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A finite element program was written to solve transient axisymmetric heat transfer problems. The

program is capable of handling
fluxes across the boundary
element procedure for tem
technique in time for soluti
the Gauss elimination me
Element Package of lea

prescribed boundary temperatures, surface convections, external
and internal heat generation within the body. The program uses a finite
erature distribution at any time step and Euler’s backward difference
on of the transient problem. The final set of equations were solved by
thod. The program is added as 10th option to FEMPAC (a Finite
rner programs developed by Dr. R.J. Gustafson for teaching

fundamentals of finite elements). A copy of FEMPAC with associated documentation can be
obtained from the authors or Dr R. J. Gustafson at the Ohio State University.

INTRODUCTION

A COURESE on the solution of partial differential
equations usually forms a part of the academic
program of students in many speciality areas of
Agricultural Engineering. Steady-state and transi-
ent problems in heat transfer, gaseous diffusion
and mass transfer are governed by partial differ-
ential equations. Depending on the complexity of
the problems, they are also classified as one, two or
three dimensional. One group of three dimensional
problems are axisymmetric field problems. The
symmetry about the axis makes it possible to
describe these problems using only two views
(front and top) as compared to the other three
dimensional problems which require three views
(front, top and side). Cooling of the grain stored in
a cylindrical grain bin by inserting a pipe in the
centre of the grain mass and blowing cool air
through the pipe is an example of an axisymmetric
heat transfer problem. Some other physical prob-
lems such as flow of water to an auger hole and
calculation of insulation requirements for
steam-carrying pipes are also axisymmetric field
problems. Many of the agricultural products, such
as tomatoes, apples, oranges, carrots and pears
may not be exactly axisymmetric but can be
approximated as axisymmetric for analysis pur-
poses. Cooling and heating of all these products
can be described by axisymmetric analysis.

The objectives of this paper were to develop a
finite element program capable of solving axisym-
metric field problems, to compare results from the
program with other analytical solutions of simple
problems and to illustrate the use of the program in
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teaching a course dealing with the solution of axi-
symmetric field problems.

MATHEMATICAL STATEMENT OF THE
PROBLEM

Any transient field problem (as an example, heat
transfer problem) in cylindrical coordinates is
governed by the following partial differential equa-
tion [1]:
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where: r,0 and z are cylindrical coordinate
directions,
K., K¢, K, are thermal conductivities of
the mediumin r, 6, and z
directions, respectively,
W/m - K (Btu/h - ft - °F),

@ is temperature at any time
and position, K (°F),
ye) is the mass density of the

material, kg/m? (Ibm/ft?),
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c is the specific heat of the
material, J/kg * K (Btu/
Ibm - °F)

(0 is the internal heat generation

per unit volume within the
body, W/m?® (Btu/h - ft’)
is the time, s (h)
are boundary segments for
the body and both combined
together make the total boun-
dary of the system,
are the direction cosines,
q is the externally applied flux
to the body, W/m? (Btu/
h - ft?),
h is the convective heat transfer
coefficient, W/m? - K (Btu/
h - ft*°F), and
(/38 is the fluid temperature at
convection side, K (°F).

Both boundary conditions may occur simul-
taneously in a problem but may not occur on the
same boundary segments. The convection and
externally applied flux may occur across the same
boundary.

For an axisymmetric heat transfer problem, the
temperature at any time is independent of angle 6,
therefore, equation (1) with its associated boun-
dary conditions is reduced to:
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To solve equations (4) to (6) using the finite
element method, two approaches (variational and
weighted residuals) can be used. The details on
these approaches are given in finite element books
[2,3], respectively. To use the variational approach,
a functional must either be available or be derived
whereas the weighted residual approach can be
used starting with the partial differential equation.
Since the functional for the problems described by
equations (4) to (6) was available, we used the
variational approach.

The functional for an axisymmetric heat transfer
problem described by equations (4), (5) and (6) is
given by [2]:
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The surface integrals are over surfaces S, and S ;.
The surfaces have been shown as S, and S ; instead
of S, alone as in equation (6) because of the fact
that convection and external applied flux may
occur at the same boundary segment or may occur
along different boundary segments. In other words,
part of S, and §; may also be common. The
evaluation of integrals would be performed over
the surfaces along which the convection is prevail-
ing or the flux is being transferred. Therefore, from
here onward, the subscripts on S, and §, will be
dropped and S would be used in general terms.

When the functional F is minimized with respect
to nodal temperatures (¢} the following set of
equations results (Segerlind, 1976):
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[D] = material property matrix,

[N] = interpolation function matrix,

[B] = matrix relating nodal potentials to the

gradients,
[K] = conduction matrix,
[C] = capacitance matrix, and
[F] = force vector.

In equation (8), the derivative term was approxi-
mated by Euler’s backward difference technique.
This resulted in a set of equations (12).
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where the superscripts “ and “ indicate values of
temperature at time ¢ and ¢ + Az, respectively.

