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Industry 4.0 includes implementations of digital twins (DT) that facilitates smart manufacturing enhancements.

Unfortunately, integrating DT into small and medium-sized manufacturers (SMM) continues to be a challenge. To

address this problem, the landscape of DT literature was analyzed, and the results were used to create a phased DT

integration plan for SMM involving engineering student interns. This paper presents the results of a systematic literature

review (SLR) and a roadmap for DT adoption in SMM.Data was extracted from the included literature and qualitatively

analyzed to determine themes related to the benefits, challenges, use cases, and best practices of DT. The benefits of

implementingDTwere efficiency/optimization, quality/customization,maintenancemanagement, safetymonitoring, and

operator training. The challenges extracted to overcome in implementing DT were connectivity, data analytics,

automation, and instrumentation. Relevant DT use cases among the literature were at the levels of machine, work cell,

production line, andmanufacturing factory. The best practices for DT applications were related to information exchange,

digital representation, and reference architecture. Ultimately the literature analysis provided the background to create an

integration framework forDT in SMMwho struggle to take advantage of Industry 4.0 technology. Engineering educators

can implement the provided roadmap to satisfy ABET student outcomes while promoting DT adoption in SMM by

involving engineering student interns.
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education

1. Introduction

The fourth industrial revolution began in the early

2000s. It followed major enhancements in technol-

ogy from handcraft to machines, next from steam

engines to electrification, and then from mass
production to automation [1]. Integrating technol-

ogies such as artificial intelligence (AI), enabled

cyber-physical systems (CPS) and digital twins

(DT) to advance from smart manufacturing to

intelligent manufacturing thus improving agility,

quality, productivity, and sustainability.

Auburn University’s Interdisciplinary Center for

Advanced Manufacturing Systems in partnership
with the Society of Manufacturing Engineers is

conducting a five-year longitudinal study to analyze

the adoption of smart manufacturing technology

[2]. Original EquipmentManufactures representing

large companies are implementing and using auto-

mation and the Internet of Things. However, Small

and Medium-sized Manufacturers (SMM) as lower

tier suppliers represent the largest proportion of
United States’ industrial base. SMM are lagging in

innovation with barriers to awareness and evalua-

tion of new technology systems. Critical business

challenges are recognized to be operational effi-

ciency and operations workforce. Furthermore,

SMM place high value on use cases and peer

experience as informational resources. Kunrath et
al. [3] describe industry cases to provide engineering

students with digital skills integrated into the curri-

culum. Academia can serve to identify available

and to demonstrate applicable low-cost technology

solution options for SMM with sponsored engi-

neering internships.

The Pennsylvania State University Berks campus

established a Digital Design and Manufacturing
Center (DDMC) in 2019 with local industry leaders

and higher education educators as its stakeholders.

TheDDMCwas renamed theManufacturing Inno-

vation & Learning Laboratory (MILL) in 2024.

The MILL’s mission is to facilitate the process of

transferring Industry 3.0 automation & 4.0 inter-

connectivity technologies to local manufacturing

companies through collaborative initiatives. Pro-
gress requires multidimensional justification at
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small companies with limited resources for contin-

uous improvement. Decision risk, financial return,

ethical values, operational digitization, and data

analytics are barriers that companies need to over-

come to embrace a digital twin approach for

products and processes to enhance their market-
place competitiveness. This study was motivated to

elucidate the MILL’s prevalent problem of ‘‘How

can small manufacturing companies justify devel-

oping digital twins for their products and pro-

cesses?’’

The purpose of this paper is to provide an

incremental strategy to integrate digital twins into

SMM based on the best practices described in the
literature. This effort provides opportunities for

engineering student interns as well as provides a

roadmap for future research areas to benefit SMM.

This can ultimately maximize benefits andminimize

challenges in adopting digital twin technology in

SMM. The remainder of this paper will (1) present

the results of a systematic literature review (SLR)

using the method of Kitchenham & Charters [4] to
identify research and to extract, evaluate, and

synthesize use cases and best practices for SMM,

and (2) present an overview of the incremental

approach to integrate DT into SMM involving

engineering student interns.

2. Background

The essential concepts related to the intricacies of

this SLR are CPS, DT, and Internet of Things

(IoT). CPS have core elements of sensors and

actuators which are interconnected using IoT tech-

nologies. IoT refers to a network of interconnected

devices that communicate and exchange informa-

tion without human intervention. CPS can share
data among machinery which improves many

aspects of production. DT have virtual representa-

tions ormodels of physical objects that have sensors

and actuators and can simulate the behavior, per-

formance, and characteristics of a physical system –

allowing analysis, optimization, and predictive

maintenance. DT with core elements of models

and data provide a model-based systems engineer-
ing approach to informed production using accu-

rate predictions for rational decisions [5].

DT are an effective method to connect physical

entities with virtual entities. From an initial appli-

cation in the aerospace industry, DT have been

applied in electric power generation, oil and gas,

healthcare and medicine, maritime shipping, city

management, agriculture, and construction [6].
However, manufacturing applications in aerospace

and automotive are the most mature in driving

operational improvements.

Advances in information technology are facil-

itating the integration of DT in manufacturing. DT

contribute to improvements in product design,

process optimization, and health management [5].

These engineering applications are expanding

across manufacturers to improve product perfor-

mance, production flexibility, and market competi-
tiveness.

Smart manufacturing (SM) is associated with

Industry 4.0 developments [7]. SM integrates

design, production, and operations data for deci-

sion makers. Analysis of timely production metrics

yields agility, quality, and productivity enhance-

ments for manufacturers.

The IoT applied to a manufacturing factory is
called the Industrial Internet of Things (IIoT). An

IIoT improves production processes by networking

sensors to control systems to optimally operate

machinery. The major challenge for factory pro-

duction is to operate the plant reliability at a profit

[1]. Digital manufacturing relying on real-time data

using a digital twin provides a state-of-the-art plat-

form for effective production management. The
physical equipment and its digital twin are net-

worked to share data in both directions. Sensor

data output from the physical equipment is input to

the digital twin. The resulting simulation output

from the digital twin can be input into the physical

equipment’s control system to provide a closed-

loop control system. Historical and real-time phy-

sical data are combined with computational virtual
data to be processed as big data analytics. This

merger of data streams improves the control of the

machinery and at the same time upgrades the

process’ analytical model leading to amore rational

maintenance strategy and optimal decision making

[8].

