Int. J. Engng Ed. Vol. 13, No. 2, p. 90-97, 1997
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 1997 TEMPUS Publications.

Comprehension Exercises:
A New Type of Examination Question

MIKE HOLCOMBE

Department of Computer Science, University of Sheffield, 211 Portobello Street, Sheffield, S1 4DP, UK

For many subjects in the arts area, particularly languages, comprehension exercises are a
Sfundamental aspect of the teaching of the subject. Students are given a passage of prose or a
poem which they have probably not seen before and then asked a number of questions about it to
test their understanding of it, to ask them to critically analyse the passage and perhaps to develop
some of the ideas and themes further. Since much of computer science is also language based,
particularly in the realms of formal methods and the theory of computation, the issue of
comprehension, criticism and development are also vital issues. We have been introducing
comprehension exercises into some of our examinations in order to develop and assess these
skills explicitly. In fact we have been doing this since 1988 and the conclusions from this, together
with some examples of examination papers, are given.

1. INTRODUCTION

COMPUTER science and software engineering
are highly dependent on the representation of ideas
and concepts using a variety of—often highly
abstract—Ilanguages. These range from the well
known programming languages to formal speci-
fication languages, formal logics and ultimately,
mathematics. In all language-dependent activi-
ties the comprehension of the language is a vital
component and one that is directly addressed by
educators in the foreign language and English
language community. With their centuries of
experience they have evolved approaches to teach-
ing and assessing which can provide us with many
interesting ideas.

Within the realm of teaching programming
languages we have often asked students to explain
the behaviour of a piece of code, perhaps to
criticise it and possibly correct and/or extend it.
However, in computing, language does not just
stop at programming languages and the emphasis
of this paper is on using the same ideas in the
context of theoretical computer science and formal
methods. It turns out to be an excellent way to
find out what students can do when faced with
unfamiliar situations and to encourage a deeper
appreciation of the subject and the development
of a powerful set of skills for coping with
potential new ideas and terminology of the
future. This last aspect is vital in a subject that
is changing so rapidly and the needs of students
in their future careers to be able to come to grips
with new languages, concepts and discoveries
rapidly and in a meaningful way, will be of
paramount importance.

* Accepted 30 November 1996.

90

2. BACKGROUND

All undergraduate students in the Department
of Computer Science must take a second-year
course in Theory of Computing as well as one in
Formal Methods. These courses follow intro-
ductory modules on these topics in the first year.
All third-year Computer Science students take a
course on Advanced Theory of Computing; for
Software Engineers it is optional. The compre-
hension exercises are part of the second and third
year examinations in Theory of Computing and
Advanced Theory of Computing.

The papers are divided into two parts, the first
part being a compulsory comprehension exercise
and the second part being of a more traditional
form. In the first part an article is presented which
might range from 3-5 pages long on a subject
related to the material that has been discussed in
the course but which presents an aspect which is
new to the class. The source of the article might
be a research paper or a section in a book. Due
attention needs to be given to the copyright
situation and if permission to reproduce the
article is not obtained then it does involve the
examiner in writing the article themselves. This is
not as onerous as it sounds and one can take
the opportunity to define concepts and terms
and to provide examples and motivation to an
appropriate level for the class.

Following the article are a number of questions
that try to:

® establish how much the student has understood;

® determine whether the student can develop some
of the ideas—perhaps by completing a proof or
explaining how the material applies to a specific
example;

® require the student to evaluate the material,
perhaps contrast it with other approaches and
to critically assess it.

Comprehension Exercises: A New Type of Examination Question 91

The structure of the papers has to allow for the
extra reading time that is needed for these com-
prehension questions or the articles that form the
subject of the comprehension have to be circulated
a few days before the examination. We have tried
both arrangements and both seem to work. It
really depends on the length and complexity of
the article whether it needs to be circulated before-
hand. If the question is not distributed beforehand
then the marks allocated for the first section need
to be quite heavily weighted to prevent an unfair
situation. Thus, for example, in a 3-hour examina-
tion the marks available for the comprehension
paper might add up to 40% and the rest of the
paper, consisting of a choice of 3 questions from 7
each worth 20%. This was the case for the example
in Section 3.2.2 where the paper was circulated
prior to the examination. In the example in Section
3.1.1, the comprehension question was not circu-
lated before the examination; it was worth 34
marks and the rest of the paper consisted of 7
standard style questions, worth 17 marks each, of
which 4 had to be attempted. (The final percentage
mark for the course was obtained by combining
the examination mark with the practical and
coursework marks from the rest of the course.)

