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Industry 4.0 includes implementations of digital twins (DT) that facilitates smart manufacturing enhancements.
Unfortunately, integrating DT into small and medium-sized manufacturers (SMM) continues to be a challenge. To
address this problem, the landscape of DT literature was analyzed, and the results were used to create a phased DT
integration plan for SMM involving engineering student interns. This paper presents the results of a systematic literature
review (SLR) and a roadmap for DT adoption in SMM. Data was extracted from the included literature and qualitatively
analyzed to determine themes related to the benefits, challenges, use cases, and best practices of DT. The benefits of
implementing DT were efficiency/optimization, quality/customization, maintenance management, safety monitoring, and
operator training. The challenges extracted to overcome in implementing DT were connectivity, data analytics,
automation, and instrumentation. Relevant DT use cases among the literature were at the levels of machine, work cell,
production line, and manufacturing factory. The best practices for DT applications were related to information exchange,
digital representation, and reference architecture. Ultimately the literature analysis provided the background to create an
integration framework for DT in SMM who struggle to take advantage of Industry 4.0 technology. Engineering educators
can implement the provided roadmap to satisfy ABET student outcomes while promoting DT adoption in SMM by

involving engineering student interns.
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1. Introduction

The fourth industrial revolution began in the early
2000s. It followed major enhancements in technol-
ogy from handcraft to machines, next from steam
engines to electrification, and then from mass
production to automation [1]. Integrating technol-
ogies such as artificial intelligence (AI), enabled
cyber-physical systems (CPS) and digital twins
(DT) to advance from smart manufacturing to
intelligent manufacturing thus improving agility,
quality, productivity, and sustainability.

Auburn University’s Interdisciplinary Center for
Advanced Manufacturing Systems in partnership
with the Society of Manufacturing Engineers is
conducting a five-year longitudinal study to analyze
the adoption of smart manufacturing technology
[2]. Original Equipment Manufactures representing
large companies are implementing and using auto-
mation and the Internet of Things. However, Small
and Medium-sized Manufacturers (SMM) as lower
tier suppliers represent the largest proportion of
United States’ industrial base. SMM are lagging in
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innovation with barriers to awareness and evalua-
tion of new technology systems. Critical business
challenges are recognized to be operational effi-
ciency and operations workforce. Furthermore,
SMM place high value on use cases and peer
experience as informational resources. Kunrath et
al. [3] describe industry cases to provide engineering
students with digital skills integrated into the curri-
culum. Academia can serve to identify available
and to demonstrate applicable low-cost technology
solution options for SMM with sponsored engi-
neering internships.

The Pennsylvania State University Berks campus
established a Digital Design and Manufacturing
Center (DDMC) in 2019 with local industry leaders
and higher education educators as its stakeholders.
The DDMC was renamed the Manufacturing Inno-
vation & Learning Laboratory (MILL) in 2024.
The MILL’s mission is to facilitate the process of
transferring Industry 3.0 automation & 4.0 inter-
connectivity technologies to local manufacturing
companies through collaborative initiatives. Pro-
gress requires multidimensional justification at
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small companies with limited resources for contin-
uous improvement. Decision risk, financial return,
ethical values, operational digitization, and data
analytics are barriers that companies need to over-
come to embrace a digital twin approach for
products and processes to enhance their market-
place competitiveness. This study was motivated to
elucidate the MILL’s prevalent problem of “How
can small manufacturing companies justify devel-
oping digital twins for their products and pro-
cesses?”’

The purpose of this paper is to provide an
incremental strategy to integrate digital twins into
SMM based on the best practices described in the
literature. This effort provides opportunities for
engineering student interns as well as provides a
roadmap for future research areas to benefit SMM.
This can ultimately maximize benefits and minimize
challenges in adopting digital twin technology in
SMM. The remainder of this paper will (1) present
the results of a systematic literature review (SLR)
using the method of Kitchenham & Charters [4] to
identify research and to extract, evaluate, and
synthesize use cases and best practices for SMM,
and (2) present an overview of the incremental
approach to integrate DT into SMM involving
engineering student interns.

2. Background

The essential concepts related to the intricacies of
this SLR are CPS, DT, and Internet of Things
(IoT). CPS have core elements of sensors and
actuators which are interconnected using [oT tech-
nologies. [oT refers to a network of interconnected
devices that communicate and exchange informa-
tion without human intervention. CPS can share
data among machinery which improves many
aspects of production. DT have virtual representa-
tions or models of physical objects that have sensors
and actuators and can simulate the behavior, per-
formance, and characteristics of a physical system —
allowing analysis, optimization, and predictive
maintenance. DT with core elements of models
and data provide a model-based systems engineer-
ing approach to informed production using accu-
rate predictions for rational decisions [5].

DT are an effective method to connect physical
entities with virtual entities. From an initial appli-
cation in the aerospace industry, DT have been
applied in electric power generation, oil and gas,
healthcare and medicine, maritime shipping, city
management, agriculture, and construction [6].
However, manufacturing applications in aerospace
and automotive are the most mature in driving
operational improvements.

Advances in information technology are facil-

itating the integration of DT in manufacturing. DT
contribute to improvements in product design,
process optimization, and health management [5].
These engineering applications are expanding
across manufacturers to improve product perfor-
mance, production flexibility, and market competi-
tiveness.

Smart manufacturing (SM) is associated with
Industry 4.0 developments [7]. SM integrates
design, production, and operations data for deci-
sion makers. Analysis of timely production metrics
yields agility, quality, and productivity enhance-
ments for manufacturers.

The IoT applied to a manufacturing factory is
called the Industrial Internet of Things (IIoT). An
I1oT improves production processes by networking
sensors to control systems to optimally operate
machinery. The major challenge for factory pro-
duction is to operate the plant reliability at a profit
[1]. Digital manufacturing relying on real-time data
using a digital twin provides a state-of-the-art plat-
form for effective production management. The
physical equipment and its digital twin are net-
worked to share data in both directions. Sensor
data output from the physical equipment is input to
the digital twin. The resulting simulation output
from the digital twin can be input into the physical
equipment’s control system to provide a closed-
loop control system. Historical and real-time phy-
sical data are combined with computational virtual
data to be processed as big data analytics. This
merger of data streams improves the control of the
machinery and at the same time upgrades the
process’ analytical model leading to a more rational
maintenance strategy and optimal decision making
[8].