Smart manufacturing practices are achievable

with the implementation of digital twins. Michael
Grieves introduced the concept of digital twins in a

2003 Product Lifecycle Management course at the

University of Michigan [8]. In 2012, the National

Aeronautics and Space Administration defined

digital twins for adoption within the aerospace

and defense industry [9]. Large industrial compa-

nies predict 10% improved effectiveness in auto-

mated systems using digital twins [10]. However,
small manufacturers (fewer than 500 employees as

defined by theUnited States Small Business Admin-

istration) are especially challenged in having limited

resources devoted to embracing new technology in

achieving the benefits from innovation. Digital twin

standards are being developed to facilitate modular

approaches for cost effective implementationwithin

the manufacturing industry.
Four previous literature reviews provided back-

ground for this SLR. Tao et al. [9] published a state-

of-the art paper for DT in industry. The authors
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discussed the history of DT, the development of DT

in industry, and the application of DT in industry,

noting that machine health was the most popular

implementation. Lattanzi et al. [10] published a

review of practical industrial implementation for

using digital twins in smart manufacturing. The
authors discussed DT concepts and DT manufac-

turing applications identifying challenges such as

communication protocols, model generation, and

cost justification. Sharma et al. [11] published a

review on DT current theory and practice. The

authors discussed challenges preventing widespread

implementation and open research questions

regarding qualitative performance metrics. Bottjer
et al. [12] published a review of unit level DT

applications in manufacturing. The authors dis-

cussed the methods and technologies used for

deploying unit level DT in manufacturing identify-

ing research gaps such as generic reference models,

services, content, and deployment. The SLR pre-

sented in this paper extends the previous reviews

regarding benefits and challenges by focusing on
use cases employing best practices. Practical appli-

cations developed from academic research can be

extended to SMM through an incremental integra-

tion of DT utilizing engineering interns to improve

operations and train machine operators in digital

manufacturing technologies.

3. Research Methods

The SLR protocol followed in this research illu-
strated in Fig. 1 and described in this section was

confirmed by comparing Sauer and Seuring’s [13]

six-step guide. Stage 1 – Planning the review corre-

lates with Step 1: Defining the research question,

Step 2: Determining the required characteristics of

primary studies, and Step 3: Retrieving a sample of

potentially relevant literature. Stage 2 –Conducting

the review correlates with Step 4: Selecting the
pertinent literature and Step 5: Synthesizing the

literature. Stage 3 – Reporting the review correlates

with Step 6: Reporting the results. The SLR’s

purpose is to discover research gaps within the

existing published literature and to justify develop-

ing and implementing DT solutions.

3.1 Planning the Review

A qualitative analysis was applied to review rele-

vant evidence of digital twins used in smart manu-

facturing. Research questions guided the planning

of the analysis. Various search strings screened

databases for publications. Several databases were

examined for robustness of returned articles. Inclu-

sion and exclusion criteria were defined to justify

the selection of the included papers in this SLR.

3.1.1 Review Objectives and Research Questions

This study began by investigating the response to

the question of how small manufacturers can justify

developing digital twins for their products and

processes. The question’s structure was intended

to consider three aspects of adoption: impacted

companies, implemented technologies, and realized
outcomes. With establishing the implementation of

digital twins as the objective, four research ques-

tions were formulated:

� RQ1. What are the benefits of implementing

digital twins?

� RQ2. What are the challenges to overcome in

implementing digital twins?

� RQ3. Which digital twin use cases are relevant to

manufacturing companies?

� RQ4. What are the best practices for implement-

ing digital twins in smart manufacturing applica-
tions?

The following sections present the data collection
process to answer the above research questions.

3.1.2 Search Strategy

TheSLRprotocol defined the search strategy to find

the search string anywhere in the selected research

database’s articles. The search terms used to inves-

tigate the research questionswere ‘‘digital twin’’ and

‘‘smart manufacturing’’. A search string using both
terms together with a selected synonym developed.

Table 2 shows the results of these combined strings.

The terms ‘‘augmented reality’’ and ‘‘advanced

manufacturing’’ were subsequently discontinued as

being too broad for the research questions. After

determining applicable search strings, appropriate

research databases were examined.

3.1.3 Search Criteria

Three online databases queried relevant publica-

tions. Upon determining the search string, two

additional databases of research articles comple-

mentedGoogle Scholar’s initial assessment.Web of

Terrance L. Speicher et al.434

Table 1. SLR Process Stages (adapted from [4])

Stage 1 – Planning the Review.
� Define research questions.
� Develop search strategy.
� Establish search criteria.
� Select inclusion and exclusion criteria.

Stage 2 – Conducting the Review.
� Identify study and selection.
� Study quality assessment.
� Extract data and synthesize.

Stage 3 – Reporting the Review
� Specify publication sources.
� Recognize research locations.
� Note key technologies.
� Discuss implementation approach.
� Define terminology.



Science by Clarivate indexed IEEE and ACM

papers. Compendex by Elsevier included ASME

along with IEEE and ACM papers. A comparison
of these three databases with an expanded search

string of [(‘‘digital twin’’ OR ‘‘cyber physical

system’’ OR ‘‘augmented reality’’) AND (‘‘smart

manufacturing’’ OR ‘‘advanced manufacturing’’

OR ‘‘intelligent manufacturing’’)] for publication

years January 2017 through September 2022

yielded 532 results at Web of Science, 1356 results

at Compendex, and 2394 results at Google Scholar.
Compendex, a comprehensive engineering-

focused database, was selected to index this study’s

engineering publications as being neither too

narrow nor too broad. Web of Science indexed all

journal publications of global citations. Google

Scholar was deemed to be too broad with its

search for scholarly research.

3.1.4 Inclusion and Exclusion Criteria

The research database selected for this study was
Compendex. Compendex is a comprehensive engi-

neering-focused database with over 4000 scholarly

journals that indexed this study’s engineering pub-

lications for relevance. Compendex by Elsevier

(https://www.elsevier.com/solutions/engineering-

village/databases) was accessed through the Penn

State Library portal.