The examples in Section 3 illustrate the sort of
articles and questions that we have used in recent
years.

The preparation of the class for the papers takes
a number of forms. First they are used to obtaining
papers and other sources from the library (and
more recently the “Web’) summarising their con-
tents and presenting their views to their classmates
and tutors. This provides them with some of the
skills. In the course of the lectures we also hold a
number of tutorial sessions that directly address
the process. In the course of these we circulate
short articles for them to spend 30 minutes or so
reading and then have a few questions for discus-
sion of the type that are found in the examination.
This provides them with some further experience in
the sort of approaches that might be successful in
the tackling of comprehension questions.

3. EXAMPLES OF EXAMINATION PAPERS

3.1. Second-year comprehension questions

3.1.1. Example 1. Read the following passage carefully and then
answer the questions which follow. This passage is closely
based on the first few pages of Chapter 1 of J. H. Conway’s
book Regular Automata and Finite Machines (Chapman & Hall,
1971).

Moore machines

A Moore machine or Moore automaton is a special form of finite
state transducer where the output from any state s is the same
for every input. Formally, a Moore machine M consists of:

(a) an input alphabet, I

(b) an output alphabet, O

(c) a finite set S of states

(d) a transition function, t:Sx I — S
(e) an output function, 0:S — O

(f) a particular initial state i.

We assume that t is a total function, so that every state has a
transition on every input. The pair (I, O) is called the console of
M, i.e., the console specifies which symbols are accepted and
which are printed by M. We may draw Moore machines in
much the same way as finite state machines can be drawn,
indicating the initial state with an arrow, and marking each state
with its associated output, so that, for example, the Moore
machine M; specified by:

I={a,b}, 0={0,1}, S={ij}, t(i,a) =], t{i,b) =1,
t(j,a) =j, t(j,b) =1, o(i) =0 and o(j) = 1,
is represented by the diagram (Fig. 1).

b a

Fig. 1.

The state t* (s, w) reached from a given state s on an input string w
is completely determined by s, w and the transition function t,
and may be defined by t*(s,\) =s, t*(s,wa) = t(t*(s,w),a).
Thus t*(i, baa) = j for machine M;.

The path p(s,w) taken from state s €S on input string
W =aja,...a, is the string of states visited on the way from s
to t*(s,w), and is defined by:

p(s,ajaz...a,) = st*(s,a;)t"(s,a1a2) ... t°(s,a1a2 ... ay)

Thus
p(i, baa) = iijj.
The output string o*(p) of any path p in S* is the string of

outputs of the individual states in p, so 0*(A) = X and o*(ps) =
0*(p)o(s). Thus o*(iijj) = 0011.

The observation obs(s,w) of a state s on an input string w
consists of the output string of the path taken from s on w,
i.e., obs(s,w) = 0*(p(s,w)). Thus obs(i, baa) = 0011.

Experimenting on Moore machines

The theory of experiments is developed under the assumption
that the only immediate information a user can extract from a
Moore machine in a given state s is the output o(s) of that state,
so that the user has no direct knowledge of the state of his or her
machine. However, by choosing different input strings and
observing the outputs that result, a user can infer information
about the states of her machine, and in particular may be able to
distinguish between the different states.

Formally, we may specify an experiment as a function: e: O* —
I U A where A is an answer space (e.g., O*) disjoint from I. To
perform e on a Moore machine M = (1,0, S,t,0,1) (which will
be in some given state s) execute the following routine:

(0) At the start, observe the output x = o(s) immediately
available.
(1) Suppose the string input so far is w and the string so far
observed is z (so that z = obs(s, w)). Evaluate e(z).
(2) (a) if e(z) =a €1 then extend w to wa and extend z to
zx by applying a to M and observing the new output
x = o(t*(s,wa)). Then go to (1).
(b) if e(z) ¢ I then stop, taking e(z) as the outcome of the
experiment.