Smart manufacturing practices are achievable
with the implementation of digital twins. Michael
Grieves introduced the concept of digital twins in a
2003 Product Lifecycle Management course at the
University of Michigan [8]. In 2012, the National
Aeronautics and Space Administration defined
digital twins for adoption within the aerospace
and defense industry [9]. Large industrial compa-
nies predict 10% improved effectiveness in auto-
mated systems using digital twins [10]. However,
small manufacturers (fewer than 500 employees as
defined by the United States Small Business Admin-
istration) are especially challenged in having limited
resources devoted to embracing new technology in
achieving the benefits from innovation. Digital twin
standards are being developed to facilitate modular
approaches for cost effective implementation within
the manufacturing industry.

Four previous literature reviews provided back-
ground for this SLR. Tao et al. [9] published a state-
of-the art paper for DT in industry. The authors
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discussed the history of DT, the development of DT
in industry, and the application of DT in industry,
noting that machine health was the most popular
implementation. Lattanzi et al. [10] published a
review of practical industrial implementation for
using digital twins in smart manufacturing. The
authors discussed DT concepts and DT manufac-
turing applications identifying challenges such as
communication protocols, model generation, and
cost justification. Sharma et al. [11] published a
review on DT current theory and practice. The
authors discussed challenges preventing widespread
implementation and open research questions
regarding qualitative performance metrics. Bottjer
et al. [12] published a review of unit level DT
applications in manufacturing. The authors dis-
cussed the methods and technologies used for
deploying unit level DT in manufacturing identify-
ing research gaps such as generic reference models,
services, content, and deployment. The SLR pre-
sented in this paper extends the previous reviews
regarding benefits and challenges by focusing on
use cases employing best practices. Practical appli-
cations developed from academic research can be
extended to SMM through an incremental integra-
tion of DT utilizing engineering interns to improve
operations and train machine operators in digital
manufacturing technologies.

3. Research Methods

The SLR protocol followed in this research illu-
strated in Fig. 1 and described in this section was
confirmed by comparing Sauer and Seuring’s [13]
six-step guide. Stage 1 — Planning the review corre-
lates with Step 1: Defining the research question,
Step 2: Determining the required characteristics of
primary studies, and Step 3: Retrieving a sample of
potentially relevant literature. Stage 2 — Conducting
the review correlates with Step 4: Selecting the
pertinent literature and Step 5: Synthesizing the
literature. Stage 3 — Reporting the review correlates

Table 1. SLR Process Stages (adapted from [4])

Stage 1 — Planning the Review.
e Define research questions.
e Develop search strategy.
e Establish search criteria.
e Select inclusion and exclusion criteria.

Stage 2 — Conducting the Review.
o Identify study and selection.
e Study quality assessment.
e Extract data and synthesize.

Stage 3 — Reporting the Review
o Specify publication sources.
e Recognize research locations.
e Note key technologies.
e Discuss implementation approach.
e Define terminology.

with Step 6: Reporting the results. The SLR’s
purpose is to discover research gaps within the
existing published literature and to justify develop-
ing and implementing DT solutions.

3.1 Planning the Review

A qualitative analysis was applied to review rele-
vant evidence of digital twins used in smart manu-
facturing. Research questions guided the planning
of the analysis. Various search strings screened
databases for publications. Several databases were
examined for robustness of returned articles. Inclu-
sion and exclusion criteria were defined to justify
the selection of the included papers in this SLR.

3.1.1 Review Objectives and Research Questions

This study began by investigating the response to
the question of how small manufacturers can justify
developing digital twins for their products and
processes. The question’s structure was intended
to consider three aspects of adoption: impacted
companies, implemented technologies, and realized
outcomes. With establishing the implementation of
digital twins as the objective, four research ques-
tions were formulated:

e RQIl. What are the benefits of implementing
digital twins?

e RQ2. What are the challenges to overcome in
implementing digital twins?

e RQ3. Which digital twin use cases are relevant to
manufacturing companies?

e RQ4. What are the best practices for implement-
ing digital twins in smart manufacturing applica-
tions?

The following sections present the data collection
process to answer the above research questions.

3.1.2 Search Strategy

The SLR protocol defined the search strategy to find
the search string anywhere in the selected research
database’s articles. The search terms used to inves-
tigate the research questions were “digital twin’” and
“smart manufacturing”. A search string using both
terms together with a selected synonym developed.
Table 2 shows the results of these combined strings.

The terms ‘“‘augmented reality” and ‘“‘advanced
manufacturing” were subsequently discontinued as
being too broad for the research questions. After
determining applicable search strings, appropriate
research databases were examined.

3.1.3 Search Criteria

Three online databases queried relevant publica-
tions. Upon determining the search string, two
additional databases of research articles comple-
mented Google Scholar’s initial assessment. Web of
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Table 2. Google Scholar Search String Results

Table 3. Inclusion and Exclusion Search Results

“digital twin” AND (“smart manufacturing” 11,200

OR “intelligent manufacturing’)

Science by Clarivate indexed IEEE and ACM
papers. Compendex by Elsevier included ASME
along with IEEE and ACM papers. A comparison
of these three databases with an expanded search
string of [(“digital twin” OR “cyber physical
system” OR “augmented reality”’) AND (“‘smart
manufacturing” OR “advanced manufacturing”
OR “intelligent manufacturing”)] for publication
years January 2017 through September 2022
yielded 532 results at Web of Science, 1356 results
at Compendex, and 2394 results at Google Scholar.

Compendex, a comprehensive engineering-
focused database, was selected to index this study’s
engineering publications as being neither too
narrow nor too broad. Web of Science indexed all
journal publications of global citations. Google
Scholar was deemed to be too broad with its
search for scholarly research.

