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Estimation of risk during the lifetime of a project is an integral component of engineering design. Often, the concept of the

‘‘return period’’, which relates to the realization of the risk, is taught in upper-level courses, especially in the context of

structures experiencing random environmental loads. In recent years, it has been recognized that trends in the underlying

data, in addition to the inherent randomness, may play an important role in estimating risks for engineering design.While

the research community is attempting to accommodate this non-stationarity in risk estimation, the urgency arising from

climate trends requires new graduates and practitioners to understand the methods involved. Under these conditions, the

widely used concepts of return periods and the consequent risks to a structure has to be examined in a new light. Our goal is

to develop a framework that can be used in teaching selected undergraduate courses, master’s level courses, and

professional continuing education courses to enable the student to make practical engineering calculations. Since the

mathematical formulations can be intimidating, we demonstrate a simple Excel-based teaching framework that

instructors can utilize to present the underlying ideas in an intuitive manner and to enable students and practitioners

to easily implement the concepts. Attention is also devoted to communicating the results to concerned parties. Student

performance data relating to two assignments over two years indicated that, while only 40% solved the first assignment

correctly, owing to a better understanding with the passage of time, 65% of the students demonstrated full comprehension

on a second assignment which was based on individualized datasets; the others received scores of 90% or higher. Thus, the

approach provided here appears to be suitable for classroom education.
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1. Introduction

The concept of ‘‘return periods’’ appears in many

engineering applications concerned with structures

that must withstand random environmental for-
cing. For example, a seawall or a levee may be

designed towithstand a 200-year return period (RP)

water level or a bridge may be designed to with-

stand, say, the 100-year flood. The term ‘‘100-year

floodplain’’, for instance, is used to demarcate the

region around a waterway that would be inundated

by a 100-year flood and occurs in everyday use in

the context of home-owner insurance. Other exam-
ples include the design of breakwaters, oil plat-

forms, and skyscrapers which require RP

thresholds for environmental loads such as wave

heights and wind speeds [1–3].

Even though frequent references to this term are

made by the media to describe extreme wind, rain-

fall, or storm surge events, considerable confusion

prevails among the general public and uninitiated
students about the meaning of the term [4, 5].

Frequently the 100-year event is mistakenly

viewed as the largest event in 100 years. Several

websites and informational documents, including

some produced by government agencies, may be

found on the internet that attempt to remedy

related misunderstandings [6–10].

Formal engineering courses in water resources

engineering or coastal/ocean engineering do of

course provide the correct interpretation. Many
textbooks [11, 12] explain that RP relates to the

probability of exceedance of a given threshold; this

probability is estimated using historical data (mea-

surements or modelled hindcasts) along with a

suitable extreme value model. Often textbooks in

water resources and coastal/ocean engineering [11–

18] describe, for the sake of simplicity, the RP as the

reciprocal of the estimated probability, which is
intuitive, i.e. a 50-year event corresponds to an

event (say a wind speed) that has a 2% probability

of being exceeded in any year. Other advanced

textbooks [1, 19, 20] provide a more formal descrip-

tion in statistical terms, viz. the RP is the expected

waiting time between exceedances of that wind

speed, i.e., the average (or ‘‘expected’’) time interval

between occurrences of that magnitude.With either
description, the probabilities can be used to esti-

mate the risk of the event being exceeded over the

lifetime of the structure.

In recent years, there has been a growing recogni-

tion of the fact that the data on which the excee-
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dance probabilities are based may contain, in addi-

tion to the inherent randomness, underlying trends.

Such trends, which render the data ‘‘non-station-

ary’’, may typically arise from climate change or

long term (decadal) oscillations andmust be accom-

modated. In fact, the storm surge barriers on the
River Thames near London have recently been

redesigned with the effects of climate trends

included. Similarly, in theUS, theNational Oceanic

and Atmospheric Administration intends to update

all floodplain maps (‘‘NOAA Atlas14’’) based on a

recognition of non-stationarity in the data [21].

When probability estimates are non-stationary,

the estimation of risks and return periods for
practical engineering design must be seen in a new

light, relative to what is presented to engineering

students in textbooks. In fact, even the meaning of

the term ‘‘return period’’, so commonly used, may

become specific [5, 22].