THE COMPUTER PROGRAM

To solve the set of equations (12), a finite
element program was written in FORTRAN. The
program can be used to analyze axisymmetric
transient heat transfer problems with specified
boundary conditions. The program is capable of
handling prescribed boundary temperatures, sur-
face convections, external fluxes across the boun-
dary and internal heat generation within the body.
The user must specify the initial temperature for
each node. The time step, number of time steps and
the frequency of printing of nodal temperatures
can be controlled by the user. The program uses a
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finite element procedure for temperature distribu-
tion at any time step and Euler’s backward dif-
ference technique in time for solution of the
transient problem. The final set of equations were
solved by the Gauss elimination method.

The program uses linear or quadratic triangular
elements. The automatic grid generation program
of Segerlind (1988, personal communication) can
be used with this program.

The program is written in a way so that it can be
added as an option in the FEMPAC (Finite
Element Method Package) developed by R.J.
Gustafson [4]. Detailed input-output description
for the program along with listing of the program
can be obtained from the authors.

AXISYMMETRIC TRANSIENT HEAT
TRANSFER EXAMPLE

Sample Problem Solved Using Heisler’s Charts

A sample problem given in Pitts and Sissom [5]
was used to test the results of the program. The
problem states ‘A solid mild steel, 2 in diameter by
2.5 in long cylinder, initially at 1200°F is quenched
during heat treatment in a fluid at 200°F. The
surface heat transfer coefficient is 150 Btu/
h - ft? - °F. Determine the centerline temperature at
the midpoint of the length after 2.7 min of immer-
sion.’

This problem s first solved using Heisler’s charts
following the method given in Pitts and Sissom [5].
The axial conduction is treated by assuming the
cylinder to be a slab of thickness 2L (the length of
the cylinder), but infinite in the y and z directions.
The radial conduction is treated by assuming the
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Fig. 1. Position and configuration of the nodes and the elements for Quenching Problem.
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rod to be of finite radius R and infinite in length.
From the solutions of these slab and cylinder sub-
problems, the final dimensionless ratio of tempera-
tures is obtained by multiplying these ratios for slab
and cylinder.

The material properties at the centre point
temperature of 572°F, as taken from Pitts and
Sissom 5], are given below.

K, = 25Btu/h - ft - °F
0 5p = 0.462 ft2/h

where K is the thermal conductivity of mild steel
assumed same in both directions and a is the
thermal diffusivity of mild steel. K and a need not
to be constant and could vary from element to
element.

Cylindrical subproblem

First Biot (Bi) and Fourier (Fo) numbers are
calculated from material properties and the radius
(R) of the cylinder.

1/Bi=K/hR = 25/(150)(1/12) = 2.00
Fo = at/R* = (0.462)(2.7/60)/(1/12) = 2.99

Using Heisler’s charts for cylinders [5], the
dimensionless centre temperature is given as:

(e — D)/ (§i — Po)int oyt = 0079

Slab subproblem

Similarly for the slab subproblem Bi and Fo are
found 1.60 and/or 1.92, respectively. Instead of R,
the half slab thickness L is used in calculating these
dimensionless numbers. Using Heisler’s charts for
slab the dimensionless temperature is given as:

(B — )/ (9 — $) = 0.4

The dimensionless temperature at the radial and
axial centre of the cylinder is 0.032 and, therefore,

é. =200 + 0.032 (1200-200) = 232°F

Sample Problem Solution Using the Developed
Program

The problem stated above was solved using the
axisymmetric transient heat transfer (AXTRHT)
program. The region was divided into 40 elements
as shown in Fig. 1. The input data for the discretiza-
tion of Fig. 1 was prepared (Fig. 2) and the prob-
lem was solved by executing the program.

Only the partial output is shown in Fig. 3. In
addition to the output shown in Fig. 3, the program
also prints out most of the input for checking
purposes.

The results obtained by finite element formula-
tion are within 11% of the results obtained by
Heisler’s charts. The solutions from the latter are
also approximate. The accuracy of the results could
be improved by controlling the time step, using
quadratic elements and/or increasing the number
of elements.

POTENTIAL USE OF PROGRAM IN
TEACHING

The utility of the program lies in its potential to
solve problems governed by equations (4) to (6)
with complex boundaries. The utility of the
program for learning by the students comes from
the fact that it will allow them to try many ‘what
happens when’ questions and will provide them
with a better understanding of the heat transfer.