3.1.4 Inclusion and Exclusion Criteria

The research database selected for this study was
Compendex. Compendex is a comprehensive engi-
neering-focused database with over 4000 scholarly
journals that indexed this study’s engineering pub-
lications for relevance. Compendex by Elsevier
(https://www .elsevier.com/solutions/engineering-
village/databases) was accessed through the Penn
State Library portal.
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40 28
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2017 2018

String Results Criterion Results
“digital twin” AND “‘smart manufacturing” 8,540 (“digital twin”” OR “‘cyber physical”’) AND 1271
(“digital twin” OR “cyber physical system™) 12,600 smart} manvufafturmg OR “intelligent

AND “‘smart manufacturing” manufacturing

(“digital twin” OR “‘augmented reality”’) AND | 13,300 Limit to years 2017-2022 1203
“smart manufacturing” Exclude Open Source 763
“digital twin” AND (“smart manufacturing” 11,200 Limit to journal articles 347
OR “advanced manufacturing’) Limit to English language 208

Returns filtered by both year and type signifi-
cantly reduced the quantity of papers. The search
string was narrowed to [(“digital twin”” OR “‘cyber
physical”’) AND (“smart manufacturing” OR
“intelligent manufacturing’’)]. Wang et al. [7] iden-
tified an exponential increase in publications start-
ing in 2016, so this search was limited to the recent
six-year period. Only eight articles were returned
prior to 2017, and they were excluded. Open Access
results were excluded. The criteria of excluding
conference articles and only including journal arti-
cles in the English language further limited the
results. Table 3 shows the number of returns for
implementation of each criterion.

The search block (((((((““digital twin” OR “‘cyber
physical”’) WN ALL) AND ((”’smart manufactur-
ing” OR “intelligent manufacturing’”) WN ALL)))
NOT ({all} WN ACT)) AND ({ja} WN DT)) AND
({english} WN LA)) produced 298 citations. Fig. 1
shows the number of annual publications.

3.2 Conducting the Review

An experienced researcher validated the protocol
using a trial survey of three papers.

3.2.1 Study Search and Selection

Compendex identified primary studies using the
selected search block. Publications from 2017
through 2022 provided direct evidence concerning

Compendex

98

72

53

2020 2021 2022

Year Published

Fig. 1. Articles Returned versus Year Published.
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Fig. 2. Articles Returned by Category versus Year Published.

the research questions. The search block included
the keywords “digital twin” or ‘“‘cyber physical’’ to
address the technology aspect and ‘“‘smart manu-
facturing” or “intelligent manufacturing” to
address the application aspect. Only peer-reviewed
journal papers in the English language were
included and open-source papers were excluded.
The 298 resulting papers illustrated in Fig. 1 were
downloaded into an Excel spreadsheet for further
processing.

3.2.2 Methodological Quality Assessment

Each paper’s abstract was analyzed for relevance in
answering the research questions. Three criteria
were used for classification:

e What does a digital twin model represent? (pro-
duct or process).

e What function does a digital twin perform?
(design, manufacturer, or service).

e How does a company benefit by implementing a
digital twin? (quality customization, efficiency
optimization, or maintenance management).

The resulting 298 papers were qualitatively clas-
sified into four categories: idea studies (Reject —
Survey), implementation relevant (Retain), margin-
ally relevant (Reject — DT), and not relevant (Reject
— Implem). There were 20 studies focusing on initial
ideas (7% of the papers) labelled in Fig. 2 as Reject —
Survey. There were 98 papers where the implemen-
tation of digital twin in manufacturing was relevant
(33% of the papers) labelled in Fig. 2 as Retain.
There were 69 research papers on digital twins that
were marginally relevant as an ancillary element
(23%) labelled in Fig. 2 as Reject — DT. Lacking
digital twin implementation was judged not rele-

vantin 111 papers or 37% labeled in Fig. 2 as Reject
— Implem. Fig. 2 illustrates the sorting of papers
into the four categories with annual count for the 98
retained papers identified for further study.
Publishing on the topic of Digital Twins in Smart
Manufacturing had an increasing trend over the
previous six years. The last two years, 2021 and
2022, produced 57% of the journal articles pub-
lished in that period. Of the SLR retained journal
articles, 67% were published in the last two years.

3.2.3 Data Extraction and Synthesis

Retained papers discussed a digital model represent-
ing a production (neither design nor service) process
(neither material nor product). A prototype example
of a digital twin exemplified the use case for 76% of
the papers. Efficiency and optimization — minimize
effort and maximize resource use — represented 44%
of the papers. Quality and customization — improve
attributes and adapt to change — represented 33% of
the papers. Maintenance management — reduce
equipment downtime — represented 15% of the
papers. Safety monitoring — prevent harm — repre-
sented 8% of the papers. Fig. 3 shows a graphical
representation of the 98 retained articles.

Several selected papers previously identified
during the iterative search process were used in
developing survey questions for quality assessment.
The survey form of twenty-four questions available
as a hyperlink' assessed the digital twin implemen-
tation in manufacturing papers. Multiple-choice
and multiple-select questions along with their
response selections were derived from the survey
of ideas and search process papers. This survey’s
intent was to assess the selected papers from several
viewpoints.

!https://docs.google.com/document/d/e/2PACX-1vQ3_EKS_czZkf WxVaFU6f16mg_zs_nfjzHEA7[jGOqusX8pyhjF 1JoSi3TH2f2AQ8c970wayZISKR V/pub
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Interestingly, the scope of the digital twin imple-
mentation in the papers differed and could be
categorized as follows: lifecycle stage [14], model
representation [15], physical production element [16],
manufacturing process [17], digital twin layer [18],
company benefit, challenges [19], value added [20],
development framework [20], engineering standard
[21], and key technologies [22]. These authors’
points of view were used to guide determining
qualitative themes used to group the literature.

3.3 Overview of the Study

Keywords listed in the retained papers were
extracted and analyzed in a Word Cloud to display
term frequency as shown in Fig. 4. The primary
emphasis on the terms digital, twin, and manufac-
turing validate the relevance of the retained papers
to the research questions. The secondary emphasis
on the terms cyber-physical, smart, and system
further confirms that the literature aligns with the
study’s objectives. Tertiary emphasis on the terms

industry, production, machine, control, model,
data, and optimization indicates that the search
contains papers with discussions of benefits, chal-
lenges, use cases, and best practices. The Word
Cloud illustrates a strong connection between lit-
erature and research questions.

