Computer Assisted Teaching on Robot Pose Error Modeling*

N. VIRA†
L. THIGPEN‡
Department of Mechanical Engineering, Howard University, Washington, DC 20059, U.S.A.

This paper presents a concept for teaching students on robot pose error modeling and compensation methods with the aid of character strings manipulation program developed on a DEC VAX-750 minicomputer under VMS operating system. A software package is designed which combines generality, user interaction and user-friendliness with the systematic usage of symbolic computation and artificial intelligence techniques. It utilizes MACSYMA, a LISP-base symbolic algebra language to generate automatically closed-form expressions representing end-effector's pose errors in the world coordinate system for N degree-of-freedom industrial robots where N being the number of joints. The goal of such a package is to aid faculty and students in the robotics course by removing burdensome tasks of mathematical manipulations. Several commercially available robotic configurations are tested to verify the program accuracy. The worst case takes 17.48 seconds to generate three-dimensional error equations in world coordinates for the PUMA 600 series robot, which is insignificant compared to the time required for accurate manual derivation.

INTRODUCTION

ROBOTIC manipulators have been used in many automated manufacturing processes like painting, welding, seam tracking, and pick/place type of operations. Recently, they have been employed in more difficult situations such as assembly of parts and insertion of precision components in circuit boards. In many of these processes the exact position and orientation (pose) of the robot's wrist with respect to the part being processed is crucial to the success of the operation and the quality of the product. Although the desired pose is communicated to the robot controller through teaching with a teach pendant or programming, the actual pose of the wrist will often be somewhat different from that desired. The pose inaccuracy is due to many errors present in the robotic system ranging from control point of view through structural consideration [1].

There are two approaches to improve robots' positioning accuracy. One would be to manufacture robots with greater precision accuracy; however, this is quite costly because the production cost increases rapidly with requirements of high accuracy standards. Oftentimes, this is unattainable because current machines and manufacturing processes have not yet evolved to the stage necessary to satisfy the required tolerance limits. The second approach to solving this problem would be to consider software corrections in which the systematic errors of a robot are first determined and then corrected in the robot controller. Note that the systematic errors can be represented by some sort of functional relationship between the robot's controller output readings and true wrist positions. This paper is devoted to issues of robot pose error modeling, error compensation through software correction, and a method of teaching such topics with the aid of symbolic computation.

Brief review on pose error modeling

In recent years, researchers have proposed numerous error calibration and compensation models for the improvement of robots' pose accuracy. Some of the modeling techniques are based on modifications of the well known Denavit-Hartenberg kinematic models (DH model), while others are based on alternative methods of kinematic representation (non-DH models). The majority of these models deal primarily with kinematics of the robot which address errors in geometrical link parameters. For example, models proposed by Wu [2, 3], Hayati [4], and Hsu and Everett [5] are based on DH formalism and are modified to handle parallel or near parallel robot joints. Other models proposed by Whitney [6], Stone [7], Driels and Pathe [8] and Chen [9] are based on coordinate transformations but do not follow the DH notations. Mooring [10] has proposed a model based on Rodrigues equation that does not utilize successive coordinate transformations. Vaishnav and Magrab [11] have employed the theory of skewed coordinate systems and formulated the pose error corrections by modifying Cartesian coordinate frames attending to each joint of the robot. Non-orthogonality of the joint axes and origin shift errors are included in the
modeling. A host of other positioning error models (DH and non-DH) have been developed and reported in the literature. A comprehensive literature review discussing these models can be found in Ziegert and Datseris [12]. A number of the contributions have not only introduced error model formulations, but have also implemented various robot calibration schemes. Although a wide variety of modeling approaches have been used, no single approach has yet been accepted as standard.