At present, much of these developments consti-

tute the realm of research publications [23, 24].

However, given the importance of the topic as
well as its practical engineering implications, it is

felt that teaching material must be developed. The

purpose of this paper is to demonstrate a frame-

work, based on simple explanations and Excel-

based calculations, that can be incorporated into

both classroom education and workshops for prac-

titioners.

In a traditional undergraduate engineering cur-
riculum, topics related to return periods, probabil-

ities of occurrence, and risk are typically covered

in the third or fourth year (in courses such as

Water Resources Engineering or Coastal Engi-

neering, as noted earlier). In these courses at

most one or two weeks may be devoted to these

topics. Given the time constraints during a typical

semester, we do not propose that the contents of
this paper replace what is traditionally taught. At

the level of the traditional required undergraduate

course, we propose that the instructor merely alert

the students to the fact that traditional concepts

may be changing in fundamental ways. However,

elective courses, senior-year capstone design

courses (which involves some level of self-learning

and team-work), and postgraduate level courses

(including first year M.E. or M.Sc. level courses),

especially at emerging programs such as the con-

sortium-based Erasmus Mundus degree program

in Flood Risk Management, or those offered
independently by various institutions (e.g.,

Brunel University, University of Chester, and

others), should readily be able to accommodate

these topics. In fact, the material described in this

paper has been taught in a postgraduate level

Coastal Engineering course at Texas A&M Uni-

versity for the past two years.

While covering this material, it is important to
recognize the difficulty that many students have

with statistical concepts. The reasons for this are

widely discussed in literature [25–27]. In the US,

most engineering curricula offer a generic course

in Probability and Statistics in the sophomore

year, but there is little reinforcement of the

material in subsequent courses prior to the stu-

dents enrolling in Water Resources or Coastal/
Ocean Engineering courses, typically much later.

In some cases, the overall exposure itself to prob-

abilistic methods is lacking both in the student

community and among practitioners [28, 29]. In

light of this, our description eschews the extremely

theoretical statistical formulations contained in

research papers. Rather, we rely on an intuitive

approach, as stated earlier, and the use of Excel
and simple but practical examples. Spreadsheets

can be extremely effective for teaching complex

engineering topics [30]. Importantly, differences

between the traditional method and the non-sta-

tionary method are highlighted in the context of

presenting the engineering calculations to clients

and managers.

2. The Technical Problem

As an example, students can be exposed to the

practical engineering problem of estimating, say,

the wave height corresponding to an RP of 100
years at a coastal location. (Depending on the
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Fig. 1. NOAA buoy 42035 (courtesy: ndbc.noaa.gov).



course, the instructor can select data relevant to the

field). We choose buoy 42035 (Fig. 1) near Galves-

ton in theGulf ofMexico, for which hourly data for

the period 1973–2018 are obtained from

ndbc.noaa.gov.

For extreme value analysis, a subset containing

the annual maxima is often used. An alternative is
to select the maxima from individual (storm)

events. The year and the corresponding annual

maxima (say H) shown in Fig. 2 are recorded in

Excel. Although not necessary at this stage, it is

worthwhile noting that a best fit curve shows a

trend, which suggests perhaps that a non-stationary

approach is required.

3. Probability of Exceedance: Stationary
Conditions

In the traditional approach, the data pertaining to

maxima in a chosen interval (e.g., the annual

maxima in Fig. 2) are fit to a suitable extreme

value distribution. There are several of these and

the appropriate choice is also a matter to be

considered, but that issue is not related to the

topic at hand. For the present, let us provide the

student with a fairly standard distribution, viz. the
Gumbel distribution, given by the cdf:

PðH � H�Þ ¼ exp � exp �H� � a

b

� �� �
ð1aÞ

or the exceedance function

PðH > H�Þ ¼ 1� exp � exp �H� � a

b

� �� �

ð1bÞ

(1a) and (1b) simply provide the probabilities of not

exceeding or exceeding a specifiedwave heightH�. a
and b are parameters that fix the geometric shape,

and many textbooks go into considerable detail

relating to ‘‘plotting position’’ formulas, probabil-

ity graph paper, etc. to estimate them. We believe

these approaches simply distract the student; also,
they are cumbersome and unnecessary in modern

times. Simply entering the data into Matlab, Mini-

tab, or other programs and selecting the Method of

Maximum Likelihood, for instance, will yield per-

haps the most robust estimates for a and b. In terms

of simple explanations for the students’ benefit, the

values of a and b so obtained represent a suitable fit

of the formula (1) to the data.
In our case, using the 41 data points (note, the

distribution needs only the wave heights, not the

associated year), we obtain a = 4.31 and b = 1.37.

