Int. J. Engng Ed. Vol. 14, No. 4, p. 289-293, 1998
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 1998 TEMPUS Publications.

A Microcontroller Laboratory for

Electrical Engineering*

T. TUMA, F. BRATKOVIC, I. FAJFAR and J. PUHAN
University of Ljubljana, Faculty of Electrical Engineering, 1000 Ljubljana, TrZaska 25, Slovenia

E-mail: tuma@fe.uni-lj.si

In spite of the fact that students of the electrical engineering curriculum receive an adequate
education in software development we are observing a rapid degradation in their programming style
as soon as supervision of their programming ceases. We have therefore redesigned our laboratory
for microcontroller software development, employing some unusual alternatives. We let the
students first experience bad programming and then make them start over, this time employing
a proper approach. Our concept has not only been successful regarding the improved programming
methodology but has also considerably increased the popularity of laboratory.

INTRODUCTION

TODAY most electrical engineering curricula
include several courses on the subject of software
development [1]. First-year students typically learn
basic programming language, later there is usually
a course dealing with object-oriented program-
ming, where a systematic approach and good
programming ‘manners’ are taught. Finally, there
may even be a course on real-time programming or
operating system development.

Throughout the courses the lecturers constantly
preach about the importance of a systematic and
structural approach. The students are asked to
document every line of their source code. They
have to write detailed reports as their work
proceeds. And of course, as they do their home-
work, they learn and understand all the arguments
in favour of good programming techniques.

Many decades of educational experience,
however, teach us that a majority of graduated
students will abandon any planning and document-
ing as soon as direct supervision of their pro-
gramming techniques disappears. The academic
line of arguing obviously isn’t convincing enough.
For this reason we decided from 1992 to ‘teach the
students a lesson they will never forget’.

Our basic idea was: ‘Wer nicht hoeren will,
muss fuehlen’. For that purpose we have
redesigned our laboratory for microcontroller soft-
ware development in the forth year in order to let
the students experience bad programming. By not
insisting on proper techniques [2] we deliberately
let the students work unorganized until they start
getting desperate. Then we help them with some
very effective tips. As simple as the idea may
seem, there are some practical problems with this
scheme.

The students must not be aware of being first

* Accepted 15 February 1998.

289

misled and then corrected. On the other hand it is
not fair to push them in the wrong direction. The
laboratory assignments must be specially selected
to emphasize the difference between good and bad
programming techniques. The assignments must
also be highly motivational, otherwise the students
will not wade through the crisis. Inevitably, there is
a considerable loss of time, since the average
student needs from two to three weeks to produce
a sufficiently messy program.

In the following we will explain in detail how we
have overcome these difficulties.

THE DEVELOPMENT AND
TARGET SYSTEM

In order to concentrate on software develop-
ment we have designed our target hardware as
simple as possible. We use two types of training
boards, both based on a M6803 microcontroller
with 8Kbytes of external RAM and §KBytes of
EPROM. The boards differ only in their I/O
devices as can be seen in Fig. 1.

Both system types include an onboard download
utility as well as a simple onboard debugger
residing in the system EPROM and the M6803’s
internal RAM. This software replaces the usual
EPROM and processor emulator, thus simplifying
the students initial preparations and cutting down
laboratory costs.

The development system is thereby reduced to a
standard PC running an M6803 cross assembler.
Actually the dashed units in Fig. 1 are also part of
the development system in spite of the fact that
they reside on the target system.

A typical laboratory session starts with the
assembly language coding on a PC [3]. The cross-
assembler is then used to produce a standard
Motorola S-code file, which is simply copied to
the PC’s serial communications port. On the other

290 T. Tuma et al.

PC (RS232)
PC (RS232)
I RT68-02
RT68-01
Gk — > PIA 6821
SCI PIA —| steppnig motor
timer ERAME
------- I—| piezo beeper pin-board
| — T
— key-pad :> 8 channel
----- S-}: s-t-em - | (4% 6 keys) selector

user
RAM (8Kb) <,i

|
ﬁ :> 12 bit A/D

converter

user
prront (sxy [

7 segment

display

: 12 bit D/A
converter

Fig. 1. Two types of target systems.

end the download utility converts the S-code to
machine code and places the latter into the user
EPROM, which is in fact a write-locked RAM. At
this moment a standard terminal emulator is run
on the PC to communicate with the onboard
debugger. The program is then traced in single-
step mode with only four basic commands:
T[num]—trace num instructions, P[num]—
proceed ‘num’ instructions; R[num]—run ‘num’
instructions; D[addr]—display 256 memory
locations starting at ‘addr’. The onboard single
stepping enables the students to monitor every-
thing that is happening inside the registers and
memory locations. At the same time all I/O devices
can be observed, working in a ‘slow motion’ mode.