Robotic education

Presently, robotics education is in its early stages and educators have encountered several difficulties in designing suitable courses [13–16]. This is due in part to the interdisciplinary nature of robotics. That is, robotics encompasses three major disciplines: mechanical engineering, electrical engineering and computer science. In fact, many robotics related courses are included as required technical electives in mechanical, electrical and computer engineering undergraduate curricula. However, the emphasis placed on certain topics may be weighted according to the department through which the courses are being offered. As a result, each group of students has strengths not possessed by students in other disciplines. For example, mechanical students may have a good understanding of concepts in kinematics and dynamics, but may not feel as comfortable with control theory and electrical actuators as their counterparts in electrical engineering. Likewise, computer science students may have a better understanding of microprocessors and real-time computation than either mechanical and electrical engineering students. With such a heterogeneous group of students at different levels of education, it becomes difficult to design a course to satisfy the needs of all students without too much repetition of topics to one group of students.

Currently, two types of introductory course are being offered by several universities. One is technology-related; it stresses industrial robot applications and the operation of robotic accessories such as actuators, sensors, encoders, vision systems, microprocessors, and drive mechanisms. The second type covers the theoretical fundamentals of robotic kinematics, dynamics, and control. Based on these fundamentals, students are taught the design of the controller and its function as the 'robot brain'.

Advanced level graduate courses in robotics cover a wide spectra of topics that are general in nature and sometimes specialized for the particular research application. For example, kinematics, dynamics, and control topics can normally be found in courses given at various universities whereas topics such as robotic vision, end-tooling design, computer simulation and pose error modeling are uncommon since special expertise of the faculty is required to offer them. As we indicated earlier, robotics applications are growing and more accurate robots are needed in industry. Thus, the knowledge of pose error modeling and error compensation techniques become vital. To provide training to future graduates, we at Howard University have included such a topic in our advanced level robotics course. This paper is written to share our experience and demonstrate the feasibility of using symbolic computation as an aid in the teaching process.

Difficulties

We have experienced numerous difficulties in teaching by conventional techniques, the underlying concept on robot error modeling and compensation. First, there exists a variety of models and formulations of which are to be included in the course content. Inclusion of too many models would make ineffective presentation since the time devoted for the topic is limited whereas the coverage of too few models will provide students with insufficient background. Second, model derivation in the classroom is laborious since the equations are very lengthy. A single equation may fill several text book pages. It is obvious that manual derivation of the equations for a large number of models and robot configurations is a time-consuming and error-prone undertaking. Third, in order to communicate effectively with students, several exercises are required. By solving different problems students gain experience necessary to understand the theoretical concepts. Equations and solutions developed by students are applicable for different robot configurations. Hence, it becomes almost impossible (certainly time consuming) for the professor to check solution accuracy and grade each and every derivation. Furthermore, the problem intensifies if a large number of students are enrolled in the course. Last but not least, to discuss effectiveness of a model and to describe the influence of an error parameter on overall model validity, several models must be demonstrated and compared in the classroom. In other words, to compare n models on r robots, a total of $n \times r$ model equations representing three dimensional configurations must be developed. This presents a major bottleneck in the process of model comparison. In addition, numerical results are required to make any quantitative sense of the relative importance of the model parameters and their effects on the model accuracy (sensitivity analysis).

This paper demonstrates an effective way to cover sufficient material while providing students with the appropriate fundamentals. Our approach uses a software package which eliminates the burdensome task of deriving equations and allows students to develop a thorough understanding of a broader range of subject matter. Such is the case with well known software packages like STRUDL for structural analysis, and SPICE for electrical circuit analysis; surely the concept can be extended to the analysis of robotic manipulator’s errors.

In general, the theoretical analysis of robotic pose error modeling consists of mathematical
operations requiring knowledge of matrix manipulations, trigonometry, calculus, differential geometry and solution of differential equations (if dynamic error modeling is considered). Students in introductory courses learn to apply these mathematical tools together with proper practical consideration. Therefore, symbolic computation seems to be the most logical candidate on which to base any computer-aided analysis software for use in robotics education. The interactive software package presented here was developed with this in mind, and the paper is devoted to a discussion of how to use the package to benefit such a course topic. Figure 1 depicts a conceptual framework representing union of robot error modeling and symbolic computation. Such union becomes a powerful tool useful for robotic education and enhancement of the state-of-the-art research. The symbolic manipulation software package named AREEM (Automatic Robot Error Equations Modeler) automatically generates geometrical error model equations applicable for robotic configurations with \(N \) degrees of freedom [17].