A plot of the cdf based on (1a) can be produced

(Fig. 3). As an aside, we note that a simple way to

examine the goodness of fit of this curve is to use the

‘‘sample’’ probabilities for each H* after ranking

the data, i.e., for each value of H*, one estimate of
the sample probability of non-exceedance would be

i/(n+1), where i = the rank and n = the number of

data points. This is shown in Fig. 3.

Armed with the theoretical curve in Fig. 3 or the

formula (1) with a and b known, we can now obtain

the H* corresponding to any given probability of

exceedance. An example for selected probabilities is

shown in Table 1.

4. Return Periods

Once the threshold H* corresponding to a given

probability of exceedance is obtained (i.e., Table 1),
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several textbooks indicate the RP to be simply the

reciprocal of PðH > H�Þ, i.e. T ¼ 1=PðH > H�Þ.
Thus, for example, the wave height of 10.62 m

would have a RP of 100 years. Even though our

dataset spanned only 40 years and contained only
40 numbers, the use of the Gumbel distribution has

enabled us to estimate 10.62 m as the wave height

whichwould be equaled or exceeded once out of 100

numbers; 9.66 m to be a similar threshold that

would be equaled or exceeded twice out of a

hundred numbers. Since each number occurs once

in a year, it would be reasonable to say that H* =

10.62 m would be equaled /exceeded once in a
hundred years (on average), and H* = 9.66 m

twice in a hundred years. Which would imply that

the RP for 10.62 m is 100 years and for 9.66 m, it is

50 years.

The same intuitive reasoning can be extended to

the case of each data point representing a storm

maximum (instead of the annual maximum). For

the sake of argument, assume the 40 numbers in Fig.
1 represent 40 storms that occurred in 20 years (i.e.,

2 storms per year on average). In this case the H* =

10.62 m would still correspond to ðH > H�Þ ¼ 1
100
,

i.e., one in a hundred numbers would equal or

exceed it. But since a hundred numbers would

occur in 50 years, theH* = 10.62 m would represent

a RP of 50 years. H* = 9.66 m would be exceeded
twice in 50 years and would hence represent a RP =

25 years. In other words,

RP ¼ 1

�PðH > H�Þ ;

where � ¼ number of events per year: ð2Þ

While the above intuitive linkage between P andRP

is satisfactory for undergraduate courses, a more

formal statistical definition of the RP is given in

some texts [1, 19]. Per this definition, the RP
represents the ‘‘expected waiting time’’ between

events with the corresponding threshold. In other

words, for H*> 5.55 m, which we will call event E

for convenience, P = 1/3.Thus,

� the probability of encountering event E for the

first time in year 1 = p(X = 1) = 0.33

� the probability of encountering event E for the

first time in year 2 = p(X = 2) = (probability of

not encountering it in year 1) x (probability of

encountering it in year 2) ð1� 0:33Þð0:33Þ ¼
0:222

� the probability of encountering event E for the

first time in year 3 = p(X = 3) ð1� 0:33Þ2ð0:33Þ ¼
0:148.

� etc.

(Here, p(X = x) denotes the probability of encoun-

tering E for the first time in year x; for convenience

this will be denoted as p(x) hereafter).

If we had 100 geographical regions, say, with

essentially similar wave climates but with random

differences in terms of time, then:

� 33 of them would encounter event E in Year 1

� 22 of them would encounter event E in Year 2
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Fig. 3. cdf for the dataset of Fig. 2.

Table. 1. Wave height and probability relationship

P (H > H*) H*(m)

1/100 10.62

1/50 9.66

1/10 7.40

1/3 5.55

1/2 4.81



� 15 of them would encounter event E in Year 3

. . . etc.

