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A Monte Carlo Method Without Employing

Random Numbers™
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Department of Electrical Engineering, Temple University, Philadelphia, PA 19122, U.S.A.

This paper presents a Monte Carlo method which does not employ random numbers. The
solution from the method is therefore independent of the random number generator of the
computing facility. This procedure, known as the Exodus method, is generally faster and more
accurate than the conventional Monte Carlo methods (fixed and floating random walks). Typical
potential problems are solved to illustrate the method.%

INTRODUCTION

THE practical value in teaching Monte Carlo tech-
niques to undergraduate engineers has been shown
[1, 2]. It is recommended that such a development
be included in an introductory electromagnetic
course for a number of reasons. First, the method
presents potential theory from a stochastic view-
point rather from a deterministic model using the
energy equation. Second, the Monte Carlo
methods (MCMs) in potential theory help student
visualize the physical significance of some mathe-
matical techniques commonly used in solving
potential problems. For example, the use of
Green’s function has direct equivalent in Monte
Carlo solutions. Lastly, incorporation of MCMs in
undergraduate electrostatics can serve as a good
introduction to this widely stochastic approach.

The Monte Carlo technique is essentially a
means of estimating expected values, and hence is a
form of numerical quadrature |3, 4]. Although the
technique can be applied to simple processes and
estimating multidimensional integrals, the tech-
nique has been suggested for solving potential
problems [1, 5-9].

The most popular versions of the probabilistic or
Monte Carlo solution of differential equations are
the fixed random walk and the floating random
walk. These MCMs employ random numbers
which are usually machine dependent. Conse-
quently, the results are dependent on the random
number generator.

The objective of this paper is to present a Monte
Carlo method which does not employ random
numbers. This technique, known as the Exodus
method, is generally faster and more accurate.
Although, the Exodus method is discussed briefly
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$ The treatment is applied in an introductory course on
electromagnetics and takes two hours of class together with an
introductory lecture described in Reference (1).
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in [1, 11}, a complete development of the method
and its implementation is presented in this paper.
Typical potential problems are solved using the
Exodus method. The results are compared with
exact solutions or solutions obtained from other
numerical methods.

EXODUS METHOD

Consider the solution to solve Laplace’s equa-
tion

V2V =0 inregion R (1a)
subject to Dirichlet boundary condition
V' =V, on boundary B. (1b)

To obtain a Monte Carlo solution to (1), we first
divide the solution region R into mesh and derive
the finite difference equivalent of (1). Assuming a
mesh with Ax = Ay = A as illustrated in Fig. 1, the
finite difference equivalent of (1) is [1]

V(x,y)=p+V(x+Ay)+p_V(x—AYy)
+ Py V(x,y +A)

+p-V(x,y—4) )

where

Por. T Pi==p, = p,_ *1/4. 3)

A probabilistic interpretation to (2) is that a
random walking particle at an arbitrary point (x, y)
in R has probabilities p,,, p.., py+, and p,_ of
moving from (x, y) to the neighboring points
(x+A4A,y)(x—A4,),(x,y+A)and (x, y — A)
respectively.

We define the transition probability p, as the
probability that a random walk starting at point (x,,
Yo) in R ends at a boundary point (x;, y,) with
prescribed potential V,(k), i.e.

P = Prob(xg, yo = X, Yi)- 4)

If there are M boundary nodes (excluding the
corner points since a random walk never termin-
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Fig. 1. Configuration for random walk.

ates at those points), the potential at the starting
point (x,, y,) of the random walks is

V(xg, yo) = Z Pk Vp(k)' (5)

If m is the number of sides R has (m = 4 in Fig. 1)
and V,(k) is the potential of side k, (5) can be
simplified to

V(X0 yo) = ; PV k), (6)

where p, in this case is the probability that a
random walk terminates at side k. Since V, (k) is
specified, our problem is reduced to finding p,. We
find p, using the Exodus method in a manner
similar to iterative process applied in [10]. The
Exodus method,, first suggested in [11], does not
employ random numbers and is generally faster
and more accurate than the fixed random walk. It
basically consists of dispatching numerous walkers
(say 10°) simultaneously in directions controlled
by the probabilities of going from one node to its
neighbors. As these walkers arrive at new nodes,
they are dispatched according to the probabilities
until a set number (say 99.999%) have reached the
boundaries. The advantage of Exodus method is its
independence on the random number generator.
Let P(i, j) be the number of particles at point (i,
J) in R. We begin the application of the Exodus

P(i,j+1)

P(i-1,3) P(i,3) P(i+1,])

P(1,3-1)

(a)

P(1-1,3) + p _P(1,1)

method by initially setting P(7, j) = 0 at all points
(both fixed and free) except at point (x,, y,) where
P(i, j) assumes a large number N (say, N = 10° or
more). We scan the mesh by dispatching the
particles at each free node to its neighboring nodes
according to the probabilities p, ., p,_, p,+,and p,_
as illustrated in Fig. 2. Note that in Fig. 2(b), new
P(i,j) = 0 at that node, while old P(i, /) is shared
among the neighboring nodes. When all the free
nodes in R are scanned, we record the number of
particles that have reached the boundary (i.e. at the
fixed nodes). We keep scanning the mesh until a set
number of particles (say 99.99% of N) have
reached the boundary. If N, is the number of
particles that reached side k, we calculate

= Nk 7
DPx N E (7)
Hence (6) can be written as
kz N (k)
V 5 = -]—__ 8
(X0 Y0) N (8)

so that the problem is reduced to just finding N,,
given N and V, (k).