The publication sources were concentrated in
several European journals. The research was domi-
nated by lead authors from China. Most papers
discussed key technologies required by digital twins.
Many papers described the five layers associated
with digital twin implementation. While definitions
for digital twin and smart manufacturing are evol-
ving, accepted broad definitions were cited.

3.3.1 Publication Sources

A twenty-four-question survey compiled quantita-
tive and qualitative data from each paper. The
analyzed literature citations are available as a
hyperlink!. Of the top five journals, three were
from the United Kingdon and two were from the

! https://docs.google.com/document/d/e/2PACX-1vSLICZR A 5kIOjsaMgleeOk9gcK_ECNXgVJI_6LQwql90ZolgfUbSeCMqY VTgXdql7MS-Beullqve6q25/pub
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Table 4. Retained Articles by Journal Frequency

Frequency Ranking Country Journal
11 3.165 Netherlands Journal of Manufacturing Systems
9 0.924 United Kingdom International Journal of Advanced Manufacturing Technology
7 1.601 United Kingdom Advanced Engineering Informatics
6 1.095 United Kingdom International Journal of Computer Integrated Manufacturing
6 1.929 Netherlands Journal of Intelligent Manufacturing
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Fig. 5. Regions and Countries Represented by Retained Articles.
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Fig. 6. Paper Frequency by Technologies Discussed.

Netherlands. The five Scientific Journal Rankings
in 2021 ranged from a low of 0.924 to a high of
3.165. Table 4 lists the top five journal titles.

3.3.2 Research Locations

Countries and regions producing retained articles
are illustrated in Fig. 5. Research conducted in Asia
embodied 69% of the papers. China produced 56%
of the relevant papers. Research conducted in the
Americas embodied 12% of the papers. The United
States produced 9% of the relevant papers.
Research conducted in Europe embodied 15% of
the papers.

3.3.3 Key Technologies

The research papers discussed four key technolo-
gies as shown in Fig. 6. Modeling and Simulation —
computer representation that mimics the operation
of a system — was represented the most often as
71% of the papers. Big data and analytics —
decision-making information resulting from the
systematic analysis of sensory statistics — was
represented in 56% of the papers. Instrumentation
and control — measurement sensors directing the
operation of equipment — was represented in 50%
of the papers. Optimization — making the most
effective use of resources — was represented the least
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Fig. 7. Number of Papers Discussing Implementation Layers.

often as 37% of the papers. Modeling & simulation
and big data & analytics were discussed more than
instrumentation & control and optimization indi-
cating a research opportunity in those under-
reported areas.

3.3.4 Implementation Layers

Papers identified up to five layers in describing the
implemented digital twin: physical, network, data-
base, model, application. The survey asked which
of the five layers were discussed in implementing
digital twins. Most papers discussed physical hard-
ware (actual production process), manufacturing
application (control of production process), and
digital model (simulation of production process
producing outputs from inputs). Fewer papers
included discussion of the network connectivity
(connection of instrumentation to sense production
process) and database structure (repository of sen-
sory information). Hence, most papers included all
layers (Fig. 7). A description of the physical layer
existed in 96% of the papers. A description of the
application layer existed in 94% of the papers. A
description of the model existed in 88% of the
papers. A description of the database existed in
64% of the papers. A description of the network
existed in 70% of the papers.

4. Results

This section (and summarized in Table 5) presents
the answers to each of the research questions with
corresponding literature: benefits (labelled as effi-
ciency, quality, maintenance, safety, or training),
challenges (labelled as connectivity, data, automa-
tion, or instrumentation), use cases (labelled as
machine, cell, line, or factory), and best practices
(labelled as information, representation, or archi-
tecture).

4.1 RQI: What are the Benefits of Implementing
Digital Twins?

Qualitative company benefit themes that emerged
were efficiency/optimization, quality/customiza-
tion, maintenance management, safety monitoring,
and operator training as shown in Fig. 8. Efficiency/
optimization captured discussions of benefits mea-
sured by dollars, time, or quantity. Quality/custo-
mization captured discussions of benefits measured
in specification metrics or process flexibility. Main-
tenance management captured discussions of ben-
efits measured in machine health. Safety
monitoring captured discussions of benefits mea-
sured in hazardous conditions. Operator training
captured discussions of benefits measured in
worker productivity. These five resulting themes
were an extension of the literature analysis of
Leng et al. [19].

Efficiency optimization benefits were grouped as
improved production efficiency, reduced costs,
shortened product lifecycle, optimized production
process parameters, and collected operational data.
Production efficiency was improved by decreasing
defects, decreasing in-process inventory, and
increasing inspection pass rate discussed by Ma et
al. [71]. A digital twin driven production system was
developed to simulate and optimize the production
process for a heavy-duty vehicle gearbox. The
authors reported improved metrics ranging from
14% to 89%. Reduced costs were realized by redu-
cing energy consumption for heating and cooling
discussed by Li et al. [59]. A digital twin based
industrial information system was developed to
monitor and control the heating and cooling equip-
ment in a manufacturing facility. The authors
reported reduced energy consumption from data
driven decisions regarding operation and mainte-
nance activities. Additional benefit cases are pre-
valent in the referenced literature.
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Table 5. Retained Papers by Category