The average waiting time would then be:

ð1 year� 33 timesÞ þ ð2 years� 22 timesÞ þ � � �
100

¼
Xn

x¼1
x:pðxÞ ð3Þ

where n denotes the number of years and should be

sufficiently high to allow convergence. Students

may be urged to perform the above calculation

using Excel. They will find that if they use about

10 or more terms in the summation, the average will

converge to 3 years. They will actually see the
probability of the first occurrence declining with

time; and they will also find that a large number of

rows in Excel are needed to demonstrate that the

RP = 100 years if P (H > H*) = 1/100, i.e., forH* =

10.62 m.

While the formal definition implemented with

Excel yields the sameRP (obviously) as the intuitive

approach it serves two purposes: it enables students
to understand what is meant by the statistical

‘‘expectation’’ or the term ‘‘on average’’; and,

more important, it sets the stage for related calcula-

tions in a non-stationary environment.

5. Risk

A parameter of interest in engineering design is the

level of risk of the structure encountering the design

environmental loading. Estimating this is straight-
forward, once the probabilities of exceedance for

the different thresholds are determined. For exam-

ple, if the design life of the levee is 50 years and it is

designed to withstand H ¼ 10:62 m (i.e., the 100-

year event), the probability that this event does not

occur in each of the 50 years is (1 � 0:01). Hence the
probability of it not occurring during the design life

is (1� 0:01)50 � 0.61, which is known as ‘‘reliabil-
ity’’ or ‘‘non-encounter probability’’. The risk of

encountering at least one event equaling or exceed-

ing H ¼ 10:62 m in the 50 years is called ‘‘risk’’.

6. The Non-Stationary Case

For simplicity let us consider the case ofH*=5.55m

which had a probability of exceedance obtained

from the data and eq(1) of 1/3 (Table 1); the

corresponding stationary RP was 3 years. Let us

now assume that the wave climate is intensifying.
Deferring for the moment the procedures relating to

estimating time varying probabilities, let us assume

that PðH > 5:55 mÞ increases with time, and that

these probabilities in various years are given, say:

ð4Þ

Obviously, we cannot now resort to the intuitive

approach to estimate the RP. The ‘‘expected wait-

ing time’’ must be determined as follows. (Note, the

principles are the same as in Section 4).

The probability of exceeding H= 5.55 m for the
first time

in year 1 = 0.333

in year 2 = (1 – 0.333) (0.343) = 0.229

in year 2 = (1 – 0.333) (1 – 0.343) (0.353) = 0.155 (5)

_ _ _ _ etc.

The average waiting time would then be 1ð0:33Þþ
2ð0:229Þ þ 3ð0:155Þ þ � � � , which, using Excel, can
be shown to converge to 2.85 years (Fig 4a). Note,

columns A and B contain given information. The

Excel formula for computing probability of first

occurrence in each year (row n) is shown in column

C of Fig. 4b and is computed as

pðnÞ ¼ pðn� 1Þ
PðH > H�Þn�1

� ð1� PðH > H�Þn�1Þ

� PðH > H�Þn ð6Þ

The formulas in column C may also be confirmed

by examining the relations in (5). The return period

calculation is implemented using columns D and E

and is continued till convergence is observed in

column E, to a value of 2.854.
Understandably, the RP is less than 3 years. The

actual effect of this is demonstrated with other

numbers corresponding to Table 1 later.

In terms of risk, assume the design life was 5

years. If the design (stationary) RP was 3 years,

then the risk of at least one encounter in 5 years

would be ð1� ð1� 0:333Þ5Þ ¼ 0:875. In the non-

stationary case, though, the probability of not
exceeding H* = 5.55 m

in year 1 ¼ 1� 0:333,
in year 2 ¼ 1� 0:343,
in year 3 ¼ 1� 0:353,

� � �
Thus, the non-encounter probability = (1 – 0.333) (1
– 0.343) (1 – 0.353) (1 – 0.363) (1 – 0.373) = 0.113,

and the risk is 1 – 0.113 = 88.7%, which, as the

students should note, is higher than in the stationary

case. Often, it is necessary to prespecify the risk, and

then compute the acceptable H. In the stationary

case, the formula can be easily inverted to find p and
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then theH*; for example, if the acceptable risk level

is 40%, then ð1� ð1� PÞ5Þ ¼ 0:4, and P ¼ 0:1, so
the structure would be designed for the 10-year RP

event (which would correspond to H = 7.4 m, based
on Table 1).