![Fig. 1. Conceptual framework representing union of robot error modeling and symbolic computation.]

BACKGROUND THEORY

An industrial robot is considered to be an open-loop manipulator comprising a series of links connected together by lower pair joints. Each link is assumed to have only one joint that is either revolute (rotational) or prismatic (sliding). A robot is moved to perform a specific task by driving various joints via its controller. Thus, the robot hand or wrist takes positions as required by the desired task. Due to the presence of errors, the hand positions are usually different from the desired ones. These differences in hand positions are the robot pose errors. Before one considers any scheme to model inaccuracy associated with the robot hand, its pose errors must be known a priori. The robot pose errors are determined using some sort of measurement device. A typical measurement configuration is depicted in Fig. 2 where the measurement device, robot controller, and a host computer are interfaced for on-line data acquisition and analysis. The measurement device shown is a contact type of system because it directly connects to the robot wrist. Detailed description of the measurement system and its usage procedures can be found from Ref. [18]. The measured robot pose errors are classified into two categories—systematic and random. The systematic errors are producible and can be represented by mathematical functional relationship. Errors of this kind can be compensated for by algorithms (software) when the functional relationship is known. Random errors are difficult to relate and compensate for. Statistical tools may be used provided the variance of their probability distribution is reduced. Most of the models described in the literature deal with systematic errors and so does our discussion.

At present, the AREEM program incorporates three models of which two are based on DH formulation (five and ten error parameters) and one uses non-DH formulation. These models are commonly discussed by researchers. However, the selections in the AREEM program are still arbitrary. Additional models, if desired, can easily be included because AREEM is structured in a modular fashion. The robot pose error correction equations for each of the three models are presented below.

Five-parameter DH model. According to the DH notations, the relative translations and rotations between robotic links are represented by assigning a coordinate frame to each joint. The relationship between adjacent coordinate frames is then expressed by a \(4 \times 4 \) homogeneous transformation matrix called an ‘A’ matrix [19]. The ‘A’ matrix is a function of four linked parameters—link length \(a_i \),
link offset \(d \), link twist \(\alpha \), and joint angle \(\theta \) (one is the joint variable and the other three are constant geometric dimensions). Note that for the case of a revolute joint, \(\theta \) is a variable whereas for the prismatic joint, \(d \) changes as the joint slides in and out. When formulating a model of link parameter errors one must modify the classical DH notations to include the effects of parallel or near parallel joint axes. Otherwise, mathematical difficulties arise due to the presence of relatively large elements in the transformation matrices [3]. In order to account for such effects and to add clarity to link parameters, an extra rotational angle, \(\beta \), is introduced into the 'A' matrix as a fifth parameter. The pose of the end-effector (last link) with respect to the robot base is then expressed as a single transformation matrix resulting from the product of all individual 'A' matrices.

If there are errors in the dimensional relationships between two consecutive coordinate frames, there will be differential change, \(dA_i \), between the two joint coordinates. The correct relationship between the two successive joint coordinates will then be equal to:

\[
A'_i = A_i + dA_i
\]
(1)

where \(A_i \) is the 'A' matrix of the \(i \)th joint and \(dA_i \) is the differential change in joint coordinates \(i - 1 \) and \(i \) due to errors in the five kinematic parameters \(\Delta \theta, \Delta d, \Delta \alpha, \Delta \alpha, \Delta \beta \). The superscript c denotes the correct value. This differential change of the transformation matrix \(A \) is estimated by a Taylor series [20]. Considering the \(A'_i \) matrix of Equation (1), the correct pose of the end-effector \(^0T_N \) with respect to the world coordinate frame is

\[
^0T_N = ^0T_N + dT = \prod_{i=1}^{N} (A_i + dA_i)
\]
(2)

The symbol \(\pi \) represents the product of terms considered and \(dT \) is the total differential change of the end-effector pose due to the geometrical errors. Simplification of Equation (2) yields

\[
dT = ^0T_N \cdot \Delta T = ^0T_N \cdot [\Delta T^{(1)} + \Delta T^{(2)}]
\]
(3)

where

\[
\Delta T^{(1)} = \sum_{i=1}^{N} L_i \cdot \Delta A_i \\
\Delta T^{(2)} = \sum_{i=1}^{N} (T_N^{-1} \cdot \Delta A_i \cdot T_N) + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} (L_i \cdot L_j)
\]