Returns filtered by both year and type signifi-

cantly reduced the quantity of papers. The search

string was narrowed to [(‘‘digital twin’’ OR ‘‘cyber

physical’’) AND (‘‘smart manufacturing’’ OR

‘‘intelligent manufacturing’’)]. Wang et al. [7] iden-

tified an exponential increase in publications start-

ing in 2016, so this search was limited to the recent

six-year period. Only eight articles were returned
prior to 2017, and they were excluded. Open Access

results were excluded. The criteria of excluding

conference articles and only including journal arti-

cles in the English language further limited the

results. Table 3 shows the number of returns for

implementation of each criterion.

The search block (((((((‘‘digital twin’’ OR ‘‘cyber

physical’’) WN ALL) AND ((’’smart manufactur-
ing’’ OR ‘‘intelligent manufacturing’’) WN ALL)))

NOT ({all}WNACT)) AND ({ja}WNDT)) AND

({english} WN LA)) produced 298 citations. Fig. 1

shows the number of annual publications.

3.2 Conducting the Review

An experienced researcher validated the protocol

using a trial survey of three papers.

3.2.1 Study Search and Selection

Compendex identified primary studies using the

selected search block. Publications from 2017

through 2022 provided direct evidence concerning
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Table 2. Google Scholar Search String Results

String Results

‘‘digital twin’’ AND ‘‘smart manufacturing’’ 8,540

(‘‘digital twin’’ OR ‘‘cyber physical system’’)
AND ‘‘smart manufacturing’’

12,600

(‘‘digital twin’’ OR ‘‘augmented reality’’) AND
‘‘smart manufacturing’’

13,300

‘‘digital twin’’ AND (‘‘smart manufacturing’’
OR ‘‘advanced manufacturing’’)

11,200

‘‘digital twin’’ AND (‘‘smart manufacturing’’
OR ‘‘intelligent manufacturing’’)

11,200

Table 3. Inclusion and Exclusion Search Results

Criterion Results

(‘‘digital twin’’ OR ‘‘cyber physical’’) AND
‘‘smart manufacturing’’ OR ‘‘intelligent
manufacturing’’

1271

Limit to years 2017–2022 1203

Exclude Open Source 763

Limit to journal articles 347

Limit to English language 298

Fig. 1. Articles Returned versus Year Published.



the research questions. The search block included

the keywords ‘‘digital twin’’ or ‘‘cyber physical’’ to

address the technology aspect and ‘‘smart manu-

facturing’’ or ‘‘intelligent manufacturing’’ to

address the application aspect. Only peer-reviewed

journal papers in the English language were

included and open-source papers were excluded.

The 298 resulting papers illustrated in Fig. 1 were
downloaded into an Excel spreadsheet for further

processing.

3.2.2 Methodological Quality Assessment

Each paper’s abstract was analyzed for relevance in

answering the research questions. Three criteria

were used for classification:

� What does a digital twin model represent? (pro-

duct or process).

� What function does a digital twin perform?

(design, manufacturer, or service).

� How does a company benefit by implementing a
digital twin? (quality customization, efficiency

optimization, or maintenance management).

The resulting 298 papers were qualitatively clas-

sified into four categories: idea studies (Reject –
Survey), implementation relevant (Retain), margin-

ally relevant (Reject – DT), and not relevant (Reject

– Implem). There were 20 studies focusing on initial

ideas (7% of the papers) labelled in Fig. 2 as Reject –

Survey. There were 98 papers where the implemen-

tation of digital twin in manufacturing was relevant

(33% of the papers) labelled in Fig. 2 as Retain.

There were 69 research papers on digital twins that
were marginally relevant as an ancillary element

(23%) labelled in Fig. 2 as Reject – DT. Lacking

digital twin implementation was judged not rele-

vant in 111 papers or 37% labeled in Fig. 2 as Reject

– Implem. Fig. 2 illustrates the sorting of papers

into the four categories with annual count for the 98

retained papers identified for further study.

Publishing on the topic of Digital Twins in Smart

Manufacturing had an increasing trend over the

previous six years. The last two years, 2021 and

2022, produced 57% of the journal articles pub-
lished in that period. Of the SLR retained journal

articles, 67% were published in the last two years.

3.2.3 Data Extraction and Synthesis

Retained papers discussed a digital model represent-

ing a production (neither design nor service) process

(neithermaterial nor product). A prototype example

of a digital twin exemplified the use case for 76% of

the papers. Efficiency and optimization – minimize
effort and maximize resource use – represented 44%

of the papers. Quality and customization – improve

attributes and adapt to change – represented 33% of

the papers. Maintenance management – reduce

equipment downtime – represented 15% of the

papers. Safety monitoring – prevent harm – repre-

sented 8% of the papers. Fig. 3 shows a graphical

representation of the 98 retained articles.
Several selected papers previously identified

during the iterative search process were used in

developing survey questions for quality assessment.

The survey form of twenty-four questions available

as a hyperlink1 assessed the digital twin implemen-

tation in manufacturing papers. Multiple-choice

and multiple-select questions along with their

response selections were derived from the survey
of ideas and search process papers. This survey’s

intent was to assess the selected papers from several

viewpoints.
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Fig. 2. Articles Returned by Category versus Year Published.

1 https://docs.google.com/document/d/e/2PACX-1vQ3_EKS_czZkf_WxVaFU6f16mg_zs_nfjzHEA7IjG0qusX8pyhjF1JoSi3IH2f2AQ8c97OwayZI8KRV/pub



Interestingly, the scope of the digital twin imple-
mentation in the papers differed and could be

categorized as follows: lifecycle stage [14], model

representation [15], physical production element [16],

manufacturing process [17], digital twin layer [18],

company benefit, challenges [19], value added [20],

development framework [20], engineering standard

[21], and key technologies [22]. These authors’

points of view were used to guide determining
qualitative themes used to group the literature.

