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A technique is presented for modelling prescribed force machinery systems using a digital

computer and a simulation lnngunaﬂ annropriate to the Pnrnr-ufnr computer availahle. The

puier uage appropriale wouar

technique utilizes d'Alembert’s principle and loop constraint equations, to determine the
nonlinear ordinary differential equations describing the machinery system. The set of differentiaf
equations is treated as an initial value problem to determine accelerations, velocities, displace-
ments and reaction forces for a cycle of motion or for whatever time interval is of interest. Utiliza-
tion nf a simulation language fnr the solution nf!hp equations representing the nhuurﬂl system

ac comp!uhe&. the process Gj generarmg accurate, relzable numbers for variables of interest with a
minimal inveivemeni in ihe aemu.s U] me numeruw aecnmque.s (Jemg uuuzed Tfib’ paper
expands the basic development outlined in a previous paper to illustrate the use of the simulation
hmgrmge for modelling dynamic (prescribed force) systems. When utilizing a simulation language
in the unrlprpn;rhm!ﬂ instruction of machine kinematics and dynamics, the transition from

kinematic to dynamac models is exlreme!y s!ratghtforward Students have minimal dtjﬁcu!ty in
undersianding ihe concepis required io implemeni ine more realisiic dynamic modeis. There are
Just more equations to deal with, but the equations are essentially the same as those used in the
kinematic models. The presentation in this paper is such that an instructor can easily extend the
concepts involved with simulating kinematic machinery systems, to include dynamic systems. As

wirh the kinematic Aimulaliom, the results are generamd for any desired time duration, rather

WY PP L, fama s e ha thho neca if aennl ] e e d nalaiilatine mantlnde sviines
l"u" uuluwu VUU'HJ H’l Liffi€ Gs WU“!“ e inc Lo iy 5’“}1"“.“! ur nunu Luuuluuurt meincas were
utilized.
INTRODUCTION is particularly important when developing a realis-
tic model of a prescn'bed force problem. The
A PREVIOUS paper {1] introduced the constructs reaction forces for the example when operating at
of using a simulation language appropriate for ‘steady-state’ are compar@d with the reactions from
modelling kinematic (prescribed motion) machin- the kinematic model with interesting results.

ery systems. The basic technique utilized the loop
constraint equations in second derivative form for
the description of the system motion, and Newton’s
second law, in the form of d’Alembert’s principle,
for the force relationships. As is typical for kine-

matic cvcteme tha matinn and farce nrohlame were
RAUC §ysiems, 1€ mouoen ana 10ree proo:cims weic

treated separately.
This paper considers the simulation of the

dyn: IC or prescrlt)eﬂ force pI'ODlCmS USIIlg me
continuous mmnlahnn IanmmuP AFQT These

goveming motion and force equations, and the

Qurat e Y L Sy e | Lcrn:anl

Sydieiil Ul t:quauuxm lUpl CSCLLLE LH.C pllyblbd.l

system is considered as an initial value problem.
The example given here is an extension of the

single-cylinder englne considered previously [1]. In

the nracant invactigntinn tha etart_nin hahavinr af
g l.uva\.rllt ulv\.«uusauuu, Ulv Slalil"upy vviliavivi vl

the engine is of interest; i.e. how the engine reaches
steady state’. This example indicates the ease with

. Ty}

which the effects of dnvmg forces may be mCOI'pO'
rated into the simulation of 2 pqr’hnulqr device Thic

= AV AT salllviauvna Ui a vuaal BT VAL, A28
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THE DYNAMIC SINGLE CYLINDER
ENGINE

atic and vector 1

Fioure 1 i¢ m
RRAG LA

Figure 1 is the sche vector loop
representation of the single-cylinder engine [1].
The second order differential equation relating the
kinematic variables of the engine were developed

in reference lll and are:

el B et

— R __cin

\ . A\
2’ 1\3\1‘-3-0“1\03}
cos(

s(6,) + Rswicos(6,)

R,a;cos(6,) + Rya;cos(6;) — S
= l{zwzsm(ﬂz) + K3w3sm(u3)

........... inme AN nmd &\ frnmn rafaranca

lllt:bt: are €quaiiliis (&) alit (J) 11Ul Iviviviice
[2], slightly rearranged. The rearrangement groups
terms mvolvmg unknowns on the left-hand side of
the equatlons and ‘known’ terms on the right-hand

cidae Tha tarme nn tha richt-hand cide will he
SIUCD. 11w tbluln Ull uiv 1IgiTlaiiu Sie vYais U

known from initial conditions at the start of the
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Fig. 1. Schematic and vector equivalent of a single-cylinder
engine.

simulation. As the simulation progresses in time
these terms will be recalculated from the results of

thaintanratinn nranacg

e uucsx auuvll }J‘l ULLoo.