In the non-stationary case, the risk formula

would be:

risk = 1 – (1 – p1) (1 – p2) _ _ _

which is difficult to invert; however, the use of Excel

with different H* values and the associated time-

varying probabilities, enables one to avoid complex
formulas and simultaneously allows students to

quickly calculate the risk level and see how it

changes.

In terms of Excel use, it may be useful to note that

the risk (0.887 above) may also be obtained as the

summation over five years of the probabilities given

in eq. (5). To elucidate, the probability of at least

one occurrence in 5 years =

the probability of the event happening for the first

time in year 1 +

the probability of the event happening for the first

time in year 2 +

_ _ _ _ _ +

the probability of the event happening for the first

time in year 5.

In the case of non-stationarity, the counterpart of

eq. 1 (or other extreme value distributions) may be

obtained by making the parameters functions of

time, i.e.,

PðH > H�Þ ¼ 1� exp � exp
H� � aðtÞ

bðtÞ

� �� �
ð7Þ

Vijay Panchang et al.92

Fig. 4b. Excel formulas for implementing return period calculation.

Fig. 4a. Example of return period calculation under non-stationary conditions, for assumed annual exceedance probabilities.



For each value of t, then, we have a slightly different

Gumbel distribution. An assumption, or a judge-

ment call, based on the behavior of the data or the

causes of the trends is needed to specify the form of

the variation, e.g., is a(t) a linear function? a

quadratic function? etc. While both the parameters
can be assumed to be varying with time, for

demonstration, here we assume a linear variation

only in a (i.e., a ¼ a0 þ a1t and b is taken to be

constant over time). Unlike the stationary case, the

values of t are now needed along with the corre-

sponding annual maxima (Fig. 1); the maximum

likelihood (or other method) must return three

values, a0, a1, and b. This can be done conveniently
using the R-code package to which many students

are exposed during the undergraduate curriculum

(especially if they take a course in Probability and

Statistics). If the use of the R package is deemed too

time-consuming, the instructor can provide some

approximate values to enable the students to pursue

other calculations of importance to planners.

7. Presenting Results

In the case of the data used in this paper (Fig. 1),

the R-code yields a0 ¼ 4:066, a1 � 0:012, and

b ¼ 1:372. Thus, eq. 7 represents a relation between
t, PðH > H�Þ and H�, and if two of the quantities
are known, the third can be determined. For

example, corresponding to the stationary 50-year

H� of 9.66 m, we have ðH > H�Þt¼1 ¼ 0:017,
PðH > H�Þt¼20 ¼ 0:02; similarly for H� ¼ 10:62
m, we have exceedance probabilities as shown in

Table 2.

The instructor may wish to alert the students to

the increasing probability, with the passage of time,
of exceeding H* = 10.62 m. It should also be noted

that, in practice, it might be necessary to limit the

increasing or decreasing trend for a certain period

in order to be reasonable. (If annual probabilities

continuously increase or decrease indefinitely, then

the analyses may yield improbable or meaningless

results). If Excel is used to perform the calculations

shown in Table 2 (for all values of t), then the
resulting columns (t (years) and p) can be used as

described in Section 4 to obtain a return period- the

summation will converge to �69.5 years. Similarly,

H* = 9.66 m (corresponding to a stationary RP=50

years), yields an RP of �42 years.
At times, the 100-year event, for example, is

shown in the literature to have different values for

different years. This implication, that the value

corresponding to a given RP is a function of t, is
misleading. As can be seen above for H* = 10.62 m,

the RP converges to 69.5 years (expected waiting

time, as described above). Thus the 69.5-year wave

height is 10.62m and is not a function of time.What

is actually implied is that the probability of excee-

dance is increasing with the passage of time, and

rather than provide this probability, its reciprocal is

provided and interpreted (incorrectly) as an RP; as
noted earlier, RP 6¼ 1

p
in the non-stationary case.