Thus the choice of a new input depends on the outputs so far
observed. Note that we may perform e on any Moore machine
with the same console as M. Note also that it is possible for the

92 Mike Holcombe

performance of an experiment to fail to terminate, and this
happens if every application of e to a generated output string
yields another member of 1.

If every performance of e on M in any state does terminate,
we say that e is finite, and we may define the length of e as
the maximum length of an input string generated by any
performance of ¢ on M.

For example, consider the experiment e: O* — I U O* of length
2 which uses the console of M;, and is defined by e(0) =
e(1) = b; e(00) =e(01) =e(10) =e(11) = a;e(z) = zif |z| > 2.
When e is performed on M; in state i the result is:

(Step 0) Output is 0 = observed string
(Step 1) Input so far is A, observed string =0 = obs(i, \).
e(0)=b
(Step 2) Since b € I, input string becomes A\b = b;
t(i,b) =1 and o(i) =0, so observed string
becomes 00 = obs(i, b).
(Step 1) ¢(00) = a
(Step 2) a € I,soinputstringbecomesba;t(i,a) = jando(j) = 1,
so the observed string becomes 001 = obs(i, ba).
(Step 1) ¢(001) = 001
(Step 2) 001 € O* (and is not in I), so take 001 as the outcome
of the experiment.

Questions

Please give answers to the following:

(a) Draw a diagram of the machine M, which has the same
console as M, which has state set S = {i,j, k} and whose
transition and output functions are specified by

t(i,a) =j, t(i,b) =i t(j,a) =j, t(j;b) =k
t(k,a) = t(k,b) =k; o(i) = o(k) =0; o(j) = 1.

[5 marks]
(b) For each state s € {i,j} C S determine
(i) t*(s, bbaa)
(ii) p(s,bbaa)
(iii) obs(s, bbaa)
[5 marks]

(¢) A reduced experiment would be to simply observe the
output from a Moore machine, M, on a given word, w,
i.e., to note the value of obs(s,w) where s is the state of
M when the experiment begins. Show that a reduced
experiment is a special case of a finite experiment e for
which the value e(z) depends only on the length of z and
not on its contents.

[7 marks]

(d) Consider the experiment e:O* — IUO* defined by:
e(0) =b, e(1) =c and e(z) =z if |z| > 1 as performed on
the machine M3 below:

ac
ac
0 —— % j0
/! .
h1 e———— k1
ab a,b

Fig. 2.

(1) Show that e distinguishes between all states of M3, in
the sense that, if s and t are any two distinct states of
M3 then the outcome of e when performed on Mj in
state s differs from the outcome when performed on
M3 in state t.

[7 marks]

(ii) Show that any reduced experiment (single input word)

which distinguishes between all states of M3 must have

a length of at least 2. Does this show that reduced

experiments are less powerful than full experiments?
Give reasons.

[7 marks]

(iii) Find a reduced experiment which distinguishes between

all states of Mj3.
[3 marks]

3.1.2. Example 2. Read the following article and attempt the
questions at the end of the article.

Developmental languages

Most biological organisms that are formed from more than
one cell exhibit patterns of growth and development that have
intrigued scientists for centuries. If we consider the fact that all
organisms (except some specialised viruses) start as single cells
(in many cases a fertilised egg) and develop by dividing to form
two new cells, perhaps with a specific structure and function,
over and over again, we see that the modelling of this process
could lead to great insights into developmental biology with
many opportunities to try and understand why the system
sometimes doesn’t work and individual organisms fail to
develop correctly, sometimes causing life-threatening congenital
malformations and malfunctions.

Suppose that we consider each individual cell in an organism as
a state machine in a given internal state. Suppose that initially
we have a single such cell represented by a circle in a state x say.
Let us, further, assume that a beneficial input a is applied to the
cell and this causes the cell to split into two cells, one in state x
and the other in state y. Further inputs applied to the cell in
state x cause further divisions and if the beneficial inputs
continue we will see the organism grow as a one dimensional
structure as illustrated:

OO OO OOOO—

This might be a model of growth of a very simple linear
organism; some simple plants behave like this.