TYPICAL EXAMPLE

We now illustrate the Exodus method by means
of three examples. The first two examples have
analytic solutions so that the accuracy and validity
of the method can be checked. The calculations in
the first two examples will be done by hand for
pedagogic reasons. Of course, the results of these
calculations can be improved by using computer.
The third example do not have exact solution. Its
computer solution is compared with results
obtained from other numerical techniques.

Example 1. Given the one-dimensional differ-
ential equation

=m0 0€x%1
subject to ®(0) =0, ®(1)= 10, use the Exodus

method to find ®(0.25) by injecting 256 particles at
x-m=)25

P(i,j+1) + py+P(i,J)

P(1,3)=0 P(1+1,]) + px+P(i.j)

P(1,5=1) + p, P(1,3)

(b)

Fig. 2. (a) Before the particles at (i, /) are dispatched, (b) after the particles at (i, /) are dispatched.




318 M. N. O. Sadiku

Solution

The exact solution to this problemis ® = 10x so
that ®(0.25) = 2.5. To apply the Exodus method,
we first obtain the finite difference equivalent of
one-dimensional ordinary differential equation as

Q(x)=p@(x +A)+p P(x — A) ©

where p, = p_=13. Since we are interested in the
value of @ at x = 0.25 and the calculations are to
be done by hand, we select A =0.25 so that there
are only 3 free nodes (x = 0.25, 0.5, and 0.75) and
2 fixed nodes (x =0, 10) to work with. As
illustrated in Fig. 3, we initialize with 256 particles
at x = (.25 while setting the number of particles at
other nodes equal to zero. Starting with the free
node at x = 0.25 and proceeding to the free nodes
at x = 0.5 and x = (.75 in that order, we dispatch
particles according to probabilities p, and p_. The
firstiteration is completed when nodes at x = (.25,
0.5 and 0.75 are scanned. We repeat the scanning
or dispatching process for several iterations. To
avoid confusion, each time a free node is scanned,
we cross out the old number of particles at all
nodes. (Note that at each scanning or iteration, the
total number of particles remain 256.) After the
sixth iteration, we obtain
190 63

P(0.25)= —. —.10=2.461
( ) 256 od 256

which is only 1.56% off the exact value of 2.5.

Example 2. Use the Exodus method to find the
potential at node 4 in Fig. 4. Inject 256 particles at
node 4 and scan nodes in the order 1, 2, 3, 4.

190 2 1 0 63 |
A90° 2 -0~ . 62 6th iteration
290~ 2 4 o &2
288" -+ 2 o 62
288 4 -0 4 66| 5th iteration
188 o KR . &6
284 -8 4 o 66
284 -8 - -8 $6| 4th iteration
184 - X6~ -0~ 56
276 26 -8 - 56
X766~ 36 - <6 48| 3rd iteration
376 -8- 32— - 48
166~ 32— 26~ -0~ 48
166 22— -0 32 32| 2nd iteration
166 - 64 - 2
128~ 64— 32~ - 32
328 64— -0 4 -0 1st iteration
128 o 120 o -
€ 256" - o -- | Initialization
| x
1] 0.25 0.5 0.75 1.0

Fig. 3. Result of hand calculation for Example 1, the uncrossed
values are the number of particles at each node after the sixth
iteration.
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Fig. 4. For Example 2.

Solution

The exact solution obtained by the method of
separation of variables in [10]

V(x,y)= 4]0%0 2 smk.n'xsmhk.ny, i B
=  ksinhkn
so thatat node 4, V, = V(3, %)= 11.928.

To apply the Exodus method, we initialize by
setting the number of particles at all nodes equal to
zero except at node 4 where 256 particles are
injected. We scan the free nodes in the order 1, 2, 3,
4 and dispatch particles as explained in Fig. 2 and
displayed in Fig. 5. After the fourth iteration, we
obtain

N, = no. of particles reaching 100 V' side
=104 21 =31.

Hence

4
31
V,= V== .100=12.11
4 E k" k 256

which is just 1.5% off the exact value of 11.928.

Example 3. Use the Exodus method to deter-
mine the potential at points (1.5, 0.5), (1.0,1.5),
(1.5, 1.5), and (1.5, 2.0) in the two-dimensional
potential system in Fig. 6.

Solution

Unlike the first two examples, this example is
solved by developing a Fortran code based on the
Exodus Method. Using A=0.05 and initially
setting the number of particles at all nodes to zero
except at the node whose potential is required,
where N = 10° particles are initially injected, we
scan the free nodes several times until the total
number of particles absorbed by the fixed or
boundary points has reached 99.999% of N.If N,
N,, and N, denote the number of particles reach-
ing boundary sides with potential 20V, 30V, and
0V respectively, then

3
> NV,

Vgl magg
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Fig. 5. Result of hand calculation for Example 2, the uncrossed values are the number of particles at each node after the fourth iteration
(not drawn to scale).

2V By running the program for different points, the
25 result in Table 1 was obtained. Since the problem
has no exact solution, we compare the result with
8.4 those obtained using the floating random walk
' Monte Carlo method with A= 0.05 and 2000
walks and finite different method with A = 0.05
1.0 and 500 iterations [1, 10]. As evident from Table 1,
the Exodus method provides a more accurate solu-
/1 tion in less amount of time compared with the float-
ing random walk.

oy 3
>

ov

=

1.0 20 %

Fig. 6. For Example 3.

Table 1. Results of Example 3

Exodus method Floating Random Finite difference
x y 14 Walk (V+9) solution (V)
L5 0.5 11.53 11.55 £ 0.5956 11.44
1.0 1.5 10.89 10.84 £ 0.3646 10.44
1.5 1.5 19.57 19.81 £ 0.4073 19.21
1.5 20 21.35 21.4510.2531 21.07
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