The accuracy of \(dT \) is up to second order since \(dA_i \) includes terms of second-order only. The \(\Delta A^{(1)} \) and \(\Delta A^{(2)} \) are, respectively, first-order and second-order differential error matrix transforms with respect to coordinate frame \(i - 1 \). Note that \(dA_i \) is substituted as \([dA_i = A_i \cdot [\Delta A^{(1)} + \Delta A^{(2)}]] \)

[See Ref 20 for details]. Equation (3) relates the change in the A matrices to the resultant change in the end-effector pose (cumulative error in world coordinates). Also, \(5N \) error parameters are at our disposal which are required to be estimated from measured values of \(dT \). Once error parameters of Equation (3) are found from measured pose errors for a given robot configuration, it can be used to correct the positioning error of the robot, and thus can be incorporated in the robot controller. Equation (3) is written in a compact notation. When it is spelled out for a robot geometry, it can extend over several notebook pages.

Ten-parameter DH model. The second kinematic error compensation model included in the AREEM program is based on ten error parameters per robot joint axis. The model is a reconciliation of the perturbed four-parameter DH representation with a generalized six-parameter model developed and used in the analysis of coordinate measuring machines. The additional six parameters accounts for errors due to robot axes motion (i.e., one error along a prime axis of motion, two out-of-straightness errors, and three rotational errors (roll, pitch, and yaw) of a joint axis). For this case, the differential error matrix transforms utilized in Equation (3) are given by [8].

\[
\delta A_i^{(1)} = \begin{bmatrix}
0 & -rz & ry & tx \\
rz & 0 & -rx & ty \\
rz & 0 & ry & rz \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
(4)

Where

\[
rx = \phi_x + \Delta \alpha_i \\
rz = \Delta \alpha_i \\
ry = \Delta \theta_i \\
tx = \Delta x_i + \alpha_i \phi_y \\
\]

\[
ry = \Delta \alpha_i + \Delta \theta_i + \Delta \alpha_i + \Delta \theta_i + \Delta \alpha_i + \Delta \theta_i
\]

\[
\delta A_i^{(2)} = \begin{bmatrix}
ux & vx & wx & tx \\
uy & vx & wy & ty \\
uz & vz & wz & tz \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
(5)

Where

\[
ux = 3/2 \phi_y + (\phi_z + \Delta \theta_i) - 6 \phi_x \phi_y \phi_z \cdot C \theta_i \cdot S \theta_i \\
uy = 3(1 + 2 \phi_y^2) \cdot C \alpha \cdot \phi_x \cdot \phi_y + 1/2 \alpha \phi_y^2 \\
uy = -1/2 \alpha \phi_x \cdot \phi_y + \Delta \theta_i \\
vz = 3 \phi_z \phi_x \phi_y + 1/2 \alpha \phi_y^2 \\
uz = 1/2 \alpha \phi_x \cdot \phi_y + \Delta \theta_i \\
vx = 3 \phi_z \phi_x \phi_y + 3/2 \alpha \phi_y^2 \\
vy = -1/2 \alpha \phi_x \cdot \phi_y + \Delta \theta_i \\
vy = 1/2 \alpha \phi_x \cdot \phi_y + 1/2 \alpha \phi_y^2 + \Delta \theta_i
\]
\[\begin{align*}
v_y &= -3/2(\phi_2^2 + \Delta \alpha^2) + 3C_3a_3(\phi_2 + \Delta \theta)\phi_y - 3a_2\phi_x - 3/2\phi_1(\phi_2 + \Delta \theta)^2 \\
v_z &= -1/2(\phi_2^2 + \Delta \alpha^2) + 3/2C_3a_3(\phi_2 + \Delta \theta)^2 - 3a_2\phi_x + 1/2S_3a_3(\phi_2 + \Delta \theta)^2 \\
w_x &= 3a_3(\phi_2 + \Delta \theta)\phi_x + 3a_3(\phi_2 + \Delta \theta)\phi_y - 3a_2\phi_x + 1/2S_3a_3(\phi_2 + \Delta \theta)^2 \\
w_y &= 1/2(\phi_2^2 + \Delta \alpha^2) + 3/2C_3a_3(\phi_2 + \Delta \theta)^2 - \phi_y^2 + 3a_2\phi_x + 1/2S_3a_3(\phi_2 + \Delta \theta)^2 \\
w_z &= -3/2(\phi_2^2 + \Delta \alpha^2) + 3/2C_3a_3(\phi_2 + \Delta \theta)^2 - 3a_2\phi_x + 1/2S_3a_3(\phi_2 + \Delta \theta)^2 \\
ux &= 3(\phi_2 + \Delta \theta)\phi_x + 1/2S_3a_3(\phi_2 + \Delta \theta)^2 - 3a_2\phi_x + 1/2S_3a_3(\phi_2 + \Delta \theta)^2 \\
uy &= -1/2(\phi_2^2 + \Delta \alpha^2) - 3a_2\phi_x + 1/2S_3a_3(\phi_2 + \Delta \theta)^2 \\
uz &= -3a_2\phi_x + 1/2S_3a_3(\phi_2 + \Delta \theta)^2 \\
n \alpha_k &= (\gamma T_{mk})n_{mk} + \omega_k \\
\end{align*}\]