We could represent this in a simple abstract algebraic form by
regarding the state of the organism at a stage of its development
as a string of the form:

X, Xy, XYy, Xyyy,.--

and the development rule as being a substitution rule of the
form:

X = Xy

with x as a starting axiom or initial situation. This is very like a
grammar and the process of constructing a language. Here we
have a simple example of a mechanism that generates words
that represent developing organisms as words in a language, a
so-called development language. The original idea was intro-
duced by A. Lindenmayer and has been extensively studied
since then; they are often called L-systems in Lindenmayer’s
honour. Many complex types of developmental languages have
been constructed to simulate the development of a considerable
number of biological organisms ranging from seaweeds to
flowering plants, to the patterns on the shells of some animals
and so on. We now need to formalise some definitions.

L-schemes and L-systems
Definition 1. Let V be a finite alphabet; consider a finite subset:
D C V x V*, we call the pair (V, D) an L-scheme.

For each (a,a) € D we write a= . Each a= a €D can
be regarded as a development rule and will form the basis of
the method for transforming organisms from one stage of
development to another.

If wi,wa,...,wy, € V¥ and there exists a sequence of
development rules that allow the following:

W = Wy = -+ = Wpy

Comprehension Exercises: A New Type of Examination Question 93

we describe this by writing:
wi =" Wnpi

and saying that w; generates w,.; in n steps.

We write w =* w' to indicate that there exists a positive integer
n and a word wy, | such that w = wy,,; and w; =" wp,. We
say that w generates w'.
Example 1. In the simple situation described above we let:

V ={x,y} and

D = {(x,xy)} ie. {x = xy}.
Then x = Xy = Xyy = Xyyy = Xyyyy = Xyyyy,i.e. X = xyyyy
and x =* xyyyy.
Definition 2. An L-system is a triple G = (V, D, x) where (V, D)
is an L-scheme and x € V*. The word x is called the axiom of G.
Given an L-system we can define the set of all words generated
by G to be the set L(G) = {w € V*|x =* w}
A language L C V* is called a developmental language if
L = L(G) for some L-system G.

Theorem 1. Let (V,D) be an L-scheme and consider words
X1,X2,¥1,¥2 in V¥, such that x; ="y, and x, =™y, for
some n, m then x;x, =" yy,

Proof. If x; =" y; then we can find wy,..., w1 € V* such
that:

X] =W = Wy = -+ = Wpy] = YI.
Similarly we can find zj,...,zy; € V* such that:

X2 =271 = Zy = = Zmt1 = Y2-
Now XXy = WaXa = -+ = Wny1X2 = Y1X2 = Y121 = Y122 = -
=Y1Zm+1 = y1¥2 as required.
Corollary. If x; =* y; and x» =* y> then x;X2 =% y1y».

There is a hierarchy of developmental languages determined by
the specific types of development rules used in the L-systems
defining the language.

Example2. LetV = {a,b,c,d,(,)}andD = {a = ab,b = (d)b,
¢= (d)b, d=Db, b=Dbb, b=bc, b= bd}. The L-system
G = (V, D, a) generates strings including:
a=ab = a(d)b = a(b)b = a(b)bb = a(b)bbc = a(bc)bbc
= a(bc)bb(d)b = ---
We can interpret the brackets in the following way; a rule such
as b = (d)b creates a left branch off the main stem with a cell of

state d and the rule ¢ = (d)b is a right branch off the main stem
with a cell in state d.

This would result in a sequence depicted in Fig. 3

d b b
a a-b éb 4b é)b-b a-b-b-c
s ,C (3a)
p /b
a-b-b-c abhb
d

Ultimately structures like the following can be formed:

which have a passing resemblance to classes of simple aquatic
plants that exhibit branching growth structure.

Example 3. Consider the following L-system:

V ={S,a,b,c,d,e,f, g h,ijk,I,m0,1,2}

D ={S = ab,a=dg,b=¢0,c=22,d= 0Oe,e = cf,f = I,
g = hb,h = di,i = jk,j = ml, k = c0,m = Oc,
0=0,1=12=2}.