Literature Benefit Challenge Use case Framework
Aggarwal et al. (2022) [23] efficiency automation factory architecture
Angrish et al. (2017) [24] efficiency conn, auto machine architecture
Banda et al. (2022) [25] maintenance auto, inst machine representation
Bao et al. (2022) [26] quality auto, inst line representation
Brovkova et al. (2021) [27] efficiency conn, data, inst line representation
Cai et al. (2021) [28] quality conn, data line information
Chen & Chang (2021) [29] efficiency auto, inst machine information
Christou et al. (2022) [30] qual, maint conn, data line architecture
Deebak & Al-Turjman (2022) [31] maintenance data, inst machine representation
Ding et al. (2021) [32] quality data line architecture
Draganescu et al. (2021) [33] quality data, inst machine representation
Elhabashy et al. (2019) [34] safety connectivity factory architecture
Eugeni et al. (2022) [35] efficiency conn, data, inst line information
Fan et al. (2021) [36] efficiency conn, data, auto machine architecture
Fan et al. (2022) [37] efficiency connectivity factory architecture
Fattahi et al. (2021) [38] quality conn, data, inst machine information
Febriani et al. (2020) [39] efficiency conn, data cell architecture
Gao et al. (2021) [40] maint, safe data, inst machine representation
Garcia et al. (2022) [41] qual, train - line information
Geng et al. (2022) [42] training conn, data machine information
Guo et al. (2021) [43] efficiency conn, inst line information
Hu et al. (2020) [44] quality conn, data line information
Huang et al. (2021) [45] eff, qual conn, data, auto cell information
Huang et al. (2020) [46] quality conn, data line information
Hung et al. (2022) [47] eff, qual, maint conn, data line architecture
Jiang et al. (2022) [48] quality data, auto line architecture
Jiang et al. (2021) [49] eff, maint, safe conn, inst factory representation
Jiao et al. (2022) [50] qual, safe automation cell representation
Kang et al. (2019) [51] efficiency conn, data machine information
Khan et al. (2022) [52] eff, train conn, data line architecture
Krishnamurthy & Cecil (2018) [53] qual, train connectivity cell information
Lattanzi et al. (2021) [10] eff, maint conn, data, auto factory representation
Lee et al. (2017) [54] qual, maint auto, inst machine representation
Liet al. (2019) [55] maintenance data, inst machine information
Liet al. (2022a) [56] safety conn, data, auto cell information
Liet al. (2020) [57] efficiency data, auto factory information
Liet al. (2022b) [58] quality auto, inst line representation
Li et al. (2022c¢) [59] efficiency conn, auto factory architecture
Li et al. (2022d) [60] efficiency data line architecture
Li et al. (2022¢) [61] quality conn, auto machine representation
Lin et al. (2021a) [62] quality conn, auto cell information
Lin et al. (2021b) [63] efficiency conn, data line information
Liu et al. (2019a) [64] eff, qual conn, data line architecture
Liu et al. (2021) [65] quality conn, auto, inst machine information
Liu et al. (2022a) [66] quality auto, inst machine representation
Liu et al. (2019b) [67] eff, qual data, auto line representation
Liu et al. (2022b) [68] eff, qual, maint data, auto machine representation
Lu & Xu (2018) [69] eff, qual conn, auto factory information
Luo et al. (2019) [70] maintenance auto, inst machine representation
Ma et al. (2020) [71] eff, qual conn, auto line information
Ma et al. (2021) [72] efficiency automation cell architecture
Maia et al. (2022) [73] safety conn, auto, inst line information
Min et al. (2019) [74] qual, train data, auto, inst factory representation
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Table 5. Continued

Literature Benefit Challenge Use case Framework
Mondal & Wong (2022) [75] safety automation factory information
Namjoshi & Rawat (2022) [76] efficiency conn, inst factory information
Nagqvi et al. (2022) [77] maintenance data cell information
Nie et al. (2022) [78] quality data factory representation
Nie & Chen (2022) [79] efficiency connectivity cell information
Nufiez & Borsato (2017) [80] maintenance data, inst machine representation
Pacaux-Lemoine et al. (2022) [81] safe, train conn, auto cell information
Park et al. (2019) [82] quality connectivity factory information
Park et al. (2022) [83] efficiency conn, auto line architecture
Pei et al. (2021) [84] quality conn, data line information
Qamsane et al. (2022) [85] maintenance conn, data line architecture
Ramezankhani et al. (2021) [86] efficiency data cell representation
Rodrigues et al. (2022) [87] efficiency conn, auto, inst line architecture
Rossit et al. (2019) [88] efficiency data line architecture
Rubio et al. (2018) [89] maintenance conn, auto, inst machine architecture
Sharif Ullah (2019) [90] eff, maint, safe - machine representation
Stark et al. (2017) [91] eff, qual conn, inst cell architecture
Su et al. (2021) [92] - auto, inst machine representation
Tao et al. (2019) [93] safe, train conn, data, auto factory information
Tarallo et al. (2018) [94] eff, qual, train automation machine information
Wan et al. (2017) [95] maintenance data machine information
Wang et al. (2020) [96] eff, qual, safe auto, inst cell architecture
Wang et al. (2022a) [97] quality auto, inst machine representation
Wang et al. (2022b) [98] eff, qual conn, data, auto line information
Wang et al. (2019) [99] maintenance auto, inst machine representation
Wang et al. (2022¢) [100] efficiency automation cell information
Wang et al. (2022d) [101] safe, train connectivity line information
Weckx et al. (2022) [102] quality data machine representation
Wenna et al. (2022) [103] eff, safe auto, inst cell representation
Woo et al. (2018) [104] efficiency conn, data machine architecture
Xia & Xi (2019) [105] maintenance data, inst cell representation
Xu et al. (2021) [106] eff, qual conn, data line information
Yang et al. (2022) [107] efficiency connectivity line information
Yagqot et al. (2022) [108] efficiency auto, inst factory representation
Yifan et al. (2022) [109] efficiency conn, inst factory architecture
Zeng & Luo (2022) [110] Safety conn, auto, inst cell representation
Zhang et al. (2019) [111] efficiency conn, data line representation
Zhang et al. (2022) [112] efficiency automation line representation
Zhao et al. (2022a) [113] quality automation machine representation
Zhao et al. (2022b) [114] quality auto, inst machine representation
Zheng & Sivabalan (2020) [115] eff, maint, safe conn, auto, inst cell architecture
Zheng et al. (2021) [116] quality conn, data, auto machine representation
Zhu et al. (2022) [117] quality automation cell information
Zhuang et al. (2018) [8] efficiency conn, data, auto factory architecture
Zhuang et al. (2021) [118] efficiency conn, data cell representation

As expected, economic improvements dominated
the benefit achieved by implementing DT in man-
ufacturing. Businesses must remain profitable as
competition impacts their marketplace. While
maintaining profitability, the next benefit of rele-
vance was quality. Enhancing quality by reducing
variability was a strong motivating factor for

implementing process digitization. Once a profit-
able and high-quality product was successfully
produced, continued competition required sustain-
ability by managing maintenance downtime.
Hence, the third benefit of maintenance manage-
ment. In tight labor markets, recruiting and retain-
ing machinery operators leads to the final grouping
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2%

m Efficiency optimization

= Quality customization

= Maintenance management

= Safety monitoring
Operator training

Other

Fig. 8. Company Benefit by Theme Proportion.

of benefits. Monitoring safety and operator training
can be enhanced through simulation provided by
DT. A hierarchy of benefits resulted through the
SLR indicating areas for additional research.