where \(\omega_k\) is the \(k\)th component of the origin shift vector in the \(i\)th coordinate system, and \(\gamma T_{mk}\) is the \(mn\)th element of the direction cosine matrix relating orientations of the two coordinate frames. Note that \(\gamma T_{ik}\) is an orthogonal matrix since \(x\) and \(\gamma x\) are Cartesian frames. Equation (6) is a standard Cartesian tensor transformation extended to incorporate an origin shift. The successive application of this relationship to all robot links yields a total compound transformation relating the end-effector coordinates, \(x_k\), to the world coordinates, \(x_k\). Thus, the total nominal transformation can be expressed as

\[\begin{align*}
0x_k &= (\gamma T_{mk})n_{mk} + \omega_k \\
\end{align*}\]

where

\[\begin{align*}
\omega_k &= \sum_{j=1}^{N} (\gamma^{-1} T_{jk})(\phi_j - \omega_j) \\
T_{mk} &= (\gamma^{-1} T_{mp})(\gamma^{-1} T_{mp}) \cdots (\gamma^{-1} T_{ik}) \\
\end{align*}\]

Equations (7–9) represent an ideal case in which the end-effector position is related to the robot world coordinates.

When considering an inaccurate robot, the above formulation needs modification. The coordinate axes are no longer considered orthogonal and intersecting at a point. True robot link coordinate axes will be shifted and skewed relative to their assumed positions. Vaishnav and Magrabi [11] have developed a scheme to analyze the problem considering 'slightly skew' frames using general tensor algebra. It was shown that the correct Cartesian coordinates, \(x_k\) \((k = 1, 2, 3)\) of a desired point resulting from axis shifts and tilts is expressed in the \(i\)th frame as

\[\begin{align*}
x_k &= (\delta_{km} - H_{km})((\gamma^{-1} T_{km})(\gamma x_k + \omega_k - \sigma_k)) \\
\end{align*}\]

where \(H_{km}\) represents angular errors and \(\sigma_k\) are origin shift errors of the nominal \(\omega_k\). The symbol \(\delta_{km}\) is the Kronecker delta. Equation (10) is the counter part of Equation (6) which relates two successive frames, \(i\) and \(i+1\), when the geometrical errors are incorporated. Note that products of \(H_{km}\) and \(\sigma_k\) were neglected since they produce higher order contributions. The model includes nine geometrical errors per joint axis of which six are represented by \(H_{km}\) \((k = m)\) and three are \(\sigma_k\). The total compound transformation incorporating the effects of all link errors can be represented by

\[\begin{align*}
0x_k &= (\delta_{km} - \sum_{j=1}^{N} (\gamma^{-1} H_{km})(\gamma x_j + \omega_j - \sigma_j)) \\
&= (\gamma^{-1} H_{km})(\gamma x_j + \omega_j - \sigma_j) \\
\end{align*}\]