Quenching of cylinder 2.0 in diameter and 2.5 in long without grid generation

0,0,10,0
40,30,7,1

2.0833333,2.0833333,1.041666667,200.0,0.0311921

- 5 1 7, 6,1,0.00,0.00,0.25,0.50,0.00,0.50
2, 1, 2, 7,1,0.00,0.00,0.25,0.00,0.25,0.50
3, 2, 3, 7,1,0.25,0.00,0.50,0.00,0.25,0.50

Element data for elements 4 to 38

39,29,24,25,1,0.75,2.50,0.75,2.00,1.00,2.00
40,29,25,30,1,0.75,2.50,1.00,2.00,1.00,2.50
180,10,0,0.0002777776

2,1,0,0.,0.,0.,0.

3,1,0,0.,0.,0.,0.

6,1,0,0.,0.,0.,0.

7,1,0,0.,0.,0.,0.

8,1,0,0.,0.,0.,0.

9,2,0,0.,0.,0.,0.

24,1,0,0.,0.,0.,0.

25,2,0,0.,0.,0.,0.

33,2,0,0.,0.,0.,0.

36,2,0,0.,0.,0.,0.

38,2,0,0.,0.,0.,0.

40,2,3,0.,0.,0.,0.

0,0,0,0.,0.,0.,0.

1200.0,1 20001200012000120001200 0,
1200.0,1200.0,1200.0,1200.0,1200.0,1200.0,
1200.0,1200.0,1200.0,1200.0,1200.0,1200.0,
1200.0,1200.0,1200.0,1200.0,1200.0,1200.0,
1200.0,1200.0,1200.0,1200.0,1200.0,1200.0.
0,0,0,0,0,0,0,0,0,0

Main parameter card

Control parameters for element data
Material property set

Element data

Transient parameter card
Convection, fluxes and
heat generation data

Termination card
Initial temperatures

Fixed nodal data

Fig. 2. Inputdata for quenching problem without grid generation.
2 p q gp gndg
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QUENCHING OF CYLINDER
MATERIAL PROPERTIES

SET  MAT PROP 1 MAT PROP 2 MAT PROP 3
KRR KzZ H
1 0.3472E-01 0.3472E-01 0.1734E-01
ELEMENT DATA
MATERIAL
NEL NODE NUMBERS SET R(1) Z(1)
1 1 7 6 1 0.0 0.0

ELEMENT DATA OF ELEMENT NUMBERS 2 TO 39 ARE OUTPUTTED HERE

40 29 25 30 1 0.7500 2.5000

TRANSIENT ANALYSIS

NO. ITERATION 500  TIME INCREMENT 0.01667

TIME = 0.0
1 0.120000E+04 2 0.120000E+04
5 0.120000E +04 6 0.120000E+04
9 0.120000E+04 10 0.120000E +04
13 0.120000E+04 14 0.120000E +04
17 0.120000E+04 18 0.120000E+04
21 0.120000E+04 22 0.120000E+04
25 0.120000E+04 26 0.120000E +04
29 0.120000E+04 30 0.120000E+04
TIME = 2.6666
1 0.203177E+03 2 0.203525E+03
5 0.203390E+03 6 0.205390E+03
9 0.204854E+03 10 0.204345E+03
13 0.205881E+03 14 0.205431E+03
17 0.206147E+03 18 0.205841E+03
21 0.205438E+03 22 0.205334E+03
25 0.204375E+03 26 0.202330E+03
29 0.203750E+03 30 0.203362E+03

MAT PROP 4 MAT PROP 5
TINF CRHO
0.20003+03 0.3119E-01
R(2) Z2(2) R(3) Z(3)
0.2500 0.5000 0.0 0.5000
1.0000 2.0000 1.0000 2.5000
3 0.120000E+04 4 0.120000E+04
7 0.120000E+04 8 0.120000E+04
1 0.120000E+04 12 0.120000E+04
15 0.120000E+04 16 0.120000E+04
19 0.120000E+04 20 0.120000E+04
23 0.120000E+04 24 0.120000E+04
27 0.120000E+04 28 0.120000E+04
3 0.203851E+03 4 0.203705E+03
7 0.205375E+03 8 0.205150E+03
1 0.206277E+03 12 0.206100E+03
15 0.204922E+03 16 0.206258E+03
19 0.205473E+03 20 0.204893E+03
23 0.205193E+03 24 0.204821E+03
27 0.203689E+03 28 0.203781E+03

Fig. 3. Partial output showing nodal temperatures at time 2.7 min.

Students can try solutions for different boundary
conditions, for different isotropic and anisotropic
materials by changing thermal conductivity values
and for different wind velocities by changing
convective heat transfer coefficients. As an exam-
ple, the problem described in the previous section
can be changed slightly as follows. ‘A solid mild
steel, 2 in-diameter by 2.5 in long cylinder, initially

at 1200°F, is exposed instantaneously to a surface
temperature of 200°F and is maintained at 200°F
for a long time. How long will it take to reach 200°F
at the axial and radial centre of the cylinder?’

The time predicted for this problem using the
program was 1 min which compared well with the
time predicted by following the procedure of
Fishenden and Saunders [6].
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