On the left-hand sides of equations (1) and (2)
there are three unknowns, the angular accelera-
tions of the crankshaft and coupier, a, and a3, and

the acceleration of the niston [ For the dvnamic

s avllaviQuiin Ol Ul E-1E0 8 P, B wal S yaaaiis

model of the single-cylinder engine the angular
acceleration of the crankshaft, a,, is not known.
Thus, it is impossibie to solv i
vanahleq at this point, as wa:

Aliaies UILLIL; 45 101U LIE PIC

scribed motion problem described previously [1].1t
will be necessary to consider the forces acting on

cyctam gimmultananiicly wiath tha matian an

th Dyblclll DLI.]J.I.U.LO.H.EULIB].)’ WYLl e 11ivuvil U\.lb‘la:
tions.
The applied and reaction forces acting on the

dynamic engine are indicated in Fig. 2. The gas

faree actino on the nicton which drivec the enoine

1UIVE GUiidig Uil UiV PIOULL WILLIL B1IVLD Wil Ciigiiie

will be denoted as F,,, and is due to an air standard
Otto cycle. The viscous plus viscous squared drag

1 ___ _a

torque acting on the crankshafi will be denoted
as T...

= Tur

From reference [1], the scalar equations repre-

senting the force in.teravtions between the indi-
vidual parts of the engine are:

_F3 4y mAS =F,,, (3)

L - wau AN

F,,,—F,;,—m;a; =0 (4\

s L% ITox \7

Fi4y—Fy3,— mya;,=0 (5)
Fopet Foyp—mya,, =0 (6)
F2.3y+F2|i,v_ m2ﬁ2y= ) (7)
R ~rnclANR — R _cainifA — T
1\2\.\)3\\}2)1 2‘3}, A\zﬂlll\vz}l 2 “r lzuz
— chos(t?z)mza;}.
+ Risin(8,)m,a,, =T, (8)

R;cos(0;)F;,,— Rysin(63)F; , — Lia,
— Rj3cos(6;)m; a‘)
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To equauons ( (4) represemmg the kine-
matic relatlonshjps of the system, are added the
above force interaction equations for a total of nine
independent equatlons Ihere are now three

nnlknawn matinn varinhlag nd civ
UIIRNOWIL INOUGI vVaiiaoics \us, u.; ana ..;;, SiX

unknown reaction force components (F,4,, Fi4,,
Faso Faap Fz-,”’ and F, ) and four unknown
components of mass center acceleration (a,,, @,,,
a. and g \ Each of these comnonents of mass

gy @il a AGlal Ui Elob SRRSO 2RA8s

center acceleratlon can be developed in terms of
the unknown angular accelerations and ‘known’

Two strategies are available at this stage. Expres-

sions i‘é ﬁlvle mass center accelerations could be
developed and substituted into equations (4)-(9).

Thic wrnild l

(8] ¥ Q
This would resu n cat nf cimnltanannc

l ;ll a 7 Z oLl Ul Jdlludilanivuus
equations to solve at least once for every integra-
tion step. Alternatively, the nine equations above
couid be suppiemented with four equations for the

comnonente of the mace center accelerations, Thig

SULLIPULILIILS VL UL LGOS Vhdiitvd QUL lati QLS. 1108

results in a 13 X 13 set of simultaneous equations.
Adopﬁng the philosophy that it is easier to get a

simuiation runmng Correctly with a lot of relatively
cImnle emmtlnna than it is to reduce the number of

equatlons through extensive algebraic manipula-
tions, the model of the engine will be implemented
PRy 0 Jrpny P S e S ]

as a 13 X 13 problem. The €quations ior iné
components of mass center accelerations are:

—R’ —_ Rl
a,, —Rja,sin(8,)=—R wjcos(6,;) (10)
— . ~nc B e— ’ i) 2("
a,,— Rja,cos(8,) Riwisin(8,) (11)
po SN » RRUEREY Y « TR B » JU R RN s TRY
U3X T 1\2u2 11 Uz) T InNyUL DL U3)
= —R,wicos(h,) — Riwicos(8) (12)
a. —R,a,cos(8.Y—R'q. nnq(ﬂ )
3y Z i _u J"'J ‘i\ 37
= —R,wjsin(6,) — Rw3isin(65) (13)

The parameter R} is the dlstance from the center of
the main bearings to the mass center of the crank-

shaft. In the present example, this will be zero to be
congistent with the examnle from reference [11.