The L-system (V,D,S) can produce the following derivations:
S = ab = dge0 = Ochbcf0 = Ocfdie0221c0

= 0221c0ejkcf0221220 = 0221220cfm1c0221220
= 0221220221c0c1220221220221220
= 0221220221220221220221220221220

which can be interpreted as follows:

the system is the stages in the development of a leaf which has
mature cell types:

0—cells at notches between lobes,
1—cells at the tips of lobes,
2—non-dividing cells on the margins.

The final string representing the leaf:

Fig. 4(a).

Note that the final string represents an element of the language
which cannot be further processed. Since we are primarily
interested in biological models this naturally leads onto the
following idea.

Definition 3. Let (V,D) be an L-scheme. We define the adult
language of the scheme to be the set A = {x € V*|x =* x}, thus
an adult language is one that is ‘stable’ under the influence of
the development rules. For an L-system G = (V, D, x) we define
the adult language of G to be the adult language of the
underlying L-scheme and write A(G) = A.

An organism which has fully developed may suffer damage due to
environmental causes but it may be able to repair or ‘regenerate’
part of itself. Thus our leaf might get damaged during its
development but the development rules may still allow it to
reach a mature form. Thus, for example, if at the stage
‘0ehbcf0’ it loses the embryonic cell ‘h’ at this stage it can still
develop into a deformed, adult shape ‘022122221220221220°.

Now suppose that we allow the deletion of any (finite) substring
of symbols at any time during the generation of a string in
an L-system. Then, after a period of growth and damage, the
damage ceases and the string is allowed to develop normally.

94 Mike Holcombe

What sort of things can emerge under this type of situation?
The set of strings that can be generated after damage of this
type is called the regenerative adult language of the L system. Let
A represent the operator that takes any string in V* and
constructs all possible substrings of this string, thus A: V* —
2(V*), where 2 is the power set operator. Now consider the
process of deleting substrings from a string, so that if o« € V*
then the set of strings obtained from « by deleting substrings is
written:

b(a) ={ye V' |ly=wzand « = wvz and v € A(a)
andw,ze V'}

Using these operators it is possible to define, formally, the
regenerative adult language of an L-system.

Questions

1. (a) Contrast the difference between the generation of a
language using a phrase structure grammar (as con-
sidered in the lecture course) and the generation of a
developmental language.

[5 marks]
Investigate a possible converse to Theorem 1. (Prove it if
you believe it to be true, exhibit a counter-example
otherwise.)

(b

=

[6 marks]
(c) Consider the L-system defining the leaf structure in
Example 3. Look at other possible damage scenarios
that might occur during development and the result-
ant adult form, if any, that can arise. Explore this
issue.
[7 marks]
(d) Formulate a mathematical definition of the regenerative
adult language of an L-system.
[3 marks]
(e) If G = (V,D,x) is an L-system with adult language A(G)
show that we can effectively replace G by an L-system
G' = (V/,D/,X') such that:

A(G) =A(G")
and
x" is a string of length 1.

[5 marks]

(f) Can you identify any possible applications of devel-

opmental languages within Computer Science? Discuss

any ideas you have and how useful you think they
may be.

[6 marks]

3.2. Final (third) year comprehension questions

3.2.1. [Only slightly based on: Siromoney G. et al., Kambi
kolam and cycle grammars, in A perspective in theoretical
computer science, R. Narasimhan (ed), World Scientific
(1989)]

Kambi kolam, formal languages, the Universe, and all that!

Kolam is a traditional art practiced extensively throughout
the southern part of India, where it is used for decorating
courtyards. The patterns involved can be very complex, and
so an experiment was conducted to find out how such
complicated patterns could be stored in, and retrieved from,
human memory so easily. The researchers discovered that
kolam practitioners describe and draw the designs in terms of
‘moves’ such as ‘go forward’, ‘take a right turn’, and so on,
which are highly reminiscent of the commands used in
languages like LOGO for the control of a ‘turtle’. By treating
each kind of move as a terminal symbol, the authors were
able to show the relationship between this traditional art
form, and formal language theory.

A turtle is basically a drawing device; think of it as something
which moves across a piece of paper, following the commands
you give it. It carries a pen, which can either be raised, or else in
contact with the paper.

A kambi is a closed curve, with or without loops, constructed
using the turtle instructions given in Fig. 4, as listed.

