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In this paper, a spreadsheet is used for the performance analysis of cache-based multiprocessors for
general-purpose computing. The Lotus 1-2-3 spreadsheet is used to study the behavior of the cache
miss ratio and the bus bandwidth with respect to the cache line size. The simulation is characterized
by its low cost, flexibility and simplicity. The suitability of this tool for educational purposes and its
use in an advanced computer architecture course are also discussed.

INTRODUCTION

FOR THE PAST six years, the author of this
paper has taught an advanced graduate-level
course in computer architecture. During that
period, the author observed that while most
students comprehend the basic concepts under-
lying cache-based multiprocessor systems, they
tend to have problems relating the effect of the
various parameters such as cache size, block
size, mapping technique, placement policy, and
update policy to the miss ratio and general
performance of such systems. Accordingly, the
author decided that an accurate, low-cost, user-
friendly simulator for the performance evaluation
of cache memory systems would be very helpful
for students. It is expected that students have
taken the Computer Architecture pre-requisite
course covering all aspects of the design of von-
Neumann machines.

Simulators have been used over the past years
for educational purposes such as that devised by
Cutler and Eckert [1], Yen and Kim [2], Smith [3],
Bic [4], Diab and Demashkieh [5], and Purvis et al.
[6]. Furthermore, cache memory performance has
been extensively researched [7-11].

The use of spreadsheet programs in solving
engineering problems has proven to be an impor-
tant tool for PC users who are not expert in
computer programming. This provides the user
with an easy environment to interact with for the
simulation of specific systems. Some of the
application areas include an educational tool
for microprocessor systems [12], linear pro-
gramming [13], analog computer simulation [14],
causal filters simulation [15], high-level mixed-
mode simulation [16], conditional looping [17],
and partial differential equations [18].
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SIMULATION OF CACHE-BASED SYSTEMS

The overall cache size and the cache line (block)
size are the parameters that most strongly affect
cache performance. Excessively large or small line
sizes can raise the miss ratio; also large line sizes
have long transfer times that can lead to high levels
of memory traffic. Some of the factors, related to
the machine architecture, that influence the line
size include [7]:

(a) width of the memory modules and degree of
interleaving;

(b) bus protocol;

(¢) memory interference and memory busy time;

(d) the amount of storage required to hold the
address tags when the line size is small;

(e) line crossers between cache lines.

The major effect of line size choice on the
performance comes from its impact on the miss
ratio.

In Smith [7], trace-driven simulation was used to
generate miss ratios for all cache sizes. A demand
fetch, fetch on write, copy-back cache with LRU
replacement and a fully associative cache was
assumed. Due to the high variability of the miss
ratios, the relative change in the miss ratio (r) as a
function of line size provides a more stable meas-
ure than the miss ratio. Accordingly, r is computed
as the ratio of the miss ratio for a particular cache
size and line size to that for the same cache size but
half the line size. In order to smooth out the
irregularities of r, the smoothed r (R) is computed
[7]- As a result, Figs 1-6 provide the R values as a
function of the cache size and line size. Figures 1
and 2 are for instruction cache (miss ratio for
instructions only). Figures 3 and 4 are for data
cache (miss ratio for data only). Figures 5 and 6
are for unified cache (instructions and data).
Figures 1-6 act as the input to the package to
provide the user with values to use for estimating
the performance impact of certain design choices.
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Fig. 1. R vs. line size, for instruction cache (cache size = 32 — 1024 bytes).
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Fig. 3. R vs. line size, for data cache (cache size = 32 — 1024 bytes).
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Fig. 4. R vs. line size, for data cache (cache size = 1024 — 32768 bytes).
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Fig. 6. R vs. line size, for unified cache (cache size = 1024 — 32768 bytes).
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SPREADSHEET IMPLEMENTATION

The worksheets were created under the Lotus
1-2-3 for Windows. Lotus 1-2-3 will run under
MS Windows on any IBM PC or compatible
running MS-DOS. This provides an easy-to-use
environment for:

® cntering user-defined data patterns of the input
parameters;

e simulating the effect on the miss ratio and cache
performance as a function of the line size and
overall cache size.

Figs 1-6 can be used to compute the miss ratio
for one line size from the miss ratio (for a specific
cache size) for another line size:

Smoothed average of ratios

m at line size /

m at line size //2 ()

Figure 1 provides the input to the simulator
showing the smoothed average of ratios (R) as a
function of the line size (8 to 128 bytes) and
instruction cache size (32 to 1024 bytes). Figure 2
is the same as Fig. 1 but covers the range of
instruction cache size from 1024 to 32768 bytes.
Figures 3 and 4 provide similar R values as Figs 1
and 2 but for data cache and Figs 5 and 6 for
unified cache.