Which highlights the importance of communica-

tion, a skill that the Accreditation Board for

Engineering and Technology in the US requires

degree programs to instill in students. One could

take this to mean that after the calculations are

performed, the results should be presented in a way

beneficial to the planner/designer/investor/man-
ager.

Indeed, there have been many questions raised

about the usefulness of the term ‘‘return period’’ in

the non-stationary context. Alternative definitions

have also been provided [22] and some have noted

that it causes even more confusion in the non-

stationary case than it does in the stationary case.

Further, it provides no meaningful information to
the planner [31]. In contrast, focusing on the risk

profile is far more useful [23]. For example, Table 2

provided earlier and Fig. 5 show how the risk of

encountering an H* = 10.62 m increases with time.

Plots such as Fig. 5 can be made for different values

of the thresholds.

The other option for communicating results is to

select a probability of exceedance, say 1% for any
year, and compute the wave heights corresponding

to it. Eq. 7 would yield the results shown in Table 3.

Note the increase in H* with the passage of time

for the same risk. A ‘‘constant risk’’ plot, based data

such as that shown in Table 3, can be produced for

various risk levels (Fig. 6).

Finally, the encounter probability during the

structure’s lifetime can also be computed with
Excel. Assume the design H* = 10.62 m (corre-

sponding again to a stationary RP of 100 years) and

that structure’s anticipated design life = 20 years.

The risk of encountering this threshold can be

computed as described in Sec. 6, and the Excel

calculations yield a risk of 23.4%, as shown in Fig.

7(a, b). Thus the 23.4% ‘‘design life level’’ is 10.62 m

(following the terminology recommended by [23]
and endorsed by others). If this risk is deemed

unacceptable, the calculations can be repeated

with a different H. (By way of comparison, the
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Table 2. Probability and time relationship

t (years) P (H > 10.62 m)

1 0.0085

20 0.01

25 0.0105

40 0.012

50 0.013

100 0.02



stationary calculation yields a risk of 1 � ð0:99Þ20 =
18.2%

In the example shown inFig. 7, we havemade one

adjustment to the calculations relative to the simple
example in Section 6. There, the probability of first

occurrence was computed for each year, starting

from year 1. In the case of Fig. 7, we assume that the
first year of the project is year 41, and the previous

40 years provide the data for making risk calcula-

tions; risk calculation is done for a project that has a

design life from year 41 to year 60. i. e. year 41

would represent the ‘‘present’’ when the life of the

structure begins. This is considered in computing

the exceedance probability of the event in each year

(i.e., in cell B43, the parameter a used in theGumbel
exceedance formula is a0 þ a1 � 41). However, the
probability of first occurrence (Column C, Fig. 7b)

is calculated starting from year 41 since the prob-

abilities of first occurrences in years prior to the

start of design life are irrelevant in computing risk

over lifetime of the project. Thus, the non-station-
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Fig. 5. Probability of exceedance of H* = 10.62m in different years.

Table 3. 1% annual exceedance thresholds with the passage of
time

t (years) H* (m)

1 10.39

20 10.62

40 10.87

60 11.12

80 11.36

100 11.62

Fig. 6. Wave heights corresponding to specified annual exceedance probabilities.



ary risk depends both on the design lifetime and the

starting point in time as opposed to the former only

in case of stationary conditions. The non-stationary

exceedance probabilities are computed in column B
using eqn.7 and the non-stationary parameters are

shown in cells F39, F40, and F41.

8. Student Performance Data and
Experience

As stated earlier, after developing the material

described above on the basis of various research

papers, this approach was introduced at Texas

A&M University during the 2021 Spring semester

as part of the graduate-level course in Coastal

Engineering. It was repeated in Spring 2022. The
course was taught simultaneously to students at two

campus locations, Galveston and College Station.

While there were face-to-face lectures at Galveston,

students in College Station accessed the lectures

synchronously using Zoom. Also, owing to the

coronavirus problems, frequently students chose

to access the class on Zoom even in Galveston.

Further, there was one international student,
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Fig. 7a. Example of risk calculation using Excel.

Fig. 7b. Excel formulae used for risk calculation.



enrolled in the program, who always accessed the

course from outside the US (at very late-night

hours) via Zoom because the pandemic resulted in

travel restrictions.