where

\[\begin{align*}
0x_k &= (\gamma^{-1} H_{km})(\gamma x_j + \omega_j - \sigma_j) \\
0x_m &= (\gamma^{-1} H_{km})(\gamma x_j + \omega_j - \sigma_j) \\
\end{align*}\]
For consistency with Equation (3), the robot positioning error in world coordinates, dT, is represented by

$$dT = _0x^e - _0x$$

Equation (14) is valid for all k axes. Since the errors of each link relate to the link itself rather than to its relationship to neighboring links, it becomes easy to physically identify them [11]. Furthermore, no ill-conditioned matrices exist due to near parallel joint axes. These are two prime reasons for consideration of non-DH formulation.

PROGRAM DESCRIPTION

The AREEEM program has been developed based on the models described in the previous section. The program uses MACSYMA to generate the three-dimensional change in the end-effector position dT due to robot geometrical errors. The use of MACSYMA provides the added flexibility to output results in algebraic form or as FORTRAN code. The FORTRAN representation of dT can directly be coupled with other robot calibration software. The program has been developed and tested on a VAX/750 computer under the VMS operating system.

There are two choices in selecting a programming language to code algorithms designed for generating equations in symbolic form. One choice is to use a general purpose language such as FORTRAN or BASIC to write programs that manipulate character strings. The other choice is to use an algebraic manipulation system designed specifically for handling symbolic expressions. Two well known algebraic manipulation systems are MACSYMA and REDUCE. MACSYMA can handle polynomials, matrix manipulation, symbolic solution of algebraic and differential equations, simplification, and substitution with symbolic expressions. REDUCE is similar, but provides less built-in functions and mathematical operations than MACSYMA. In developing the AREEEM program, we have chosen MACSYMA for its powerful trigonometric and algebraic simplification capabilities and ease of its use.

Input. Inputs to run the AREEEM program are: (i) number of robot links (degrees-of-freedom), (ii) type of each joint (revolute or prismatic), (iii) geometric parameters. After input items (i) and (ii) are received, a menu is provided allowing selection of a DH or non-DH model as indicated in the flow diagram of Fig. 3.

When a DH model is selected, the user is required to enter input item (iii), namely, the DH link parameters. Once the input has been interactively entered and interpreted, a link parameter table is displayed. Subsequently, the A_i and iT_N matrices as well as the end-effector pose, 0T_N, are computed.

If the non-DH model is selected, input item (iii) consists of the Cartesian axis of rotation of each revolute joint (x, y, z), and the three dimensional origin shift vector component (i.e. link offsets). For a prismatic joint, one of the origin shift vector components become the joint variable. After the user enters these data, they are reiterated on screen in tabular form. AREEEM uses these data to generate the direction cosine matrices, iT_i ($i = 0, 1, \ldots, N - 1$), from which the total transformation, 0T_N, is computed using Equation (9). Finally, the end-effector position 0x is computed.

Output. Once error equations are computed, AREEEM provides the user with the option to output the forward kinematic solution (0T_N for the DH models and 0x for the non-DH models) if previously unknown. Then the positioning error dT is displayed as three equations representing the Cartesian components (dx, dy, dz) of the positioning error vector in world coordinates. For robots with many degrees-of-freedom, output expressions are often lengthy and difficult to analyze. To handle this problem the AREEEM program, via MACSYMA, includes an option to perform simplifications and substitutions on program output. This is implemented with an exit from AREEEM to the top level of MACSYMA and using MACSYMA commands such as TRIGSIMP and SUBST [21]. After the output is simplified, control is returned over to AREEEM and the user is prompted with the option to display output in MACSYMA algebraic format, or as FORTRAN assignment statements. The desired output is displayed on screen and hard copies are obtained as needed.

In addition to using the program output in symbolic form, numerical output can be useful as well. If the error parameters are known, their values can be used to compute the magnitude of the actual end-effector positioning error at any location in the robot work volume. This gives a numerical indication of how far off the end-effector is relative to the commanded position. Numerical output can also be used for error model sensitivity analyses to study the effect of individual link error parameters on the total error in world coordinates. This can be done, in the forward sense, by numerically varying one error parameter at a time while the remaining error parameters are kept constant, and observing the corresponding effect on dT. One such study has been done and is discussed in the next section.