4.2 RQ2: What are the Challenges to Overcome in
Implementing Digital Twins?

Qualitative company challenge themes that
emerged: connectivity, data analytics, automation,
and instrumentation are shown in Fig. 9. Connec-
tivity captured discussions of challenges related to
data flow networks. Automation captured discus-
sions of challenges related to automatic control of
machinery. Analytics captured discussions of chal-
lenges related to analysis of data. Instrumentation
captured discussions of challenges related to sen-
sory measurement collection. These four resulting
themes were an extension of the literature analysis
of Leng et al. [19].

Data flow challenges included cybersecurity,
modularity, synchronization, monitoring, and

diagnosis. Namjoshi & Rawat [76] discussed secur-
ing industry data used in design, machining, inspec-
tion, and scheduling to realize smart factory’s
potential. A cyber-physical production system’s
data was secured for monitoring and control to
enhance productivity. Cybersecurity measures pro-
tected manufacturing data to preserve competitive-
ness. Lattanzi et al. [10] discussed the difficulty in
maintaining synchronization between the physical
equipment and its virtual representation for prac-
tical implementation. Two-way communication
protocols struggle to exchange incompatible data
formats established from different standards.
Fusing data from various production domains
requires the integration of various technologies
for consistent usefulness. Effective networks pro-
vide the means for data to flow efficiently through
the digitally connected system.

Contrary to the benefits results, the challenges
question identified issues to be addressed simulta-
neously. First and foremost was connectivity. The

= Connectivity

= Automation

= Analytics
Instrumentation

Other

Fig. 9. Company Challenges by Theme Proportion.
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need for manufacturers to interconnect machinery
with a network is fundamental to implementing
DT. The deployment of the Internet of Things will
directly address this challenge as standards are
published. Once the production data is centrally
available then analytics can be used to identify
trends and predict outcomes for various opera-
tional decisions. Many SMM began their business
using manual processes that over time have been
automated. Rapid Return on Investment (ROI)
dictates that technologies must be implemented in
small increments in rapid succession to build
momentum for a change mindset. Legacy machin-
ery lacks internal sensors that are standard in state-
of-the art machinery requiring the installation of
external sensors to collect data streams to monitor
processes. The integration of these elements facili-
tated by a DT provides the benefits identified in the
previous section.

4.3 RQ3: Which Digital Twin use Cases are
relevant to Manufacturing Companies?

Qualitative use cases emerged from retained papers
for digital twins relevant to SMM. Four categories
delineated the shop-floor production element:
machines, work cells, production lines, and fac-
tories. Manufacturing factories are composed of a
hierarchy of elements at the shop-floor level. Indi-
vidual machines combine into work cells. A few
work cells coordinate into a production line. Sev-
eral production lines constitute a manufacturing
system. Production line — a sequence of equipment
to assemble an object — represented 34% of the
papers. Machine — apparatus to perform a specific
function—represented 26% of the papers. Work cell-
arrangement of machinery to perform a specific
process — represented 23% of the papers. System —
collection of manufacturing equipment within a
factory — represented 11% of the papers. No pro-

duction element represented 6% of the papers. The
prevalent use cases are visualized on Fig. 10. These
four resulting themes were an extension of the
manufacturing systems from Groover [16].

Production line use cases at the system level are
best illustrated with two use cases. Pei et al. [84]
discussed a solar cell production line. Fabrication
quality metrics were monitored and analyzed to
control parameters correlated to detecting mechan-
isms that produced defects. Their application para-
digm improved quality prediction accuracy to
97.8%. Zhang et al. [112] discussed a satellite
assembly, integration, and test shop floor. Material
flow and processes were modeled to represent the
multiple stations required in the production
sequence. Their DT framework was validated for
a complex production line. Both papers demon-
strate the previously discussed benefits and chal-
lenges of incorporating DT in manufacturing
operations.

Use cases at the production line level are pre-
valent. Coordinating the processing and transpor-
tation of material through the fabrication process
was optimized. Most use cases at the machine level
address physics-based prediction of tool life impor-
tant for high volume production scenarios. Use
cases at the work cell level involved data sharing
in a digital thread where one machine’s output is
another machine’s input. Future research was
focused on coordinating activity at the factory
level through resource optimization. DT are the
backbone to provide operational managers with
current information on the status of their plant
for data-driven decision making.

4.4 RQ4: What are the Best Practices for
Implementing Digital Twins in Smart
Manufacturing Applications?

Three themes characterized the development frame-

® Machine

= Work Cell

= Production Line
Factory System

Not discussed

Fig. 10. Use Cases by Theme Proportion.
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m Digital representation
= Information exchange

Reference architecture

Fig. 11. Best Practices by Theme Proportion.

work for digital twins as shown in Fig. 11. Digital
Representation and Information Exchange were
equally discussed as the development framework
for the digital twins (36% of papers). Reference
Architecture was a lesser driver of development—
28% of papers. These three resulting themes were an
extension of the case scenarios from Shao [20].

Two best practices papers are noteworthy within
the development framework of information
exchange shown in Fig. 12. Krishnamurthy &
Cecil [53] discussed signals to be exchanged in
distinct networks between user and core tasks. A
framework for IoT based collaborations is pre-
sented for information flow in a cyber physical
system. The authors’ validation process employed
the assembly process for electronic circuit boards.
Kang et al. [51] discussed signals from data collec-
tion & device control to both user tasks & core
tasks. Real-time data from a shop floor environ-
ment was used to simulate machinery processes to
improve product throughput. The authors’ applica-
tion addressed automated assembly and automated
inspection production steps.