MUIASASITAAY WWalid AT TAQEAIPAT LI AARA AT

Equations (10) and (11) will be included in the
model for ease of evaluatmg sltuatlons where the
crankshaft is not pe bala
the midpoint of the rod, dlstanc

Equations (1)-(13) represent the mathematical
model of the engine and were implemented to
simulate the dynamic engine using the digital
simulation language ACSL. No additional con-
structs from the ASCL language beyond those

intraducrad in rafaranca [1]1 ara raanirad ta imnle-
AMALLVUUYWLL ML Ll Wil l.l.j @l lv\iullw (A V) llllrlv
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ment the dynamic model of the single-cylinder
engine. A procedural block is required which
accepts position and velocity information, and the
ph\mnnl narameters of the svstem (lenoths, inertias

....... CLEILILA S U 2220 S YO AN EaLS,y AN AS

and masses). The output of the procedural block is
the reaction force and acceleration information
The pi‘OCEuul al block per rforms the function eval-
uation process discussed in reference [1]. This is
accomplished by solving the 13 X 13 set of simul-
taneous linear equations using an external library
rantina rallad fram tha ACCT nraasram Ra -
LTUULILLIGY VALLIVU LIV LI DALy Pl Uélﬂlll I\Ulll\illl
ber that it was not necessary to solve any simul-
taneous equations for the kinematic system. The
mathematicai modei incorporates the same air
standard Otto r‘w*lp to drive the encine and the

swalilialel LA LA WLl Al Laipanae Qaae

same Viscous plus viscous squared load torque
acting on the crankshaft that were used in the
kinematic model of reference ll'

At this point it is perhaps appropriate to indicate
the major philosophical difference between the

present work and that of Timm [2]. The approach

davalanad hy Timm reacnlte 1in fawar anuatinneg tn
ULyLIUpLU Uy I 100U L ITwll CYuauuins o

solve at each integration step, at the expense of
considerable algebraic manipulation on the part of
the individual impiementing the simuiation. The
Timm annroach mlght start h}f reducine the nrob-

lem to a 9 X 9 by utilizing equations (10)-(13) to
eliminate the unknown componems of mass center
acceleration from equations (4)—(9). This would be
followed by the selection of one of the motion
variables and four of the reaction force variables as
primary variables and further reduction of the nine

cimultananiie aniiatiang o Adal haocad Fivra
saluIanvuUuy ‘.r\.luallullﬂ lU a IIIUUDI vasvu Ull muve

simultaneous equations. If any of the variables
which are eliminated in the algebraic process are of
interest they must be developed with explicit
aloebraic eqnationg after the colution of the § X §

gebraic equations after the solution of the 5 X 3
set of simultaneous linear equations. Models based
on fewer simultaneous equations tend to be more
computationally efficient. However, locating alge-
braic errors in the model becomes tedious as the

number of equations is reduced, because of the
algebraic complexity of the equations In addition,
the model based on a larger number of equations
need not be computationally cumbersome if sparse
matrix techniques are utilized. This was pointed
out by Oriandea et al. |3]. Models based on a large

number of relativaly cimnla anuatinne tend tn ha
‘‘‘‘‘ AULE UL dtlauvoly SHIPIC C{UauUIls wonu W ue

quite sparse as indicated by the above example.
Sparse techniques have not been applied to the

cxaulplc sunuumon since Sa[lSIaC'[OTy accuracy and
execution times were ohtained without them. The

basic philosophical difference between the present
work and that of Timm is that here the burden of

nnravallime ¢ U PRVL R T | T ..

uliiaveuiiig I.llC ICldllUllblllpb veLwecl vdl ldUle lb
relegated to the simultaneous equation solver, used
with the simulation package. The technique devel-
oped by Timm places a considerable proportlon of

thic effort an the individnal wha i imnlamanting
FRAAU WALWAL WL ULV LlIdIYIUUAL YWIIV D llllplvlll\tlllllls

the simulation.