EXAMPLE AND RESULTS

To demonstrate the usefulness of the AREEEM program, we have applied it to the 3-link planar robot illustrated in Fig. 4. The DH link parameters are listed in Table 1. Upon selecting the 5 parameter DH model from the screen menu, the positioning error output may be displayed as shown in Fig. 5. The orientation error output as well as other models' output may be displayed. These results are
Table 1. DH link parameters for a 3-link planar robot

<table>
<thead>
<tr>
<th>Link</th>
<th>Variable</th>
<th>α</th>
<th>a</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\theta_1 = 40^\circ$</td>
<td>0</td>
<td>20 in</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>$\theta_2 = 20^\circ$</td>
<td>0</td>
<td>20 in</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>$\theta_3 = 70^\circ$</td>
<td>0</td>
<td>20 in</td>
<td>0</td>
</tr>
</tbody>
</table>

not shown here because of space limitation (the expressions are very lengthy).

The program has been applied to four additional robot configurations and CPU time values in seconds to generate model error equations are listed in Table 2. These CPU values do not include the time required for algebraic and trigonometric simplifications. Such simplification time is, generally, on the order of the time spent in generating the error equations. Note that the CPU time required for symbolic manipulations is not totally dependent upon the number of addition and multiplication operations. It also depends on the amount of virtual memory being used; this is particularly true on multi-user computer operating systems. Nevertheless, significant time savings are realized when
For consistency with Equation (3), the robot model consists of the Cartesian axis of rotation of each positioning error in world coordinates, \(\Delta \theta \), the joint \((x, y, z)\), and the three-dimensional representation by

\[
\begin{align*}
\Delta x &= ax_1 a_2 a_3 \\
\Delta y &= ay_1 a_2 a_3 \\
\Delta z &= az_1 a_2 a_3
\end{align*}
\]

and the vector component (i.e., link offset). For the single joint, one can write the joint coordinates as a matrix. However, to compute the error vector in world coordinates, it becomes easy to physically identify the robot's error in joint space with respect to neighboring links. This approach is best for small compact robots with parallel axis joints, as shown in the figure.

The AREEM program has been defined as three equations representing the DH models of the position error vector in world coordinates. For robots with more than three joints, additional sets of equations are used to calculate the error vector in world coordinates. The AREEM program, via MACSYMA algebraic manipulation software, creates an input file to perform a symbolic analysis of the robot model. The program output is analyzed using MACSYMA functions and compared to the analytical solution of the robot kinematic model. After the output is validated, control is returned to the user.

There are two choices in selecting a program output format. The first is to use a FORTRAN output, which can be used to generate a program output file. The second is to use an alphanumeric manipulation system designed to assist in solving the program output in symbolic form. This can be done by using a computer or a symbolic manipulation system.

Table 2. Summary of CPU times (seconds) for typical robots

<table>
<thead>
<tr>
<th>Robots</th>
<th>DOF</th>
<th>DH models</th>
<th>Non-DH models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Five error</td>
<td>Ten error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>parameters</td>
<td>parameters</td>
</tr>
<tr>
<td>3-Link Planar</td>
<td>3</td>
<td>41.33</td>
<td>43.78</td>
</tr>
<tr>
<td>Minimover-Microrobot</td>
<td>5</td>
<td>50.42</td>
<td>54.92</td>
</tr>
<tr>
<td>Stanford Arm</td>
<td>6</td>
<td>83.23</td>
<td>87.00</td>
</tr>
<tr>
<td>Elbow Manipulator</td>
<td>6</td>
<td>84.22</td>
<td>88.07</td>
</tr>
<tr>
<td>PUMA 600</td>
<td>6</td>
<td>85.27</td>
<td>89.37</td>
</tr>
</tbody>
</table>

using the AREEM program. The rapid access to the kinematic error models demonstrated by this program facilitates implementing comparisons of different models' performance.