THE LABORATORY SCHEDULE

At the beginning of the laboratory, every
student is working on his own PC with an attached
target system. The fist task is to get familiar with
the development system. For this purpose every-
body is asked to write a simple keyboard driver for
the target system. At this stage the students are still
guided by the teaching assistants. Many potential
real-time problems, like the bouncing of mechani-
cal contacts, are being brought to their attention.
The students are led rather strictly to a uniform
and optimal solution for the keyboard driver.

In the next phase the conception of a small real-
time operating system is handed out and discussed.

Some core routines like a simple task scheduler are
already included in assembler source code while
others are just described from the caller’s point of
view. The keyboard driver, which has just been
developed collectively is of course part of this mini
operating system.

At that point the laboratory curriculum changes
dramatically. The students are grouped into teams
of three to five and each team is assigned a
practical project. Although the operating system
conception is being recommended it is made clear
that the project functionality is all that matters.
After an initial briefing the teaching assistants start
behaving as consultants—the teams have to make
their own decisions.

Let us now take a closer look at the assigned
projects. All projects are complete applications
well known to every lay person and not just parts
of some sophisticated application [4]. We all know
what a remote control, a credit card reader, a
railway crossing, a code lock or an elevator do.
It took us quite some time to design small toy-like
models for each application. These models are
connected directly to the digital and analog inter-
faces of our target systems. By successfully
completing their projects, the students can actually
read the code from their father’s credit card, they
can analyse the pulses of an infra-red car key, see
the movable arm of the mini-railway crossing go
up while lights are flashing and so forth.
Although this may seem a little childish it is most
important for the students’ motivation! Beside
that, the innocent looking toy-like models make

A Microcontroller Laboratory for Electrical Engineering 291

the students initially underestimate the control
problems, which is exactly what we want.

Once on their own, many teams will start off by
thinking: ‘Who needs this systematic approach
stuff to control a few lights?” Sooner or later,
however, they discover that controlling a toy
robot requires exactly the same approach as does
controlling a professional one. On their way to this
discovery the teams will not only drown themselves
in messy programs but will also encounter com-
munication problems. Sometimes they will even
start quarrelling about who messed up what.

This is the point where intervention becomes
necessary since all our projects are almost
impossible to complete without a sound software
engineering technique. The teams are encouraged
to start over, this time following the code of good
programming. The unpleasant experience they
have just had now makes them treasure the
operating system conception which has been put
forward to them in the beginning.

Of course some students are clever enough to use
a systematic approach from the beginning, others
are just obedient enough. Still others have been
warned by senior students, which is just as well.
The ones who need the hard lesson most will
receive it.

As soon as a project is completed each member
of the team is asked to write a detailed report on
his work. The students are then graded indi-
vidually according to three criteria. The most
important criterion is the student’s programming
proficiency but also his behavior in the team as
well as the quality of his written report are
considered.

The time-scale in Fig. 2 summarizes the labora-
tory schedule. After the introductory two weeks, it
takes the students three weeks to become familiar
with the development system and another two
weeks to grasp the concept of time slicing. The
team-work on individual projects is scheduled for
the next seven weeks. The average team loses
approximately two weeks by trying to hack itself
through the project, though this time is not entirely
wasted.

The time needed to complete the project depends
on the team. Some teams take only four weeks,
others have not completed their project by the end
of the semester. The average group however needs
six weeks and has two week to spare. The writing
of reports is not bound to the semester and is
considered individual homework.

AN EXAMPLE

Let us observe a team of three students who
have to design the controlling software for a
pedestrian crossing. The model consists of two
traffic light posts, one for the pedestrians with
two LEDs and one for the cars with three LEDs.
There is also a beeper for blind persons and a
button for pedestrians to request crossing. The
model is connected to the parallel interface
occupying six outputs and one input. The target
system RS-232 line is used to simulate the com-
munication between the pedestrian crossing and a
central computer.