3.3 Overview of the Study

Keywords listed in the retained papers were

extracted and analyzed in a Word Cloud to display

term frequency as shown in Fig. 4. The primary

emphasis on the terms digital, twin, and manufac-

turing validate the relevance of the retained papers

to the research questions. The secondary emphasis
on the terms cyber-physical, smart, and system

further confirms that the literature aligns with the

study’s objectives. Tertiary emphasis on the terms

industry, production, machine, control, model,
data, and optimization indicates that the search

contains papers with discussions of benefits, chal-

lenges, use cases, and best practices. The Word

Cloud illustrates a strong connection between lit-

erature and research questions.

The publication sources were concentrated in

several European journals. The research was domi-

nated by lead authors from China. Most papers
discussed key technologies required by digital twins.

Many papers described the five layers associated

with digital twin implementation. While definitions

for digital twin and smart manufacturing are evol-

ving, accepted broad definitions were cited.

3.3.1 Publication Sources

A twenty-four-question survey compiled quantita-

tive and qualitative data from each paper. The
analyzed literature citations are available as a

hyperlink1. Of the top five journals, three were

from the United Kingdon and two were from the
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Fig. 3. Retained Articles by Implementation Rationale.

Fig. 4. Word Cloud of Retained Paper’s Keywords

1 https://docs.google.com/document/d/e/2PACX-1vSLICZRA5kIOjsaMgIeeOk9gcK_ECNXgVJ_6LQwql9oZolgfUbSeCMqYVTgXdql7MS-BeuIlqvc6q25/pub



Netherlands. The five Scientific Journal Rankings

in 2021 ranged from a low of 0.924 to a high of

3.165. Table 4 lists the top five journal titles.

3.3.2 Research Locations

Countries and regions producing retained articles

are illustrated in Fig. 5. Research conducted in Asia

embodied 69% of the papers. China produced 56%

of the relevant papers. Research conducted in the
Americas embodied 12% of the papers. The United

States produced 9% of the relevant papers.

Research conducted in Europe embodied 15% of

the papers.

3.3.3 Key Technologies

The research papers discussed four key technolo-

gies as shown in Fig. 6. Modeling and Simulation –

computer representation that mimics the operation

of a system – was represented the most often as
71% of the papers. Big data and analytics –

decision-making information resulting from the

systematic analysis of sensory statistics – was

represented in 56% of the papers. Instrumentation

and control – measurement sensors directing the

operation of equipment – was represented in 50%

of the papers. Optimization – making the most

effective use of resources – was represented the least

Terrance L. Speicher et al.438

Table 4. Retained Articles by Journal Frequency

Frequency Ranking Country Journal

11 3.165 Netherlands Journal of Manufacturing Systems

9 0.924 United Kingdom International Journal of Advanced Manufacturing Technology

7 1.601 United Kingdom Advanced Engineering Informatics

6 1.095 United Kingdom International Journal of Computer Integrated Manufacturing

6 1.929 Netherlands Journal of Intelligent Manufacturing

Fig. 5. Regions and Countries Represented by Retained Articles.

Fig. 6. Paper Frequency by Technologies Discussed.



often as 37% of the papers. Modeling & simulation
and big data & analytics were discussed more than

instrumentation & control and optimization indi-

cating a research opportunity in those under-

reported areas.

3.3.4 Implementation Layers

Papers identified up to five layers in describing the

implemented digital twin: physical, network, data-

base, model, application. The survey asked which

of the five layers were discussed in implementing

digital twins. Most papers discussed physical hard-

ware (actual production process), manufacturing

application (control of production process), and

digital model (simulation of production process

producing outputs from inputs). Fewer papers

included discussion of the network connectivity

(connection of instrumentation to sense production

process) and database structure (repository of sen-

sory information). Hence, most papers included all
layers (Fig. 7). A description of the physical layer

existed in 96% of the papers. A description of the

application layer existed in 94% of the papers. A

description of the model existed in 88% of the

papers. A description of the database existed in

64% of the papers. A description of the network

existed in 70% of the papers.

4. Results

This section (and summarized in Table 5) presents

the answers to each of the research questions with

corresponding literature: benefits (labelled as effi-

ciency, quality, maintenance, safety, or training),
challenges (labelled as connectivity, data, automa-

tion, or instrumentation), use cases (labelled as

machine, cell, line, or factory), and best practices

(labelled as information, representation, or archi-

tecture).

4.1 RQ1: What are the Benefits of Implementing

Digital Twins?

Qualitative company benefit themes that emerged

were efficiency/optimization, quality/customiza-

tion, maintenance management, safety monitoring,

and operator training as shown in Fig. 8. Efficiency/

optimization captured discussions of benefits mea-

sured by dollars, time, or quantity. Quality/custo-

mization captured discussions of benefits measured

in specification metrics or process flexibility. Main-
tenance management captured discussions of ben-

efits measured in machine health. Safety

monitoring captured discussions of benefits mea-

sured in hazardous conditions. Operator training

captured discussions of benefits measured in

worker productivity. These five resulting themes

were an extension of the literature analysis of

Leng et al. [19].
Efficiency optimization benefits were grouped as

improved production efficiency, reduced costs,

shortened product lifecycle, optimized production

process parameters, and collected operational data.

Production efficiency was improved by decreasing

defects, decreasing in-process inventory, and

increasing inspection pass rate discussed by Ma et

al. [71]. A digital twin driven production systemwas
developed to simulate and optimize the production

process for a heavy-duty vehicle gearbox. The

authors reported improved metrics ranging from

14% to 89%. Reduced costs were realized by redu-

cing energy consumption for heating and cooling

discussed by Li et al. [59]. A digital twin based

industrial information system was developed to

monitor and control the heating and cooling equip-
ment in a manufacturing facility. The authors

reported reduced energy consumption from data

driven decisions regarding operation and mainte-

nance activities. Additional benefit cases are pre-

valent in the referenced literature.
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Fig. 7. Number of Papers Discussing Implementation Layers.
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Table 5. Retained Papers by Category

