good STEM students’’ was threa-

tened by B’s and C’s, or even a low grade on a single
exam [8].

One way that students report coping with these

unexpectedly low grades is by relying on others

(such as friends, professors, or mentors) for sup-

port, which often comes as reassurance that low

grades are normal in these difficult classes [8]. A

second way students report coping is by accepting

the harsher grading standards (such as curved
grading or very low class exam averages) of

STEM courses and decoupling their self-concept

as STEM students with their grades [8]. Both of

these coping mechanisms raise equity concerns,

which are discussed in the next section.

It is important to note that these grading stan-

dards are a choice made by STEMdepartments and

instructors. Requiring students to accept harsh
grading standards and separate their identities as

STEM students from their grades in order to

successfully complete their degrees can distract

students from their coursework. This, combined

with evidence that shows that many high-achieving

students leave these majors due to grade-related

concerns, should lead instructors to question if their

standards actually improve the education they offer
students, or if they are simply pushing away all

students except those who are capable of maintain-
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Table 2. Comparison of grades and AGA between men and women. If the effect size given by Cohen’s d is positive for grade, women had
higher grades than men. If d is positive for AGA, women had a larger grade bonus or smaller grade penalty than men in that course. The
following words are abbreviated: Seminar (Sem.), Computing (Comp.),Communication (Com.), Professional (Prof.), and Standard
deviation (SD). c = p < 0.05, b = p < 0.01, and a = p < 0.001

Course

Women Men

Cohen’s d

N

Grade AGA

N

Grade AGA

Mean SD Mean SD Mean SD Mean SD Grade AGA

Composition Sem. 277 3.70 0.48 0.64 0.65 510 3.41 0.80 0.40 0.71 0.41a 0.34a

Intro to Comp. 1352 3.34 0.70 0.24 0.57 3320 3.26 0.75 0.28 0.63 0.10a –0.05

Intro to Analysis 1580 3.60 0.49 0.55 0.47 3772 3.49 0.55 0.55 0.57 0.20a 0.00

Prof. Com. 129 3.86 0.35 0.68 0.52 209 3.77 0.34 0.60 0.57 0.26a –0.10

Chemistry 1 1103 2.68 0.90 –0.55 0.81 3082 2.50 0.98 –0.64 0.86 0.19b 0.10b

Chemistry 2 899 2.67 0.84 –0.50 0.63 2486 2.46 0.93 –0.62 0.69 0.22a 0.17a

Physics 1 1783 2.67 0.73 –0.65 0.68 4239 2.76 0.81 –0.40 0.72 –0.11a –0.36a

Physics 2 1342 2.54 0.82 –0.71 0.64 3420 2.59 0.94 –0.54 0.71 –0.06c –0.25a

Calculus 1 1222 2.98 0.90 –0.10 0.99 3159 2.75 1.04 –0.28 1.11 0.23a 0.16a

Calculus 2 1288 2.79 1.06 –0.38 0.93 3313 2.63 1.13 –0.48 0.99 0.20a 0.15a



ing their academic self-concept divorced from

grades.

In addition to seeing evidence of grade penalties

in some courses for first-year engineering students,

especially large-enrollment introductory courses,

we also see some gender differences in grade anoma-
lies. In particular, there were larger grade penalties

for women in Physics 1 and Physics 2. Because

women leave majors with higher grades than men

who remain both in [6, 8] and outside [37] of STEM,

this raises serious equity concerns. Past work sug-

gests that women tend to have lower motivational

beliefs that relate to academic self-concept, such as

self-efficacy and sense of belonging [3, 20, 22, 30, 41,
55–57]. Women report feeling more demoralized

than men when they receive low grades, and cite

more worry over not understandingmaterial even if

they receive A’s, B’s, or C’s (all of which are grades

that allow students to continue in most programs)

[2, 8]. This trend has been found to be particularly

strong among high-achieving women [8].

We suggest that women may be more likely to
have a low academic-self-concept than men at

similar performance levels for two reasons. First,

prior research also suggests that women are less

likely to separate their academic self-concept from

their grades which is one of the clearest types of

recognition in a domain [7, 8, 37]. In particular,

grades are the resource that women have the most

access to. Academic self-concept is formed through
grades and feedback from outsiders. Because

women are less likely to receive recognition as

someonewith potential in STEM from their parents

[11, 58, 59], society at large [10, 60], and their

instructors [12, 18, 61], they are more likely to rely

on grade information to develop their academic

self-concept. Next, women often tend to earn

higher grades than men with the same standardized
test scores [8, 62]. Because women are often more

accustomed to higher grades, they may have more

concern about grades that are lower than what they

are accustomed to (especially if there are stereo-

types about who can excel in those domains), or

they may compare their relatively-low STEM

grades and leave for another subject that gives

them the recognition for their work that they are
accustomed to [7, 8].