To further describe the applicability of AREEM, we make use of the positioning error output to investigate the sensitivity of the total Cartesian error (in world coordinates) with respect to individual geometric error parameters. For the sake of demonstration, we arbitrarily selected the first-order five-parameter DH model for the 3-link planar robot. The link parameters are given in Table 1.

The DH parameters \(\theta, a, \alpha, d \) in Table 1 are joint angle, link twist, link length and link offset, respectively. Link 2 was varied to study the effect of a length error, \(\Delta a_2 \), and an orientation error, \(\Delta \theta_2 \), on the magnitude of the positioning error in world coordinates, \(\Delta T \). All geometric error parameters are assumed to be known except \(\Delta a_2 \) and \(\Delta \theta_2 \). The
assumed error values are $\Delta a_i = \Delta a = 0.0625$ in, $\Delta \theta_1 = \Delta \theta_1 = 0.1^\circ$, $\beta_i = 0.05^\circ$, $\Delta a_i = \Delta a_i = 0$; $i = 1, 2, 3$. The FORTRAN output was coupled to a separate program where the effects of Δa_2 and $\Delta \theta_2$ on dT were studied. The Δa_2 was varied from 0 to 1 in. and $\Delta \theta_2$ was varied from 0° to 1°. The results are shown in Fig. 6 in which $|dT|$ is plotted against nondimensionalised values $\Delta a_2/a_2$ and $\Delta \theta_2/\theta_2$. The figure indicates that the error in world coordinates has a linear dependence on Δa_2 and $\Delta \theta_2$ for the range considered. The $|dT|$ is more sensitive to Δa_2 than $\Delta \theta_2$ as the ratio of $\Delta a_2/a_2$ and $\Delta \theta_2/\theta_2$ increases.

Similar analyses can be carried out on any robot to gain insight into possible sources of geometrical error and to investigate the effects of error parameters on dT. In general most of the error parameters should be included in the sensitivity analysis; and the analysis should be done in various regions of the robot work volume.

![Length error (\Delta a_2)](0.3, 0.45, 0.5, 0.7)

Fig. 6. Sensitivity plot of first-order 5-parameter DH model for Link 2.

SUMMARY AND CONCLUSION

Improvement in present robot positioning accuracies is essential for achieving the off-line programming capability required for computer integrated manufacturing. Unfortunately due to inherent difficulties in manufacturing of robots’ links and joints, geometrical errors arise which contribute to pose inaccuracy. In an effort to improve robot accuracy, many researchers have proposed various kinematic error models and calibration schemes. However, because of the diversity among modeling approaches, no single model has been widely accepted. Furthermore, no attempts have been made to systematically compare different models. In order to compare various error models, the model equations are needed for use in calibration experiments or computer simulation. Obtaining model equations manually presents a major bottleneck since lengthy, error-prone derivations must be carried out for each model and robot considered.

In this article, an interactive symbolic manipulation program for automatic generation of three robot kinematic error models has been presented. The Automatic Robot Error Equation Modeler (AREEM) was written using MACSYMA, a LISP-based symbolic algebra language. The program enables rapid access to symbolic error models, thus, making it possible to systematically compare different models via computer simulation. The feasibility of automated generation of kinematic error models has been demonstrated through the development of a quick and inexpensive tool that can be useful in the model selection process.

Beside research applications of the AREEM program, it is shown to be useful in robotic educational process whereby advanced topics can effectively be included in the course content. The professor can cover sufficient material in minimum class time and provide students with reasonable hands-on-experience as well. It should be indicated that the students also get exposure to the powerful use of symbolic manipulation, which in turn can be helpful for their future projects or assignments.

For the purpose of increasing the utility of the AREEM program for robot kinematic error modeling and calibration, we propose further development of a more comprehensive software package. Recommendations for further research include: (i) addition of a general purpose calibration code to accompany the AREEM program, (ii) incorporation of a sensitivity analysis module with graph plotting capability, and (iii) inclusion of a wider variety of error models that are comparable on similar ground rules.

Acknowledgements—Authors wish to acknowledge Mr Edward Tunstel, Jet Propulsion Laboratory, Pasadena, California for programming effort. This research was partially supported by Howard University Faculty Research Program, No. 300273.

REFERENCES