Accordingly, Figs 7-9 can be derived from
equation (1). For example, assuming that the first
row (i.e. line size = [ = 4 bytes) in the top table of

Fig. 7 are defined by the designer to act as the
initial design target for the average miss ratio, the
remaining rows can be regressively computed from
the data given in Figs 1 and 2. For example, for
instruction cache size of 32 bytes, we have:

Maq 1=8) = Rat 1=8) X M(at 1=4)

=0.66 x 0.725 = 0.4785 (2)

The miss ratio can now be computed for differ-
ent line sizes as a function of different cache sizes.
Figures 8 and 9 can be similarly derived for data
and unified cache respectively. The graphical pre-
sentations that the package facilitates, as shown in
Figs 7-9, provides the user with an easy way to
interpret the results and study the behavior of the
miss ratio for different cache and line sizes. It
should be stated at this point that the results
obtained will obviously depend on the design
target data and the R data tables initially defined
by the user. This will provide the user with the
flexibility to choose different initial data sets that
may correspond to different machines.

In addition, bus bandwidth can be the limiting
resource in a multi-microprocessor computer
system, and thus memory traffic is a very signifi-
cant performance factor. Memory traffic may be
estimated by multiplying the miss ratio by the line
size to yield the traffic in bytes/memory reference.
Memory traffic consists of two components: fetch
traffic and write or copy-back traffic. On the other
hand, the traffic in the other direction, from cache
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to main memory, will depend on whether the cache
uses the write-through or copy-back policy.

Another worksheet was, therefore, provided on
the Lotus 1-2-3 in order to study the influence of
the line size on the bus bandwidth in a multicache-
based multiprocessing system. The worksheet
provides the user with definitions of the terms
used, description of the bus timing and informa-
tion on throughput bounds for different scenarios.
For example, the communication bandwidth
(Traf) for a write-through cache with hardware-
enforced coherence is given by:

Traf = (M x Crb) + (W x Cw) + Xio  (3)

where, M = total number of read misses per
task executed; W = total number of writes per
task executed; Xio = average number of bus
cycles resulting from I/O per task; Crb = bus
occupation time for reading a cache block;
Cw = bus occupation time for writing a word (in
bus cycles).
The upper bound on the MIPS rate is:

Bw
<
~ Drx (1 —Hr) x Crb + Dw x Cw + Xio

4)

where, Hr = hit ratio for memory reads; Dr =
demand ratio for read references per instruction;
Dw = demand ratio for write references per
instruction; Bw = maximum bandwidth that can
be supported by bus(es).

The user can, therefore, use this worksheet to go
through the definitions and equations pertaining

Th

to the bus throughput and can investigate the
effect of the line size on the maximum throughput
for different cache sizes. Figure 10 shows one such
option for unified cache assuming the write-
through update policy is used. Furthermore, the
user can investigate the influence of the update
policy on the maximum throughput. Figure 11 is
similar to Fig. 10 except that the write-back update
policy is used instead.

USE OF SPREADSHEETS IN ADVANCED
COMPUTER ARCHITECTURE COURSES

This paper has shown the use of spreadsheets as
a user-friendly simulation tool for the performance
evaluation of cache memory, a topic that is inten-
sively addressed in an advanced (postgraduate
level) computer architecture course. In addition
to the use of the miss ratio and throughput as
indicators of cache performance, a multitude of
issues related to the design of cache memory may
also be implemented. This may include testing the
effect of the various placement policies (direct,
fully-associative, set-associative, sector mapping),
fetch policies (demand, anticipatory, selective),
and replacement policies (LRU, FIFO, RAND,
etc.).

In general, students reacted very favorably to
using the package. Among the identifiable factors
for this are that the package:

(a) provides the students with a graphics illus-
tration of the simulation results. This clearly
enables students to absorb and easily interpret
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Fig. 10. Maximum throughput vs. line size, for unified cache (write-through update policy).
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the behavior of different case studies more

efficiently;

(b) permits more individualized instruction which
allows students to work at their own pace;
(c) enable students to define their own data sets

uses

Fig. 11. Maximum throughput vs. line size, for unified cache (write-back update policy).

parallel processing systems using spreadsheets has

been presented. The analysis is available in the

for emulating different R and m values for cache.

different cache-based multiprocessor systems.

form of a Lotus 1-2-3 worksheet under MS Win-
dows that allows the user to select certain para-
meters of the system and derive the performance of

The reported tool designed is motivated by the

fact that a trend for using simple, cheap and user-

CONCLUSION friendly packages for system simulation, such as

the Lotus 1-2-3, is becoming more commonly
A simulation analysis tool for cache-based used.
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