F * RCI ‘ RC2) m Re» ()
Ly} R ﬂ

F forward one unit

R1 turn right 90 while drawing
R2 turn right 180 while drawing
R3 turn right 360 while drawing
L1 turn left 90 while drawing
L2 turn left 180 while drawing
L3 turn left 360 while drawing

(4b)

L(3) O

Fig. 4(b).
Pictorially, the various moves produce designs as in Fig. 5.
F
R RO
F F
F 1 RO)
L3 F F

Fig. 5.

In drawing a kambi, we insist that the pen is held down on the
paper at all times, and that the turtle eventually ends up where it
started, and facing in the same direction. A kolam design
contains one or more kambi’s.

We can relate kambi kolam designs to formal language theory.
For example, consider the three ‘anklets of Krishna’ given in

Fig. 6.
QD))

O QU O

9 QO Q
O O 0O

Fig. 6.

Comprehension Exercises: A New Type of Examination Question 95

These are obviously related; but how? The strings of commands
that would have to be issued to the turtle are all generated from
the ‘grammar’:

F = F
Rl = RI1.F.R3.F.RI
R3 = RI.F.R3.F.R3F.R3FRI

where we successively transform the initial ‘anklet’:
R1.F.R3.F.R3.F.R3.F.RI

Questions

(a) To what extent is it reasonable to suggest that kolam
practitioners actually remember their designs in terms of
grammars? What other mechanisms might they be using?

[5 marks]
It’s also possible to see ‘term re-writing’ going on in other
pictorial settings. For example, suppose that the following
commands are available to our turtle:

(b

=

F forward one unit
R turn right through 60°.

Start off with the initial figure (an equilateral triangle)
(FR?)’

Consider the production rule (we’ll call it ‘expand’) given
by:

expand(string) is obtained from string by replacing
simultaneously every occurrence of F in string according
to the rule

F = FR’FR>FR’F

Draw the shapes given by:
@ F
(i) expand(F)
(iii) expand(expand(F))
[5 marks]
(c) Give an example of a ‘grammar’ capable of generating all
n x n grids, as in Fig. 7.

Fig. 7.

Justify your claim that your answer is correct.
[8 marks]
(d) It has been observed by many authors that Nature seems to
like recursive patterns (e.g. snowflake designs, structures
etc). To what extent can this be taken as evidence that
(some of) the laws of physics may best be expressed in terms
of ‘construction grammars’ of the kind discussed in this
question?
[9 marks]
(e) Itisimportant in all disciplines to know the extent to which
one’s ideas are valid. There are many examples of ideas
from one discipline being applied by practitioners of another
(e.g. the statement that ‘the brain is like a computer’, or
‘Nature obeys formal language theory’). In your opinion,
when is it valid to apply concepts which originate in one
discipline, to problems in another, and when is it not valid to
do so? How would you identify the ‘boundary’ between
when the application of a concept is, or is not, valid?
[13 marks]

3.2.2. Example 2. Re-read the following passage and answer
the questions at the end of it.

The following is based on a paper entitled 4 Process Algebra
with Multiple Clocks by Henrik Reif Andersen and Michael

Mendler of the Department of Computer Science, Technical
University of Denmark. The paper is a departmental technical
report numbered ID-TR: 1993-122.

Incorporating time into process calculi

It is not clear how useful process calculi such as CCS are in
specifying real-time systems, because they lack any explicit
mention of time. The usual approach to real-time specification
involves a fixed, measurable and global notion of time. Here a
different approach is used, where real-time constraints are
represented using clocks which enforce broadcast synchroniza-
tion between processes. These clocks are taken to be atomic, i.e.
without further structure, just as the actions of CCS are atomic.

The resulting concept of time is abstract, qualitative, and local.
It is abstract because it does not enforce any particular way of
implementing clocks; it is qualitative because the absolute
occurrence time or duration of actions is not constrained,
only their sequencing with respect to the clocks; and it is
local because independent clocks can be used within different
subprocesses.

The calculus presented is called PMC, and is an extension of
CCS by multiple clocks, with associated timeout and clock
ignore operators. The semantics of PMC is based upon labelled
transition systems with separate action and clock transitions.