The project is divided among the three students
as follows: Jack is responsible for the serial com-
munications with the PC, Paul takes care of the
light sequence, while Susanne is attending to the
pedestrian button and the beeper.

The project would be fairly simple were it not for
the audio signal. Managing the light sequence is
straightforward since it can be programmed with
simple delay loops. While the light sequence is
running there is really no need to scan the
pedestrian button neither is there any communi-
cation via RS-232 necessary. So far everything is
sequential. The only problem is the beeper, which
has to be pulse driven simultaneously. The
students usually fail to recognize this complication
and start naively by designing and testing inde-
pendent subroutines. Paul might even anticipate
problems with the coexistence of his light sequence
and Suzanne’s audio signal but he will probably
dismiss his doubts until later. He is inclined to
think: ‘If everything else works fine, we’ll somehow
add Suzanne’s audio driver’. Once a team actually
tried to solve this particular problem by squeezing
the beeper pulses in between the light sequence.

Whichever approach our students choose
initially will eventually lead them to the only
sound solution—the time-slicing technique of a
scheduler. This approach is not only well struc-
tured and systematic, but also extremely simple to
understand provided, of course, the three are open-
minded enough to look at things in a different
manner.

The proposed scheduler has been derived
from professional real-time operating systems
introducing four simplifications.

1. There is only one foreground task allowed,
namely the scheduler.

introduc- : introduc-
tion to the warming up tion to the
assembly with the key— operating
language board driver system

team-work on projects,
approx. 2 weeks are due

the writing of re-
ports may exceed
the semester

to misprogramming

| l | | | | [

8 9 10 11 12 13 14 15

Fig. 2. The laboratory schedule in weeks. One semester = fifteen weeks.

292 T. Tuma et al.

—| 58 LIGHT 28

background routines

58 AUDIO 28 |—

'
1
'
'

scheduler interrupt

time slice: 1200 machine cycles

Fig. 3. The principle of time slicing. All numbers are in machine cycles.

2. All time slices are of exactly the same size of
1200 machine cycles.

3. Each task must terminate before its time slice
expires.

4. The cyclic task schedule is composed of exactly
16 entries.

The four radical simplifications render an extre-
mely simple scheduler, which will fit together with
its task schedule into a few lines shown in Fig. 4.
The students only need to include these lines of
assembler code and set up the scheduler data
structure according to their needs. Since they
have heard all the basic theory of multitasking in
earlier courses they certainly are capable of under-
standing this extremely simple scheduler just by
studying the commented source code in Fig. 4.
After discussing the proposed scheduler the
students have configured the task schedule in
Fig. 4 for their particular pedestrian crossing. We
can see Paul’s light controlling task LIGHT running
concurrently with Suzanne’s beeper driver AUDIO,
both with a 1/64s duty cycle. Suzanne has even
decided to grant the pedestrian button its own
concurrent scanning routine BUTTON. There are
also two high-speed tasks in the system, namely

SCHTAB FDB _ SCI

TASK SCHEDULE

Jack’s serial communications task SCI and an
independent real-time clock task TIM. The latter
tasks are each occupying four positions in the
scheduler data structure, thus running with a
1/256 s duty cycle.

By following this scheme our three students were
able to split their problems into five independent
tasks, all running quasi-concurrently. It was
actually impossible for them to divide the problem
between themselves until they have reached this
level of planning, which is why we insist on
teamwork.

As soon as the students have grasped the
advantages of this simple but effective scheduler,
the only tricky obstacle left is the communi-
cation between individual tasks. Our three students
have to deal with some classic arbitration and
synchronization problems.

CONCLUSIONS

We have introduced an unusual alternative to
laboratory work in the forth year of the electrical
engineering curriculum. Of course we realize that
most important for any laboratory concept is its

;Jack’s serial communications task

;Jack’s serial communications task

;Paul’s light sequence task
;Suzanne’s audio sequence task
;Jack’s serial communications task

;Suzanne’s button scanning task
;Jack’s serial communications task

FDB TIM ;Real time clock.

FDB SCHRTS ;Void task.

FDB SCHRTS ;Void task.

FDB SCI

FDB TIM ;Real time clock.

FDB LIGHT

FDB AUDIO

FDB SCI

FDB TIM ;Real time clock.

FDB SCHRTS ;Void task.