Literature Benefit Challenge Use case Framework

Aggarwal et al. (2022) [23] efficiency automation factory architecture

Angrish et al. (2017) [24] efficiency conn, auto machine architecture

Banda et al. (2022) [25] maintenance auto, inst machine representation

Bao et al. (2022) [26] quality auto, inst line representation

Brovkova et al. (2021) [27] efficiency conn, data, inst line representation

Cai et al. (2021) [28] quality conn, data line information

Chen & Chang (2021) [29] efficiency auto, inst machine information

Christou et al. (2022) [30] qual, maint conn, data line architecture

Deebak & Al-Turjman (2022) [31] maintenance data, inst machine representation

Ding et al. (2021) [32] quality data line architecture

Draganescu et al. (2021) [33] quality data, inst machine representation

Elhabashy et al. (2019) [34] safety connectivity factory architecture

Eugeni et al. (2022) [35] efficiency conn, data, inst line information

Fan et al. (2021) [36] efficiency conn, data, auto machine architecture

Fan et al. (2022) [37] efficiency connectivity factory architecture

Fattahi et al. (2021) [38] quality conn, data, inst machine information

Febriani et al. (2020) [39] efficiency conn, data cell architecture

Gao et al. (2021) [40] maint, safe data, inst machine representation

Garcı́a et al. (2022) [41] qual, train - line information

Geng et al. (2022) [42] training conn, data machine information

Guo et al. (2021) [43] efficiency conn, inst line information

Hu et al. (2020) [44] quality conn, data line information

Huang et al. (2021) [45] eff, qual conn, data, auto cell information

Huang et al. (2020) [46] quality conn, data line information

Hung et al. (2022) [47] eff, qual, maint conn, data line architecture

Jiang et al. (2022) [48] quality data, auto line architecture

Jiang et al. (2021) [49] eff, maint, safe conn, inst factory representation

Jiao et al. (2022) [50] qual, safe automation cell representation

Kang et al. (2019) [51] efficiency conn, data machine information

Khan et al. (2022) [52] eff, train conn, data line architecture

Krishnamurthy & Cecil (2018) [53] qual, train connectivity cell information

Lattanzi et al. (2021) [10] eff, maint conn, data, auto factory representation

Lee et al. (2017) [54] qual, maint auto, inst machine representation

Li et al. (2019) [55] maintenance data, inst machine information

Li et al. (2022a) [56] safety conn, data, auto cell information

Li et al. (2020) [57] efficiency data, auto factory information

Li et al. (2022b) [58] quality auto, inst line representation

Li et al. (2022c) [59] efficiency conn, auto factory architecture

Li et al. (2022d) [60] efficiency data line architecture

Li et al. (2022e) [61] quality conn, auto machine representation

Lin et al. (2021a) [62] quality conn, auto cell information

Lin et al. (2021b) [63] efficiency conn, data line information

Liu et al. (2019a) [64] eff, qual conn, data line architecture

Liu et al. (2021) [65] quality conn, auto, inst machine information

Liu et al. (2022a) [66] quality auto, inst machine representation

Liu et al. (2019b) [67] eff, qual data, auto line representation

Liu et al. (2022b) [68] eff, qual, maint data, auto machine representation

Lu & Xu (2018) [69] eff, qual conn, auto factory information

Luo et al. (2019) [70] maintenance auto, inst machine representation

Ma et al. (2020) [71] eff, qual conn, auto line information

Ma et al. (2021) [72] efficiency automation cell architecture

Maia et al. (2022) [73] safety conn, auto, inst line information

Min et al. (2019) [74] qual, train data, auto, inst factory representation



As expected, economic improvements dominated

the benefit achieved by implementing DT in man-
ufacturing. Businesses must remain profitable as

competition impacts their marketplace. While

maintaining profitability, the next benefit of rele-

vance was quality. Enhancing quality by reducing

variability was a strong motivating factor for

implementing process digitization. Once a profit-

able and high-quality product was successfully
produced, continued competition required sustain-

ability by managing maintenance downtime.

Hence, the third benefit of maintenance manage-

ment. In tight labor markets, recruiting and retain-

ing machinery operators leads to the final grouping
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Table 5. Continued

Literature Benefit Challenge Use case Framework

Mondal & Wong (2022) [75] safety automation factory information

Namjoshi & Rawat (2022) [76] efficiency conn, inst factory information

Naqvi et al. (2022) [77] maintenance data cell information

Nie et al. (2022) [78] quality data factory representation

Nie & Chen (2022) [79] efficiency connectivity cell information

Nuñez & Borsato (2017) [80] maintenance data, inst machine representation

Pacaux-Lemoine et al. (2022) [81] safe, train conn, auto cell information

Park et al. (2019) [82] quality connectivity factory information

Park et al. (2022) [83] efficiency conn, auto line architecture

Pei et al. (2021) [84] quality conn, data line information

Qamsane et al. (2022) [85] maintenance conn, data line architecture

Ramezankhani et al. (2021) [86] efficiency data cell representation

Rodrigues et al. (2022) [87] efficiency conn, auto, inst line architecture

Rossit et al. (2019) [88] efficiency data line architecture

Rubio et al. (2018) [89] maintenance conn, auto, inst machine architecture

Sharif Ullah (2019) [90] eff, maint, safe - machine representation

Stark et al. (2017) [91] eff, qual conn, inst cell architecture

Su et al. (2021) [92] - auto, inst machine representation

Tao et al. (2019) [93] safe, train conn, data, auto factory information

Tarallo et al. (2018) [94] eff, qual, train automation machine information

Wan et al. (2017) [95] maintenance data machine information

Wang et al. (2020) [96] eff, qual, safe auto, inst cell architecture

Wang et al. (2022a) [97] quality auto, inst machine representation

Wang et al. (2022b) [98] eff, qual conn, data, auto line information

Wang et al. (2019) [99] maintenance auto, inst machine representation

Wang et al. (2022c) [100] efficiency automation cell information

Wang et al. (2022d) [101] safe, train connectivity line information

Weckx et al. (2022) [102] quality data machine representation

Wenna et al. (2022) [103] eff, safe auto, inst cell representation

Woo et al. (2018) [104] efficiency conn, data machine architecture

Xia & Xi (2019) [105] maintenance data, inst cell representation

Xu et al. (2021) [106] eff, qual conn, data line information

Yang et al. (2022) [107] efficiency connectivity line information

Yaqot et al. (2022) [108] efficiency auto, inst factory representation

Yifan et al. (2022) [109] efficiency conn, inst factory architecture

Zeng & Luo (2022) [110] Safety conn, auto, inst cell representation

Zhang et al. (2019) [111] efficiency conn, data line representation

Zhang et al. (2022) [112] efficiency automation line representation

Zhao et al. (2022a) [113] quality automation machine representation

Zhao et al. (2022b) [114] quality auto, inst machine representation

Zheng & Sivabalan (2020) [115] eff, maint, safe conn, auto, inst cell architecture

Zheng et al. (2021) [116] quality conn, data, auto machine representation

Zhu et al. (2022) [117] quality automation cell information

Zhuang et al. (2018) [8] efficiency conn, data, auto factory architecture

Zhuang et al. (2021) [118] efficiency conn, data cell representation



of benefits.Monitoring safety and operator training

can be enhanced through simulation provided by

DT. A hierarchy of benefits resulted through the

SLR indicating areas for additional research.