We can provide data on the performance of

students on three assigned problems that required
them to solve problems related to the material

described above using Excel. The first two consti-

tuted one assignment. The first problem was

straightforward: to show that, if the probability of

exceedance of a certain water level is 1/8 each year,

then return period (or rather, the average expected

waiting time) would be eight years. Not surpris-

ingly, most students were able to demonstrate this.
Of the twenty-six students (in total), one did not

turn in the assignment (for unknown reasons), and

only two students were unable to accomplish this

task (both in Spring 2021). The second problemwas

stated as follows: ‘‘While the sea levels are rising in

many places, since 1950, sea levels off Alaska’s

coast have declined as much as 32 inches, according

to some studies. Others indicate that the Caspian
Sea and some of the Great lakes are also seeing

declining water levels. At one of these locations, a

project is built, but a risk assessment study is being

performed. The engineer cannot assume indefinitely

decreasing probabilities of a particular event,

because that would drive the water levels to zero.

So, one approach is to taper off or stabilize the

probabilities. At this project site, the probability of
a particular sea level being exceeded may be taken

as 0.2, 0.175, 0.5, 0.125, 0.1 for each of the first five

years (2021, 2022, 2023, 2024, and 2025) and then

assumed constant at 0.1 indefinitely after that. (a)

Estimate the average expected waiting time for that

event, starting (i) now in 2021; and (ii) 10 years from

now. (b) If the structure built today has a design life

of 15 years, estimate the likelihood of encountering
this event at least once (i.e., ‘‘risk’’) during its

lifetime, and estimate this likelihood from the year

2030 onwards.’’

Of the twenty-five students who turned in this

assignment, fifteen received scores of 80% or lower

(the lowest being 65%), while the others solved the

problem correctly. However, with the passage of

time, owing to a better understanding and help
sessions, the performance was much better on the

second assignment, which was individualized. This

assignment consisted of one problem where the

students were asked to obtain their data for a

buoy location (each student had to use a different

dataset), to use ‘‘R’’ to estimate the linearly varying

Gumbel parameters, and to then estimate quanti-

ties such as risk of exceedance in a given time period
and prepare a risk plot corresponding to the sta-

tionary 100-year event. In this case, the lowest score

was 90%, and seventeen of the twenty-six students

were able to demonstrate completely satisfactory

calculations. While the samples are obviously too

small to lend themselves to rigorous data analyses,

it appears that the majority of the students were

able to grasp the ideas and make the necessary

calculations using Excel.

9. Discussion

In the context of hydrology and flood forecasting,

researchers [32] have developed a teaching module

that aims to simplify students’ learning experiences

relative to commonly available deterministic

models; additionally, it includes adjustments for
climate change. We have provided a teaching fra-

mework along the same lines but focusing on

statistical risks. In terms of traditional methods, it

has been stated [1]: ‘‘Selection of design wave heights

on the basis of extreme wave statistics is simply made

on the wishful postulation that the future wave

climate during the lifetime of the structure will

remain the same as in the past’’. We believe students
should be alerted to this notion, and the framework

described here may be used to supplement current

content. We recognize, as stated earlier, that time

constraints may preclude full coverage of these

topics in traditional required courses; however,

electives as well as master’s level courses can

accommodate them. In fact, capstone projects

involve teamwork, and in recent times, are expected
to emphasize resilience, sustainability, and safety.

One or more of the team members could undertake

the calculations described here.

Finally, we note that the topics described here

constitute an overview of the salient features. For

each component, many options are available (e.g.,

choice of extreme value distribution, methods of

selecting the data, identifying the best distribution,
methods of parameter estimation, etc.) However,

these details pertain to the traditional (stationary)

cases as well and discussing them at length would

distract from our main purpose, which has been to

translate the highly theoretical statistical formula-

tions [24, 33] into simple teaching tools.

10. Conclusions

We have demonstrated a simple framework that

instructors can use to expand the educational

component associated with estimation of environ-

mental risks resulting from climate or other trends

for design purposes. Data related to two semesters

of student performance suggests that the vast

majority of the students are able to comprehend
the essential features of the statistical concepts and

to adequately perform risk calculations needed for

engineering design.
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