Only nine papers or 9% discussed an engineering
standard incorporated into their use case either
completely or partially. Engineering standards can
assist in implementing digital twins by specifying
industrial procedures agreed upon. An opportunity
exists for governing organizations to establish best
practice standards to guide the deployment of
digital twins in small and midsized enterprises
who are mostly lacking sufficient resources to
establish in-house state-of-the-art practices.

5. Discussion: Roadmap for DT
Integration using Engineering Interns

Recognition from the research question on best
practices that engineering standards were not

widely used in deploying DT led to the development
of an incremental integration framework discussed
in Section 5.1. Section 5.2 examines theoretical
versus practical learning in engineering education
curriculum with an emphasis on problem-based
learning beyond a capstone course. Engaging engi-
neering interns at SMM provides the technical skills
necessary to cost effectively adopt innovative tech-
nologies as outlined in Section 5.3.

5.1 An Incremental SMM DT Integration
Framework

Digitization is the foundation to adopting
advanced manufacturing technologies [119]. Man-
ufacturers can use large data sets collected from
production processes to reveal operational trends
for monitoring product quality. Automating repe-
titive tasks with robotics improves efficiency and
eliminates variation leading to higher quality pro-
ducts. Simulation using virtual representations of
processes to validate improvements can enhance
production effectiveness. System integration pro-
vides unified data in a central repository for analysis
to yield informed decision making. The IoT
increases communication interconnectivity to pro-
vide real-time visibility for optimized operational
performance. DT are an enabling technology that
facilitates innovation. Digitalization requires a sig-
nificant resource investment to integrate DT into
SMM’s process. Incrementally developing DT
reduces the risk and builds momentum for innova-
tion. The research project establishes development
phases, defines the required information for digital
representation, and discusses the applicable indus-
try engineering standard.

A gap uncovered in the SLR was the minimal
number of publications that used an engineering
standard to guide their study. Industry can operate
on standardized procedures to maximize product
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Fig. 12. Five-Element Framework for Digital Twin (adapted from [20, 111]).

quality while minimizing process cost as reflected in
the International Standards Organization’s SO
23247 Digital Twin Framework for Manufacturing,
Parts 1-4 published in 2021. Using a five-element
framework for a DT shown in Fig. 12, a proof-of-
concept process will be developed [120]. By estab-
lishing an integrated manufacturing use case apply-
ing best practices from industry standards, SMM
can realize the substantial benefits of implementing
DT in their processes.

The Observable Manufacturing Element (OME)
consists of physical resources such as material,
equipment, and process. Part 3 of the ISO standard
specifies seven informational attributes for digital
representation for each OME [121]. Each OME
requires a mandatory unique identifier. Optional
attributes include characteristics, schedule, status,
location, report, and relationship. The material
OME is the physical matter that is processed into
a product. The equipment OME is the physical
object that operates on the material. The process
OME is the operations to perform the fabrication
task.

The Core Entity synchronizes with the OME to
simulate and analyze the OME’s operational state.
Zhang et al. [111] described basic components
necessary for a DT coupled in function and struc-
ture to mirror the production process. This func-
tional mirror captured manufacturing resources for
unified management and on-demand use. The
structural mirror presented a graphical user inter-
face to view and set parameters enhancing decision
making. A digital model will be used to simulate the
kinematic behavior of a CNC Router for optimiza-
tion and training.

The Data Collection and Device Control Entity
collects sensor data and controls actuators of the
OME. An instrumentation suite of sensors will
collect measurements to correlate to control para-
meters. The operational data will be analyzed in

time and frequency domains to assure compliance
with part fabrication specifications.

The User Entity provides a status dashboard for
the operator’s interaction with the OME. Lab-
VIEW will be used for input sensor measurements
and output actuator signals. A dashboard will be
constructed to display visual status of monitoring
and controlling data flows to complete the DT.

The Cross-System Networks for service, user,
proximity, and access are the interconnection
among the entities to provide data translation,
assurance, and security. The ISO standard Part 4
[122] describes the information exchange frame-
work by defining four networks to connect each
entity to share data. The User Network allows the
user to manage the DT core entity. The Service
Network connects the user to the OME. The Access
Network facilitates communication interaction
between the user, core, and database entities. The
Proximity Network provides real-time data flow
between the OME and core entity.

5.2 Practical Experience Gap in Engineering
Education

Engineering education has historically emphasized
theory over practice in its curriculum. ABET [123]
requires engineering students from accredited pro-
grams to participate in a culminating engineering
experience that incorporates appropriate standards
with multiple constraints. Many engineering pro-
grams use a capstone design project to satisfy this
curriculum criterion. However, institution policies
require awarding academic credit for work, such as
internships, in lieu of courses.

Wandahl et al. [124] pursued a problem-based
learning approach by using an industry internship
with the theme of innovation to enhance a graduate
engineering program. Both companies and students
found value in the experience leading to a recom-
mendation to incorporate an optional or compul-
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sory internship into engineering programs. Practi-
cal work experience during college benefited stu-
dents in procuring their first job after graduation.
Graduates that worked with professionals were
better prepared to transition from academia to
industry. Furthermore, partnerships with employ-
ers enhanced faculty’s connection to the profes-
sional workforce.

Hynek et al. [125] identified the lack of practical
problems used in academic courses to provide
students’ real applications of the subject matter.
The authors noted that companies provide their
new hires with relevant work experience after
graduation, but this limits their practice to a small
number of individuals. Incorporating industrial
practices and significant problems in the curriculum
prepares students for career success. Close coopera-
tion with local engineering companies guided
faculty to develop assignments enhancing students’
preparation for entry level engineering positions.

Zeid et al. [126, 127] proposed a project-based,
team-work curriculum to enable career transition
to advanced manufacturing employment. Techni-
cal expertise focused on advanced manufacturing,
animation, and technical illustration knowledge.
Innovation traits focused on entrepreneurship,
creativity, and collaboration abilities. Skills identi-
fied for success included critical thinking, problem
solving, cross-disciplinary thinking, information
literacy, global awareness, adaptability, initiative,
accountability, and leadership. Their objective was
to supply unfilled manufacturing positions with
qualified job seekers through hands-on coursework
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and experiential learning from industry partnered
internships.