RESULTS AND OBSERVATIONS ABOUT
THE ENGINE EXAMPLE
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The single-cylinder engine
determine various spa rameters and 1tems of interest
about the system. One of these items of interest is
the determination of the ‘steady-state’ speed of the
engine with the given driving thermodynamic cycle
and load torque. Steady-state must be carefully
interpreted, since the dynamic model does not

avhihit a ranctant rranlbchaft r nm acwac acciimead
VAldLIVIL A vuldwalltl vialinoliiairt I.P.lll. aAJ YYAJ dvouliivua

for the kinematic version of reference [1]. Here,
‘steady-state’ will be taken to mean when the time
for a compiete cycie setties out to a constant vaiue.
The model was started from rest with the crank-

shaft at 95° to the positive x axis of Fig. 1. The air
standard Otto cycle was ‘turned on’ and allowed to
accelerate the t‘:ﬁgiﬁe Lip to Sp&&u The first second
of the process is shown in Fig. 3. Notice that as the
engine comes up to speed, the time for a cycle
decreases. The cycie—time stabilizes to 0.0248 s in

ahannt 1 § ¢ aftar ctarting from ract Thig cusla_tima
auvuul 1.0 O dallvl swalx Lllls LIWLIL 1O, A 111D Uy\—l\r (S8 S iwy

would correspond to a constant angular velocity of
252.336 radians per second. However, the crank-
shaft anguiar veiocity during a cycie is definitely not

constant ag wag agcsumed for the kinematic model

LAMIASIAAAL QS Yvads Gosowanatil AU LT KAINUILNGUL USSR,

The crankshaft angular velocity varies from about
202 rads s‘1 during the compression phase of the

= £ e AAA A =] e el 1 L
cycu: O an gﬂ Ol apout 044 raads § ~ at ui€ €na o1
the expansion phase of the driving thermodynamic
cycle.

The reaction forces during a single ‘steady-state’

Arunla ara indisatad in Fia A4 Tha timaceala wac
\’y\'l‘t aiv uiuIvalvua ui o1 lsn-f lll\i LILIIVOVaIN  Yvao

selected so that the crankshaft is passing through a
horizontal 0°, rotating counterclockwise, at the
start of the piot. The top dead-center of the cycie is
at T = 1.035 g and bottom dead-center is at T =

DU BT RtV 2

1.965s. The plots stop at T = 1.972s as the
crankshaft agajn rotates through the horizontal

zero. This scale COTI'ESpO[lUb to the abscissa of

8  DYNAMIC ENGINE COMING UP TO SPEED
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Fig. 3. The dynamic engine coming up to speed.
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Fig. 4. Sieady-siaie dynamic engine reaciions.

Fig.5 from [1], ie., both plots start with the
crankshaft horizontal and rotating counterclock-
wise. The system parameters used for the dynamic
model are the same as those used for the kinematic

model and are presented in Table 1 of [1]. In Fig. 4

the ton cnrve ic a nlat P Cince the
I WP LulYe 5 a paU 1 « JAILT Uil

crankshaft was modelled as perfectly balanced, the
magnitude of the reaction at the main bearings will

be exactly equal to the reaction at the crankshaft
r‘nnnPr‘hnu rod connection. The lower curve is a

plot of the reaction of the wrist pin connection
between the piston and connectjng rod.

Co*p‘“"lg the reactions from Fig. 4 abo /€ With
the 1nemat1c T a tions from Fig. 5 of reference [11

nly the general shape of the
curves is the same. The particular angular velocity

calantad far tha Linamatin madal wvialde tha gama
ovivuvivu 11Ul LG n.uu.,iua.u\.. Hmivuvl ylbluﬂ uiv saiiiv

period for the system as the dynamic engine at
‘steady state’. Calculations of peak reaction forces
wouid be seriousiy in error if the kinematic modeli
were used to prpd:nf the mag;uhu-lnc of the reaction

~ ol 1AV MY LG el it UuLY Vi M 1 vl

forces. There are two reasons for this. The kinema-
tic model assumed a constant crankshaft angular

YN o o U T S, i T | I

vciu(.ily or a, = . The dynamic model aliowed a,
to vary in response to the external and reaction

plise 10 U2 wicliidal 4allll 1edctiio

forces and torques acting. Variations in a, result in
accelerations of the connecting rod and piston in

nanardaman wrsdl amac o dl e o N nm A Y Tho cnnas

avlulualive Wil Cyuauulnn (1} dliu (2} 1 I.I.C bCLUlIU
effect of considering the variation in crankshaft
angular velocity is the resultant changes in the
angular velocities w, and ;. Terms involving these

miantitiee eanarad ncenr thranoh annatinne (1M
MO LIVD ..:\.lu(.u\.ru VL UL MUUUELL VUMV 1AV