Next, interview-based studies [8] suggest that

women are less likely to have access to the coping

mechanisms (i.e., support from peers or mentors

and resources to decouple their self-identity as

STEM students with their grades [8]) that students

often use to continue even if they receive lower-

than-expected grades in foundational courses. For
example, women are less likely to receive advice that

low grades are acceptable from peers and mentors

because they are less likely to have peers and

mentors they can relate to due to the underrepre-

sentation of women in many STEM fields, such as

engineering [5]. Further, if women are less likely to

continue in their field of interest due to low grades

[2, 8], the women who remain in or complete

programs are more likely to be high-achieving in
the field, and would thus be less likely to give advice

that is useful to the average student (for example ‘‘I,

like many others, received a C in this class but was

still able to complete my program’’). This second

coping mechanism is essentially separating grades

from academic self-concept. As stated earlier,

because women are less likely to have positive

feedback from outsiders (e.g., parents and instruc-
tors), they have no other way to form academic self-

concept unless they can find a support system that

can provide that outside recognition, though this

sort of systemmay not be available to every student

who seeks it out. These same arguments about lack

of access to coping mechanism may apply to

students from other underrepresented groups,

who are also more likely to leave their programs
due to lower-than-expected grades, i.e., due to

grade penalty, than students from groups that are

not underrepresented. Other groups that may be

more affected by grade anomalies are racial and

ethnic minority students [8, 63] and first-generation

students [64].

Finally, we find that grade anomalies and raw

grade data do not always reveal the same trends.
Some courses have larger gender differences in

AGA than in grades, such as Physics 1 and Physics

2. This speaks to the usefulness of tracking both

AGA and grades of the students. An instructor may

see a small grade difference and understand that

there is gender inequity in their classroom, but

without knowing the gender differences in AGA,

the instructor will not understand how those grades
are perceived by female and male students. Under-

standing both grades and AGA differences may

allow instructors to understand both classroom-

level inequities and the extent to which their

course may be pushing underrepresented groups,

such as women, out of STEM fields.

There are also some courses that have larger

gender differences in grades than in AGA, such as
Intro to Computing, Intro to Analysis, and Engi-

neering Communication in a Professional Context.

However, we do not find these differences as con-

cerning, because all of these courses are, on average,

offering grade bonuses to all students, so they are

less likely to decrease students’ academic self-con-

cept.

From our results, we make several recommenda-
tions to instructors and departments. First, measur-

ing grade anomaly in addition to grades may be a

useful way to find inequities in the learning envir-
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onment. Measuring grades and gendered grade

differences is both valuable for and accessible to

individual instructors, but grade anomalies may be

useful to departments concerned about students’

retention over longer periods and finding which

courses may be discouraging students from under-
represented groups to leave a major.

Next, we encourage instructors and departments

to evaluate their goals when developing grading

practices. If a department aims to create a diverse

and welcoming environment that attracts students,

while also maximizing student learning, there are

several productive practices to consider. Frequent,

low-stakes assessment gives ample opportunity for
instructor feedback and can minimize gender

inequities in STEM classrooms [41, 42, 47]. This

includes offering many types of assessment, such

as quizzes, clicker questions, and projects in addi-

tion to or instead of homework problem sets and

exams [41, 44, 65]. Collaborative and active learn-

ing approaches in equitable learning environments

may also improve learning outcomes and grades
while eliminating gender performance differences

[41, 42, 66, 67]. Finally, we recommend instructors

avoid curved grading and very low class averages:

these practices do not reflect student performance,

but they do discourage students and often con-

tribute to students’ reasons for leaving a field [7,

8].

The results presented in this study are very
important because they provide evidence that

courses in STEM departments (particularly large,

mandatory, introductory courses) tend to result in

grade penalties for students. This allows us to

pinpoint departments and courses that may have

grading practices that are inequitable or unrepre-

sentative of student learning, as well as those that

have more equitable and representative grading, so
that practices may be shared across disciplines to

improve learning environments in all disciplines.

The relatively newmeasure of AGAmay also act as

a measure of academic self-concept that is easy for

institutions to access. This can also be useful to

researchers as they develop separate measurements

for academic self-concept and expectancies for

success. Because most research on measures of
self-concept is relatively new [36], qualitative work

in this area may help further clarify the connection

between grade anomalies and academic self-con-

cept, as well as reveal how they both affect reten-

tion. Further, grade anomaly may correlate with

multiple factors, not just self-concept (for example,

student self-efficacy, interest, course engagement,

and impact of teachingmethods), and qualitative or

survey data may reveal more nuanced impact for

each of these factors on grade penalty.
Although we have strong evidence of grade

penalties in chemistry, mathematics and physics

courses for first-year engineering students as well

as gendered grade anomaly differences, we did not

have access to syllabi or other information about

individual courses for every course offered over the

thirteen-year period of data collection. Therefore,

we are not able to pinpoint specific practices that
may lead to grade penalties, grade bonuses, or

gender inequities at our institution. Instead, we

assume that, like the courses currently offered,

most of these large, introductory courses are

taught in a traditional, lecture-based, and exam-

reliant format.

6. Conclusion

In this workwe found that grade anomalies exist for

all first-year engineering courses at our institution.

Engineering and English Composition courses

offered grade bonuses while Physics, Math, and

Chemistry courses had grade penalties. Further,

all courses had a grade anomaly (larger grade

bonuses or smaller grade paneities) that favored
women over men except for both Physics courses

and Introduction to Computing. This raises parti-

cular concern about physics classes and the need for

an equitable learning environment for engineering

students. We also note that grade anomalies and

raw grades do not reveal the same gender difference

trends. Thus, both grade anomaly and raw grades

should be tracked when determining if a course is
equitable.

Finally, this research is based at a primarily

white, large, public university, and while our results

may generalize to similar institutions, we do not

know what patterns of grade anomalies exist at

liberal arts colleges, minority-serving institutions,

or community colleges. Conducting research at a

diverse range of institutions in different countries,
as well as a stronger focus on how grade anomaly

affects students from a variety of underrepresented

groups, will help us more fully understand how

grade anomalies differ for a range of students.
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