Syntax. The processes of PMC are generated by the following
grammar:

P :=0|4|a.P| P\ + P|Pi| P2|P\L|[Pi]o(P2)|P 1 o

where 4 is an agent constant, « is an action (a name, co-name or
the silent action 7), L is a set of labels (names or co-names) and
o is a member of the finite set ¥ of clocks.

Informal semantics. The meanings of the nil process 0, agent
constants A, the prefixed process a.P, the sum P; + P, the
parallel composition P;| P; and the restriction P\ L are the same
as in CCS. [P1]o(P>) represents a timeout, in that it behaves like
P, with respect to actions or clocks distinct from o, but is
transformed into P; if a clock tick o occurs. P 1 o behaves as the
process P, but always permits a tick of the clock o without
changing state, and thus we call T the ignore operator.

Operational semantics. Formally, the semantics of PMC is
given by two sets of transition rules, the action rules and the
clock progress rules. Action rules:

PSP 0-%0'
P+0-5P P+0-50Q

aP -5 p

% «

pLpolo prp 0% 0
PlQ—P'|Q" P|lQ—P'|Q0 PIQ—P|Q

« «

P— P’ _ P— P’ def
(g L)~ (A= P)
P\L-% P\L A5 p

r=p rP=p

[Plo(Q) =P Plo-SP 1o
Clock progress rules:
pLpP oL PLPQLQ
P+Q-"P' +0Q" PlQ-"P|Q

PZp PLP
P\L-ZP\L 45 P’

(4< p)

Plo(0) =01 (610
[Plo(0) -~ P!

. PP
Plo—Plo - (o' # o)

PrloloP 1o

Note that clocks and actions are distinct, the action rules say

96 Mike Holcombe

nothing about clock transitions and the clock rules say nothing
about action transitions.

One important special case of a timeout is the wait process
o.P which is defined by o.P < [0]o(P) and which waits for the
clock o to tick before proceeding, stopping all other clocks in
the meantime.

Modelling synchronous systems in PMC. Let us consider a
restricted version of PMC in which there is a single clock 0. A
single-clock synchronous system is built up from a number of
functional blocks (such as V- and A-gates, etc.) using a number
of registers, all triggered by the same global clock signal. We
may model single-clock synchronous systems in the restricted
calculus, as the following circuit example shows.

The functional operation of the circuit is easy to specify: the
initial output y is the maximum of the value initially stored in
the register A and the input x, and stays at this value unless and
until the input x goes high, whereupon y goes high and remains
high. Operationally, this is achieved thus: at the #-th clock tick
the register A reads its input v and writes its value to its output
w. This value, together with the new value input on x, is
processed through the V-gate and the resulting value branches
onto the output y and also onto v where it is ready to be read by
the register on the next clock tick (Fig. 8).

S 2N

w

__>__x_

<
<
Fig. 8.

If o models the global clock driving this system, we may specify
the functional block (the V-gate) and the register by the PMC
processes:

or v(b) x(c).a(b V ¢).0.0r

Register “ v(b).c.w(b).Register

We may encode the value-passing as in CCS by defining x(b).P
to be x9.P(0) + x;.P(1) and X(b).P to be X;.P, as we are dealing
with boolean signals.

We still need to implement the forking of the signal u; we do this
by specifying an independent synchronous component Fork
which has one input u and copies it once to its two outputs v
and y before every clock tick. The order in which the outputs
are delivered is unspecified, so we define:

Fork L u(b).(v(b) 3(b).0.Fork + 3(b).¥(b).c.Fork)
The whole circuit is obtained by composing the three processes

together and restricting the resultant process on the set of ports
def . . .
L = {u,v,w} which represent internal wires:

Circuit(b) = (Or|w(b).Register| Fork)\L.

The only complication is the need to load an initial value w(b)
into the register.