4.2 RQ2: What are the Challenges to Overcome in

Implementing Digital Twins?

Qualitative company challenge themes that

emerged: connectivity, data analytics, automation,

and instrumentation are shown in Fig. 9. Connec-
tivity captured discussions of challenges related to

data flow networks. Automation captured discus-

sions of challenges related to automatic control of

machinery. Analytics captured discussions of chal-

lenges related to analysis of data. Instrumentation

captured discussions of challenges related to sen-

sory measurement collection. These four resulting

themes were an extension of the literature analysis
of Leng et al. [19].

Data flow challenges included cybersecurity,

modularity, synchronization, monitoring, and

diagnosis. Namjoshi & Rawat [76] discussed secur-

ing industry data used in design, machining, inspec-

tion, and scheduling to realize smart factory’s

potential. A cyber-physical production system’s

data was secured for monitoring and control to

enhance productivity. Cybersecurity measures pro-

tected manufacturing data to preserve competitive-
ness. Lattanzi et al. [10] discussed the difficulty in

maintaining synchronization between the physical

equipment and its virtual representation for prac-

tical implementation. Two-way communication

protocols struggle to exchange incompatible data

formats established from different standards.

Fusing data from various production domains

requires the integration of various technologies
for consistent usefulness. Effective networks pro-

vide the means for data to flow efficiently through

the digitally connected system.

Contrary to the benefits results, the challenges

question identified issues to be addressed simulta-

neously. First and foremost was connectivity. The
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need for manufacturers to interconnect machinery

with a network is fundamental to implementing

DT. The deployment of the Internet of Things will

directly address this challenge as standards are

published. Once the production data is centrally

available then analytics can be used to identify
trends and predict outcomes for various opera-

tional decisions. Many SMM began their business

using manual processes that over time have been

automated. Rapid Return on Investment (ROI)

dictates that technologies must be implemented in

small increments in rapid succession to build

momentum for a change mindset. Legacy machin-

ery lacks internal sensors that are standard in state-
of-the art machinery requiring the installation of

external sensors to collect data streams to monitor

processes. The integration of these elements facili-

tated by a DT provides the benefits identified in the

previous section.

4.3 RQ3: Which Digital Twin use Cases are

relevant to Manufacturing Companies?

Qualitative use cases emerged from retained papers

for digital twins relevant to SMM. Four categories

delineated the shop-floor production element:

machines, work cells, production lines, and fac-

tories. Manufacturing factories are composed of a

hierarchy of elements at the shop-floor level. Indi-
vidual machines combine into work cells. A few

work cells coordinate into a production line. Sev-

eral production lines constitute a manufacturing

system. Production line – a sequence of equipment

to assemble an object – represented 34% of the

papers. Machine – apparatus to perform a specific

function–represented 26% of the papers.Work cell–

arrangement of machinery to perform a specific
process – represented 23% of the papers. System –

collection of manufacturing equipment within a

factory – represented 11% of the papers. No pro-

duction element represented 6% of the papers. The

prevalent use cases are visualized on Fig. 10. These

four resulting themes were an extension of the

manufacturing systems from Groover [16].

Production line use cases at the system level are

best illustrated with two use cases. Pei et al. [84]
discussed a solar cell production line. Fabrication

quality metrics were monitored and analyzed to

control parameters correlated to detecting mechan-

isms that produced defects. Their application para-

digm improved quality prediction accuracy to

97.8%. Zhang et al. [112] discussed a satellite

assembly, integration, and test shop floor. Material

flow and processes were modeled to represent the
multiple stations required in the production

sequence. Their DT framework was validated for

a complex production line. Both papers demon-

strate the previously discussed benefits and chal-

lenges of incorporating DT in manufacturing

operations.

Use cases at the production line level are pre-

valent. Coordinating the processing and transpor-
tation of material through the fabrication process

was optimized. Most use cases at the machine level

address physics-based prediction of tool life impor-

tant for high volume production scenarios. Use

cases at the work cell level involved data sharing

in a digital thread where one machine’s output is

another machine’s input. Future research was

focused on coordinating activity at the factory
level through resource optimization. DT are the

backbone to provide operational managers with

current information on the status of their plant

for data-driven decision making.

4.4 RQ4: What are the Best Practices for

Implementing Digital Twins in Smart

Manufacturing Applications?

Three themes characterized the development frame-
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work for digital twins as shown in Fig. 11. Digital

Representation and Information Exchange were

equally discussed as the development framework

for the digital twins (36% of papers). Reference

Architecture was a lesser driver of development–

28% of papers. These three resulting themes were an

extension of the case scenarios from Shao [20].

Two best practices papers are noteworthy within
the development framework of information

exchange shown in Fig. 12. Krishnamurthy &

Cecil [53] discussed signals to be exchanged in

distinct networks between user and core tasks. A

framework for IoT based collaborations is pre-

sented for information flow in a cyber physical

system. The authors’ validation process employed

the assembly process for electronic circuit boards.
Kang et al. [51] discussed signals from data collec-

tion & device control to both user tasks & core

tasks. Real-time data from a shop floor environ-

ment was used to simulate machinery processes to

improve product throughput. The authors’ applica-

tion addressed automated assembly and automated

inspection production steps.