(13); explicitly in equations (1), (2) and (10)~(13);
and implicitly in the center of mass acceleration

PN

terms of equatlons (J) (9) lnus CODSlderaDle
difference will occur dnnng a r‘}mlp between these

11N L) fud § L0 ot 222 SRR RaNeiill AT U Teii waaUow

terms for a constant crankshaft angular velocity
and for the Ume-varymg crankshaft angular velo-

S LI_

Llly dthleu:u WILUl
example indicates th

ascertain the apppropriateness of a kinematic
:'iSS'l.impﬂGu For the eng*me exampic the use of a
kinematic model for selection of bearings or
member cross-sections could result in a less than

satisfactory design.

CONCLUDING REMARKS

A technique

echny 1T
both kmemati d dynarmc machinery systems
which is simple and stralghtforward to apply The
basic strategy is to establish the differential equa-
tions appropriate to the physical device and inte-
grate these equations through a time interval of
interest; one cycle for kinematic systems.

The integration process requires accurate initial
conditions. For kinematic devices using a velocity-
based simulation, only one set of accurate posi-
tions is necessary. The velocity information is

oenerated durino the filnctinn eavaluatinn nrocece
gYiiviacl Gullllg uid 1ulivulll CVaiuaulll proccss.

Acceleration-based kinematic simulations require
an accurate set of positions and velocity informa-

tion IOI‘ ll'l_ltlal conditions. All reacnon force and
acceleration information is cenernted dunno the

function evaluation process. The example presen-
ted for kinematic simulation indicated the accu-
racy of the process, since the end of a cycle did
indeed look like the start of the same cycle to
several significant digits.

Some of the extensive programs for modelling
mechanical systems which were mentioned in the
Introduction of reference [1] are very suitable for
modelling kinematic systems but lack the capability
of modeiiing the dynamic system. It has been
demonstrated that the
approach presented here can model dynamic
systems as easily as kinematic systems. Terms
sxihenk zraes e | T p———

wihich were known 1 kinematic simulation
become unknowns in the dvnamic simulation.

U 111 1 yalllle  SUINUI4UUL
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These are readily found by the solution of the
system of equations which results.

Another au'v'amage of the meumuumgy presen-
ted here is that any item of interest in the physical
system is generally available as a parameter some-
where in the problem formulation. This parameter
can be accessed without resorting to additional
auxiliary equations for its evaluation. Part of the
ease of implementing a simulation with the meth-
odology presented is the emphasis on a large
number of relativelv simnle Pqnqhnnc rather than

eiiiULE UL ARGV Salipat LMaaalNAS 1QuEatl uiaal

few, algebraically complex, equations.
The authors have found, from their educational

environments, that students are most willing to
accept the digital simulation approach to modelling

machmery systems, once they realize the short-
comings of more conventional approaches. It is
most gratifying to find these same students utilizing
the simulation language in other courses (heat
transfer, circuits, vibrations, automatic control,

etc.), even when linear, closed-form techniques

mav he availahle there

iy vv avaunauviv wuavic,

It is hoped that the detail and example provided
in these two papers will encourage other academics

to incorporate digital simulation techniques into
their kinematics and dynamics of machinery

COUrses. \_,U[Jle UJ. I.I].C ﬂl_,DL PIOgIalils dic d.lel—
able from the authors on request.

SUMMARY

This paper details the use of a continuous system
simulation language for modelling dynamic
machinery systems. The authors use the same

pqnnhnnc that were used to describe kinematic

Maullils uaad LTSLIIUT Rttt

machinery systems, and apply them to the simula-
tion of dynamic systems. The resultant force-

acceiefanon model is treated as an initial value,
differential equation pro oblem. The transition from

kinematic to dynamic models is straightforward
and utilizes no fundamentals beyond those encoun-

tarad in o firgt .-l-.n ming nntireas In an indararadns_

tvlivu a1 a11iot UJ’ ALILILD VUUL DL, 11l Al uuu»lsl auu~
ate education environment this approach
reinforces the student’s basic mechanics back-
ground while experiencing a solution methodology
for nonlinear differential eguations which is npphr‘—

Vi aUNARANTALD BLiATI Tl Ty nauiiis Waakai s &

able to many technical areas beyond dynamics of
machinery.
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