FDB BUTTON

FDB SCI

FDB TIM ;Real time clock.

FDB SCHRTS ;Void task.

FDB SCHRTS ;Void task.
SCHRTS rts

»

THE SCHEDULER INTERRUPT ROUTINE ("=86) _______________

;12 cycles between interrupt and _OCF (worst case)!

_OCF ldaa SCHTST ; 4
beq SCHOK ;3

SCHERR bra SCHERR H

SCHOK inc SCHTST ; 6
ldaa _TCSR ;3
1dd _OCR ; 4
addd #1200 ; 4
std _OCR H:
1dx SCHPTR ; 5
ldx 0,X ; 5
cli ;2
jsr 0,X -
ldaa SCHPTR+1 H
adda #2 ;2
anda #%00011110 ; 2
staa SCHPTR+1 ; 4
clr SCHTST ; 6
rti ;10

Get test byte.
Branch if previous interrupt completed,
fatal error otherwise -- can’t continue!
Set test byte to indicate running interrupt.
Clear TOF by reading TCSR.
Load output compare register,

increment it by time slice

and restore it to OCR.
Get pointer to current 1/64s period task.
Get the task’s entry address.
Allow interrupts.
EXECUTE THE TASK.
Get high byte of SCHPTR,

increment it,

overlay 0’s

and restore it to SCHPTR.
Reset test byte to indicate end of interrupt.
Return from OCF interrupt

Fig. 4. The task schedule data structure and the scheduler code.

A Microcontroller Laboratory for Electrical Engineering 293

pedagogical efficiency, which can be seen from the
students’ feedback.

So far five student generations have passed our
new laboratory course. The students programming
skills have definitely improved in this period.
Though—in our opinion—this is not the most
important achievement. Amazingly, the laboratory
has become extremely popular. In an anonymous
questionnaire every third student claims to have
learned more about programming than in all
previous courses together. This means of course
they have gained deeper understanding of
previously learned methods.

Another feedback is the number of students
who choose microcontroller software as their
graduating thesis subject. This number is currently

three times larger than before we introduced our
‘experience-bad-programming’ laboratory. Several
graduating students are currently designing new
and interesting model applications, which will
be used as laboratory assignments of future
generations.

Each year some students decide to build their
own target systems to work with after having
passed the examination. Our integrated debugger
actually makes an expensive development system
superfluous, which is very important for inquisitive
students who want to do some amateur controlling
at home.

As a matter of fact, the enthusiastic feedback
from our students has inspired us to write this
article in the first place.

REFERENCES

1. T. F. Leibfried, R. B. MacDonald, Where is software engineering in the technical spectrum? Int. J.
Engng Ed., 8, 6. pp. 419-426 (1992).

2. D. M. Auslander, C. H. Tham, Real-time Software for Control: Program Examples in C, Prentice
Hall, Englewood Cliffs, NJ (1990).

3. M. C. Loui, The Case for Assembly Language Programming, JEEE Trans. Education, 31, 3 (1988).

4. P. 1. Lin, Microcomputer hardware/software education in electrical engineering technology: a
practical approach, Proc. ASEE-91, pp.791-794, New Orleans, LA (1991).

Dr. Tadej Tuma is an Assistant Professor at the University of Ljubljana, Faculty of
Electrical Engineering. He received his Dipl. Ing. degree in 1988 and the Doctor’s degree in
1995. In the past six years Tadej Tuma has developed several laboratory courses.

Dr. Franc Bratkovic is a Professor at the University of Ljubljana, Faculty of Electrical
Engineering. He graduated in electrical engineering at the University of Ljubljana in 1960.
In the year 1972 he received the Doctor’s degree. Dr. Bratkovic has been teaching as an
Assistant Professor from the beginning of his academic career in 1961 and was elected
Professor in 1974. In this period he has published five text books. Currently he is Dean of
the Faculty of Electrical Engineering in Ljubljana.

Dr Iztok Fajfar is an Assistant Professor at the University of Ljubljana, Faculty of
Electrical Engineering. He received his Dipl. Ing. degree in 1991 and the Doctor’s degree
in 1997. His teaching interests are mainly in the field of motivation. He has been studying
the role of practical teaching as a supportive element in understanding theory.

Janez Puhan is a Teaching Assistant at the Faculty of Electrical Engineering. He is very
experienced in practical teaching of laboratory courses.