Only nine papers or 9% discussed an engineering
standard incorporated into their use case either

completely or partially. Engineering standards can

assist in implementing digital twins by specifying

industrial procedures agreed upon. An opportunity

exists for governing organizations to establish best

practice standards to guide the deployment of

digital twins in small and midsized enterprises

who are mostly lacking sufficient resources to
establish in-house state-of-the-art practices.

5. Discussion: Roadmap for DT
Integration using Engineering Interns

Recognition from the research question on best

practices that engineering standards were not

widely used in deployingDT led to the development

of an incremental integration framework discussed

in Section 5.1. Section 5.2 examines theoretical

versus practical learning in engineering education

curriculum with an emphasis on problem-based

learning beyond a capstone course. Engaging engi-

neering interns at SMMprovides the technical skills

necessary to cost effectively adopt innovative tech-
nologies as outlined in Section 5.3.

5.1 An Incremental SMM DT Integration

Framework

Digitization is the foundation to adopting

advanced manufacturing technologies [119]. Man-

ufacturers can use large data sets collected from

production processes to reveal operational trends

for monitoring product quality. Automating repe-

titive tasks with robotics improves efficiency and

eliminates variation leading to higher quality pro-
ducts. Simulation using virtual representations of

processes to validate improvements can enhance

production effectiveness. System integration pro-

vides unified data in a central repository for analysis

to yield informed decision making. The IoT

increases communication interconnectivity to pro-

vide real-time visibility for optimized operational

performance. DT are an enabling technology that
facilitates innovation. Digitalization requires a sig-

nificant resource investment to integrate DT into

SMM’s process. Incrementally developing DT

reduces the risk and builds momentum for innova-

tion. The research project establishes development

phases, defines the required information for digital

representation, and discusses the applicable indus-

try engineering standard.
A gap uncovered in the SLR was the minimal

number of publications that used an engineering

standard to guide their study. Industry can operate

on standardized procedures to maximize product
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quality while minimizing process cost as reflected in

the International Standards Organization’s ISO

23247Digital Twin Framework forManufacturing,

Parts 1–4 published in 2021. Using a five-element
framework for a DT shown in Fig. 12, a proof-of-

concept process will be developed [120]. By estab-

lishing an integrated manufacturing use case apply-

ing best practices from industry standards, SMM

can realize the substantial benefits of implementing

DT in their processes.

The Observable Manufacturing Element (OME)

consists of physical resources such as material,
equipment, and process. Part 3 of the ISO standard

specifies seven informational attributes for digital

representation for each OME [121]. Each OME

requires a mandatory unique identifier. Optional

attributes include characteristics, schedule, status,

location, report, and relationship. The material

OME is the physical matter that is processed into

a product. The equipment OME is the physical
object that operates on the material. The process

OME is the operations to perform the fabrication

task.

The Core Entity synchronizes with the OME to

simulate and analyze the OME’s operational state.

Zhang et al. [111] described basic components

necessary for a DT coupled in function and struc-

ture to mirror the production process. This func-
tional mirror captured manufacturing resources for

unified management and on-demand use. The

structural mirror presented a graphical user inter-

face to view and set parameters enhancing decision

making. A digital model will be used to simulate the

kinematic behavior of a CNC Router for optimiza-

tion and training.

The Data Collection and Device Control Entity
collects sensor data and controls actuators of the

OME. An instrumentation suite of sensors will

collect measurements to correlate to control para-

meters. The operational data will be analyzed in

time and frequency domains to assure compliance

with part fabrication specifications.

The User Entity provides a status dashboard for

the operator’s interaction with the OME. Lab-
VIEW will be used for input sensor measurements

and output actuator signals. A dashboard will be

constructed to display visual status of monitoring

and controlling data flows to complete the DT.

The Cross-System Networks for service, user,

proximity, and access are the interconnection

among the entities to provide data translation,

assurance, and security. The ISO standard Part 4
[122] describes the information exchange frame-

work by defining four networks to connect each

entity to share data. The User Network allows the

user to manage the DT core entity. The Service

Network connects the user to the OME. The Access

Network facilitates communication interaction

between the user, core, and database entities. The

Proximity Network provides real-time data flow
between the OME and core entity.

5.2 Practical Experience Gap in Engineering

Education

Engineering education has historically emphasized

theory over practice in its curriculum. ABET [123]

requires engineering students from accredited pro-

grams to participate in a culminating engineering
experience that incorporates appropriate standards

with multiple constraints. Many engineering pro-

grams use a capstone design project to satisfy this

curriculum criterion. However, institution policies

require awarding academic credit for work, such as

internships, in lieu of courses.

Wandahl et al. [124] pursued a problem-based

learning approach by using an industry internship
with the theme of innovation to enhance a graduate

engineering program. Both companies and students

found value in the experience leading to a recom-

mendation to incorporate an optional or compul-
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sory internship into engineering programs. Practi-

cal work experience during college benefited stu-

dents in procuring their first job after graduation.

Graduates that worked with professionals were

better prepared to transition from academia to

industry. Furthermore, partnerships with employ-
ers enhanced faculty’s connection to the profes-

sional workforce.

Hynek et al. [125] identified the lack of practical

problems used in academic courses to provide

students’ real applications of the subject matter.

The authors noted that companies provide their

new hires with relevant work experience after

graduation, but this limits their practice to a small
number of individuals. Incorporating industrial

practices and significant problems in the curriculum

prepares students for career success. Close coopera-

tion with local engineering companies guided

faculty to develop assignments enhancing students’

preparation for entry level engineering positions.

Zeid et al. [126, 127] proposed a project-based,

team-work curriculum to enable career transition
to advanced manufacturing employment. Techni-

cal expertise focused on advanced manufacturing,

animation, and technical illustration knowledge.

Innovation traits focused on entrepreneurship,

creativity, and collaboration abilities. Skills identi-

fied for success included critical thinking, problem

solving, cross-disciplinary thinking, information

literacy, global awareness, adaptability, initiative,
accountability, and leadership. Their objective was

to supply unfilled manufacturing positions with

qualified job seekers through hands-on coursework

and experiential learning from industry partnered

internships.

ABET’s [123] student outcomes direct an engi-

neering program’s educational objectives in prepar-

ing graduates to enter professional practice.