Questions

(a) Use the operational rules of PMC to give derivation trees
for the two transitions below:

[0]o(P)|[a.[0]0(Q)]o(R) = [0]a(P)|[0]o(Q) = P| Q

[4 marks]

(b) Show that the only possible transition of ¢.P is ¢.P — P

and hence that the only possible clock transition of (¢.P)|Q

is (¢.P)|0 -5 P| Q' where Q- Q’, and the only possible

clock transition of (¢.P) + Qs (6.P) + Q = P + Q' where
00"

[6 marks]

(¢c) (i) Suppose the first input to the synchronous circuit and
the initial value stored in the register are both 0. Give a
sequence of transitions which take the circuit from its
initial state to the state where it is again about to write
a value on the w port, i.e. give a non-empty sequence ¢
of actions for which

Circuit(0) N Circuit(0).
You should give all the intermediate derivatives of
Circuit(0). [Hint: there are six transitions; the first
five correspond to the passing of values along wires
and the last is a clock tick.]
[8 marks]

(ii) Is there an alternative sequence of actions to the

sequence you have given in part (i) above? If so, give
one. You need not specify the intermediate derivatives.
[2 marks]
(iii) Suppose you have designed a process P to consume
the outputs of the circuit on the y port. How might
you use the ignore operator | to ensure that your
process could always synchronise with the clock ticks

of Circuit?
[4 marks]

(d) Write a few paragraphs discussing the advantages and

disadvantages of using PMC to model concurrent systems,

both synchronous and asynchronous. You may care to
address the following questions:

e What aspects of such systems, if any, can be better
modelled in PMC than in CCS?

e What tools would a designer need to use the calculus
effectively in the design of a large system?

e What sorts of properties of a system specified in PMC
would you expect to be able to prove, and what sort of
theory might be needed to enable such proofs?

e How faithfully does PMC model time?

[12 marks]

() Which two transition rules of PMC are redundant if there is

only one clock?
[4 marks]

4. CONCLUSIONS

It might seem that this sort of question would be
unpopular with students, this is far from the case,
in our experience. One point that is often made is
that it is difficult to revise for such a questions
apart from having a general familiarity with the
subject area. Even when articles are distributed
before the examination it doesn’t seem to cause
any problems. The performance of the students has
been rewarding so far and we are regularly sur-
prised at how sophisticated their answers are. The
participants also understand the benefits in the
sense that it is helping them to develop skills
which might only be developed in an ad hoc
manner and which are vital for a successful and
rewarding professional life in the industry. Some of
the skills needed for updating and retraining are
being developed in this process.

The original idea for this activity arose while I
was involved in the development of a novel school
mathematics syllabus (Further mathematics ‘A’
Level under the auspices of the Northern Ireland
Examinations Board), see [1-11]. Subsequently
the idea has been introduced into the SMP
syllabus [12]. The application of comprehension
to computing was a short step.

I would like to thank my colleagues Matt
Fairtlough and Mike Stannett who collaborated
with me in this work.

&

Y

10

12

Comprehension Exercises: A New Type of Examination Question

REFERENCES

. M. Holcombe, Bulletin IMA 18 (1982) pp. 12-17.

. M. Fitzpatrick and S. K. Houston, Mathematical modelling in Further Mathematics, in J. S. Berry
et al. (eds), Mathematical Modelling Courses, Ellis Horwood, London (1987).

S. K. Houston, Teaching Mathematics and its Applications, 8 (1989) pp.115-122.

. B. Greer and R. J. McCartney, in New Directions in Mathematical Education, in B. Greer and
G. Mulhern (eds). Routledge, London (1989).

A. R. Nicholoson, Teaching Mathematics and its Applications, 8 (1989) pp. 184—188.

R. J. McCartney, Teaching Mathematics and its Applications, 9 (1990) pp. 6—14.

. M. Fitzpatrick and G. Greer, Teaching Mathematics and its Applications, 9 (1990) pp. 150—158.

. S. K. Houston, in Teaching Mathematical Modelling and its Applications, M. Niss et al. (eds), Ellis
Horwood, Chichester (1991).

A. R. Nicholson, Int. Jour. Math. Educ. Sci. Technol., 22 (1992) pp.45-49.

. S. K. Houston, Teaching Mathematics and its Applications, 12 (1993) pp. 60-73.

. S. K. Houston, Teaching Mathematics and its Applications, 12 (1993) pp. 113-120.

. S. Dolan, Teaching Mathematics and its Applications, 7 (1988) pp. 1-10.

97