ABET’s [123] student outcomes direct an engi-
neering program’s educational objectives in prepar-
ing graduates to enter professional practice.
Students must demonstrate the ability to analyze
complex problems, draw conclusions from experi-
mental data, communicate effectively, and collabo-
rate in a team environment. Internships provide a
learning opportunity to practice and master these
engineering skills.

5.3 Involving Engineering Student Interns

Employing engineering students as interns is a low-
cost approach to enhancing a company’s technical
capabilities as well as preparing future graduates to
contribute to the manufacturing economy. Employ-
ers typically assign an intern to assist a senior
company engineer in conducting that mentor’s
duties. Interns perform a variety of tasks that
engage their analytical, empirical, collaborative, and
communicative skills. Technical supervisors assess
the internship experience across several dimensions:
knowledge of engineering principles, ability to solve
technical problems, performance of meaningful mea-
surements, interpretation of experimental results,
commitment to professional ethics, function effec-
tively as a team member, documentation of results in
written reports, and listen actively to comments.
Industry supervisors’ evaluations from two aca-
demic years at Penn State Berks quantify the
effectiveness of the internship experiences in their
baccalaureate program. Fig. 13 illustrates success in
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Fig. 13. Supervisor evaluations of interns across four outcomes.
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demonstrating professional skills in the workplace.
Interns performed exceptionally in analytical skills
between 25% and 65% of their assignments. Interns
performed exceptionally in empirical skills between
40% and 60% of their assignments. Interns per-
formed exceptionally in collaborative skills between
50% and 80% of their assignments. Interns per-
formed exceptionally in communicative skills
between 30% and 70% of their assignments. The
remainder of the ratings were satisfactory except for
two exceptions of deficient regarding modeling and
ethics.

Penn State Berks and Duryea Technologies
formed a partnership supported by a State of
Pennsylvania Manufacturing Fellows Initiative
grant. This innovation project provided faculty
supervision of eight undergraduate engineering
students to develop and validate DT in collabora-
tion with Duryea Technologies. The students
applied SM technologies by immersion in an on-
site manufacturing environment to increase their
interest in a manufacturing career. An intern each
semester was assigned to one of the elements in the
DT framework illustrated in Fig.12. The Core
Entity intern created a Fusion 360 kinematic digital
model of Duryea’s CNC mill and a detailed model
of a production canister clamp ring. The Cross-
system Networks intern established an Industrial
Internet of Things using engineering standards to
connect mill performance data to a server stored
database. The Data Collection and Device Control
Entity intern computed data analytics to correlate
sensor measurements of power, temperature, vibra-
tion, and acoustic to spindle speed, feed rate, depth
of cut, and radius of cut. The User Entity intern
developed a dashboard to visualize a display of data
trends in time using a statistical process control
format with control limits. Integrating a DT in the
production process maintained the part quality
while reducing the fabrication time, thus improving
productivity.

In executing the research project, the interns
also achieved the previously identified internship
outcomes. The four interns formed an integrated
team demonstrating interpersonal collaboration.
Progress meetings and weekly reports assured the
principal investigator that communications were
timely and effective. The design of digital models
and monitoring displays invoked relevant analysis
techniques. Collection and processing of measure-
ment data validated testing protocols. The student
interns worked on an enriching manufacturing
project that assessed their mastery of learning
outcomes expected from the undergraduate pro-
gram.

The manufacturing company provided real-
world applications for improving the manufactur-

ing process of an existing part to demonstrate to
students the value of manufacturing to Pennsylva-
nia’s economy. The small manufacturer gained
insight into the benefits of Industry 4.0 productiv-
ity gains through technology transfer to improve
their competitive position in the marketplace. The
Manufacturing Innovation & Innovation Labora-
tory at Penn State Berks coordinates faculty exper-
tise with regional manufacturers to enhance their
operations with industry’s best practices. The
proof-of-concept implementation plan for digital
twin technology validated under this project is
applicable to other small manufacturers in the
region to overcome barriers to adopting innovative
technologies.

6. Conclusion and Future Work

This study identified several research gaps that
significantly contribute to the barriers inhibiting
SMM from deploying digital twins to engage in
smart manufacturing. The first research gap
showed that while efficiency and quality aspects
dominate as the benefit rationale in the published
literature, both safety and training were under-
reported areas requiring additional research. The
second research gap showed that implementation
challenges for companies were roughly shared
among connectivity, automation, data analytics,
and instrumentation indicating a modular
approach to integration is warranted. The third
research gap showed that use cases were limited
for SMM. Reported use cases were more prevalent
for machine and production line implementations
for larger operations than for work cell and manu-
facturing factory applications indicating the need
for a systems integration approach for smaller
operations. The fourth research gap was lack of
focus on holistic approaches indicating that devel-
opment frameworks were mostly divided between
digital representation, information exchange, and
reference architecture demonstrating a specific
approach rather than a universal approach. There
is great need for engineering standards to guide
implementation evidenced by only nine papers
using an accepted standard. The literature review
provided ample examples of deploying DT by
larger manufacturing companies.

The next research phase is to coordinate steps in
deploying DT into SMM. Involving engineering
student interns both to satisfy ABET student out-
comes and to integrate digital technologies to
enhance productivity was outlined. By establishing
an integrated manufacturing use case using best
practices from industry standards, SMM can rea-
lize the substantial benefits of implementing DT in
their processes. The mission of the MILL can be
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fulfilled with a risk managed phased approach to
implementation of DT at SSM. Barriers to innova-
tion can be overcome while enhancing operator
safety using training simulations with DT. The
validated proof-of-concept will be taught to engi-
neering students to deploy during industry intern-
ships.

Data Availability — Two datasets generated by the survey
research are publicly available as Google Docs. The survey
questions for the current study are at https://docs.google.com/
document/d/e/2PACX-1vQ3_EKS_czZkf WxVaFU6f16mg_
zs_nfjzHEA71jG0qusX8pyhjF1JoSi3IH2f2AQ8c970wayZI8K
RV/pub. The list of literature sources for the current study is at
https://docs. google.com/document/d/e/2PACX-1vSLICZRAS-
kIOjsaMgleeOk9gcK_ECNXgVJ_6LQwql90ZolgfUbSeCM-
qY VTgXdql7MS-Beullqvc6q25/pub.
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