Students must demonstrate the ability to analyze
complex problems, draw conclusions from experi-

mental data, communicate effectively, and collabo-

rate in a team environment. Internships provide a

learning opportunity to practice and master these

engineering skills.

5.3 Involving Engineering Student Interns

Employing engineering students as interns is a low-
cost approach to enhancing a company’s technical

capabilities as well as preparing future graduates to

contribute to the manufacturing economy. Employ-

ers typically assign an intern to assist a senior

company engineer in conducting that mentor’s

duties. Interns perform a variety of tasks that

engage their analytical, empirical, collaborative, and

communicative skills. Technical supervisors assess
the internship experience across several dimensions:

knowledge of engineering principles, ability to solve

technical problems, performance of meaningful mea-

surements, interpretation of experimental results,

commitment to professional ethics, function effec-

tively as a teammember, documentation of results in

written reports, and listen actively to comments.

Industry supervisors’ evaluations from two aca-
demic years at Penn State Berks quantify the

effectiveness of the internship experiences in their

baccalaureate program. Fig. 13 illustrates success in
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demonstrating professional skills in the workplace.

Interns performed exceptionally in analytical skills

between 25% and 65% of their assignments. Interns

performed exceptionally in empirical skills between

40% and 60% of their assignments. Interns per-

formed exceptionally in collaborative skills between
50% and 80% of their assignments. Interns per-

formed exceptionally in communicative skills

between 30% and 70% of their assignments. The

remainder of the ratings were satisfactory except for

two exceptions of deficient regarding modeling and

ethics.

Penn State Berks and Duryea Technologies

formed a partnership supported by a State of
Pennsylvania Manufacturing Fellows Initiative

grant. This innovation project provided faculty

supervision of eight undergraduate engineering

students to develop and validate DT in collabora-

tion with Duryea Technologies. The students

applied SM technologies by immersion in an on-

site manufacturing environment to increase their

interest in a manufacturing career. An intern each
semester was assigned to one of the elements in the

DT framework illustrated in Fig.12. The Core

Entity intern created a Fusion 360 kinematic digital

model of Duryea’s CNC mill and a detailed model

of a production canister clamp ring. The Cross-

system Networks intern established an Industrial

Internet of Things using engineering standards to

connect mill performance data to a server stored
database. The Data Collection and Device Control

Entity intern computed data analytics to correlate

sensor measurements of power, temperature, vibra-

tion, and acoustic to spindle speed, feed rate, depth

of cut, and radius of cut. The User Entity intern

developed a dashboard to visualize a display of data

trends in time using a statistical process control

format with control limits. Integrating a DT in the
production process maintained the part quality

while reducing the fabrication time, thus improving

productivity.

In executing the research project, the interns

also achieved the previously identified internship

outcomes. The four interns formed an integrated

team demonstrating interpersonal collaboration.

Progress meetings and weekly reports assured the
principal investigator that communications were

timely and effective. The design of digital models

and monitoring displays invoked relevant analysis

techniques. Collection and processing of measure-

ment data validated testing protocols. The student

interns worked on an enriching manufacturing

project that assessed their mastery of learning

outcomes expected from the undergraduate pro-
gram.

The manufacturing company provided real-

world applications for improving the manufactur-

ing process of an existing part to demonstrate to

students the value of manufacturing to Pennsylva-

nia’s economy. The small manufacturer gained

insight into the benefits of Industry 4.0 productiv-

ity gains through technology transfer to improve

their competitive position in the marketplace. The
Manufacturing Innovation & Innovation Labora-

tory at Penn State Berks coordinates faculty exper-

tise with regional manufacturers to enhance their

operations with industry’s best practices. The

proof-of-concept implementation plan for digital

twin technology validated under this project is

applicable to other small manufacturers in the

region to overcome barriers to adopting innovative
technologies.

6. Conclusion and Future Work

This study identified several research gaps that

significantly contribute to the barriers inhibiting

SMM from deploying digital twins to engage in
smart manufacturing. The first research gap

showed that while efficiency and quality aspects

dominate as the benefit rationale in the published

literature, both safety and training were under-

reported areas requiring additional research. The

second research gap showed that implementation

challenges for companies were roughly shared

among connectivity, automation, data analytics,
and instrumentation indicating a modular

approach to integration is warranted. The third

research gap showed that use cases were limited

for SMM. Reported use cases were more prevalent

for machine and production line implementations

for larger operations than for work cell and manu-

facturing factory applications indicating the need

for a systems integration approach for smaller
operations. The fourth research gap was lack of

focus on holistic approaches indicating that devel-

opment frameworks were mostly divided between

digital representation, information exchange, and

reference architecture demonstrating a specific

approach rather than a universal approach. There

is great need for engineering standards to guide

implementation evidenced by only nine papers
using an accepted standard. The literature review

provided ample examples of deploying DT by

larger manufacturing companies.

The next research phase is to coordinate steps in

deploying DT into SMM. Involving engineering

student interns both to satisfy ABET student out-

comes and to integrate digital technologies to

enhance productivity was outlined. By establishing
an integrated manufacturing use case using best

practices from industry standards, SMM can rea-

lize the substantial benefits of implementing DT in

their processes. The mission of the MILL can be
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fulfilled with a risk managed phased approach to

implementation of DT at SSM. Barriers to innova-

tion can be overcome while enhancing operator

safety using training simulations with DT. The

validated proof-of-concept will be taught to engi-

neering students to deploy during industry intern-
ships.

Data Availability – Two datasets generated by the survey
research are publicly available as Google Docs. The survey
questions for the current study are at https://docs.google.com/
document/d/e/2PACX-1vQ3_EKS_czZkf_WxVaFU6f16mg_
zs_nfjzHEA7IjG0qusX8pyhjF1JoSi3IH2f2AQ8c97OwayZI8K
RV/pub. The list of literature sources for the current study is at
https://docs. google.com/document/d/e/2PACX-1vSLICZRA5-
kIOjsaMgIeeOk9gcK_ECNXgVJ_6LQwql9oZolgfUbSeCM-
qYVTgXdql7MS-BeuIlqvc6q25/pub.
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