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This paper discusses an interdisciplinary project administered at the US Military Academy in a
calculus with differential equations course. The project takes full advantage of analytical,
numerical, and qualitative techniques to explore the mechanical vibrations of buildings during an
earthquake. The traditional treatment of mechanical vibration topics in an elementary ODE course
is extended through the use of non-dimensionalization, energy related concepts, Coulomb damping,
systems of differential equations and the use of computer animations to develop physical intuition
and engineering concepts. A primary goal is to allow students to experience both the capabilities
and the limitations of technology.

INTRODUCTION

MECHANICAL AND ELECTRICAL vibrations
are routinely covered in courses on ordinary differ-
ential equations (ODE's) because they exemplify
mathematical models of the real world [1, 2, 5, 7,
11, 12]. The differential equations are simple, yet
the applications are extremely important to physics
and engineering. The project described in this
paper is an extension of an interdisciplinary
project administered at the US Military Academy
(USMA) last year in an undergraduate Calculus
with Differential Equations course. It was designed
in response to USMA's Civil and Mechanical
Engineering Department's desire for students to
have a better understanding of vibrations and
systems of differential equations.

The project invites students to explore the earth-
quake-induced mechanical vibrations of buildings.
Students discover both standard and nonstandard
vibration topics while applying concepts in a real-
istic setting. The project takes full advantage of
analytic, numerical, and qualitative techniques to
address a large range of mathematical and engin-
eering concepts. Throughout, student familiarity
with a computer algebra system (CAS) is assumed.
To prevent students from using technology as a
crutch instead of as a tool, a primary goal of the
project is for students to determine the appropriate
use of the available technology. In some cases,
standard numerical ODE solvers do not perform
well without considerable tinkering. In others,

analytical solutions cannot be found completely
without use of physical intuition to address model-
ing assumptions and numerical limitations of a
CAS. Also, the algebra is sometimes overwhelm-
ing, and it is difficult to proceed by hand. Finally,
CAS's provide a simple means of animating the
dynamical systemÐit is easy to actually see a
model of the building vibrate!

The standard mechanical vibration problem
consists of a block of mass m attached to a
mounted spring of negligible mass with stiffness
k. One readily derives the following equation of
motion using Hooke's law and Newton's second
law of motion:

mu00 � u0 � ku � F�t� �1�
where u is the displacement of the block from
equilibrium, u0 represents viscous damping, and
F�t� is a time-dependent applied external force.
This equation is solved by methods traditionally
covered in an undergraduate ODE class. Seeking
solutions of the form u � ert leads to the charac-
teristic equation:

mr2 � r� k � 0: �2�
The qualitative behavior of the solutions depends
on the sign of the discriminant 2 ÿ 4mk. Particu-
lar solutions can be found by standard methods,
and for sinusoidal forcing functions, beat and
resonance phenomena are observed if the forcing
function is appropriately tuned. In this paper, we
apply the same ODE to model the vibrations of a
single-story building. The project includes the* Accepted 30 June 1999.
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traditional topics described above, but extends
the study in four major ways. First, we non-
dimensionalize to remove explicit dependence on
m and k to reduce the number of physical
constants involved. This makes the equations
more tractable without any loss of generality.
Second, we examine a model with Coulomb damp-
ing, which is a damping mechanism that yields a
nonlinear ODE which can still be solved by elemen-
tary means. Solutions tend to nontrivial equilibria
in finite time. Third, we introduce the use of energy
concepts to interpret the physical behavior of the
models investigated. Fourth, we consider systems
of ODE's to model buildings with multiple floors.
Many of these topics are now reasonable for
students because of the availability of compute
algebra systems.

THE PROJECT

Our goal is to analyze the effects of an earth-
quake on a building. Although it is impossible to
completely protect a building from the effects of an
earthquake, it is possible to effect building designs
which minimize the damage that a building is likely
to sustain. In this project, we model the lateral
motion of a building, and examine what can cause
excessive displacements of a given floor, leading to
significant damage of a building. One of the
novelties of the project is that it was written as a
self-exploration exercise. The students were shown
how to model a spring-mass system for the simple
harmonic case. They were expected to derive, on
their own, other models which included the two
types of damping, forcing functions, and multiple
stories. Additionally, at the time the project was
administered, the students were working with the
method of undetermined coefficients. As the
reader shall see, assigning this project at this time
motivates other subsequent topics to be discussed
in a typical ODE course.

We emphasize that students were free to solve
problems analytically or numerically. In this way,
they encountered strengths and weakness of both

approaches, and learned how to use technology
wisely.

As an introduction, we begin by modeling the
vibrations of a single story building. After this is
mastered, the behavior of multi-story buildings is
considered. In either case, catastrophe strikes when
a floor of the building experiences excessive lateral
deflection, causing permanent damage to the struc-
ture. It is too difficult to model the fine details
of the motion of a building. Instead, we model
buildings as idealized structures consisting of rela-
tively heavy, inextensional floors and light, elastic
walls. Considering each floor of the building as a
point mass located at the center of mass of the
floor (Fig. 1), the analogy with a spring/mass/
damper system (Fig. 2) is clear. The walls provide
elastic forces which act opposite the direction of
motion when each floor is displaced from its
equilibrium position. The overall stiffness of the
building depends on the stiffnesses of the structural
members.

The first task is to derive the equation of motion
for a single-story building. Then we examine both
free and damped vibrations of the building. Next,
the effects of a sinusoidal forcing function are
considered in both the absence and presence of
damping. With an understanding of the basic
behavior of a single-story building, we proceed to
multi-story buildings. Both forced and unforced
vibrations are considered. Lastly, a three-story
building is animated so that actual behavior of
the building can be observed.

Unforced vibrations of a single-story building
Consider an idealized one-story building (Fig. 1)

as an ordinary spring-mass-damper system (Fig. 2).
Ignoring damping effects (omit the dashpots in
Figs 1 and 2), standard arguments yield the follow-
ing initial value problem (IVP) for the displace-
ment of the center of mass of the roof:

mu00 � ku � 0; u�0� � u0; u0�0� � u1 �3�
The constants m and k represent the total mass of
the roof and the overall stiffness of the walls,
respectively. In the present setting, k / EI=h3,
where E is the elastic modulus of the supporting
columns, I is the moment of inertia of the columns
about the bending axis, and h is the length of the
columns, (see [3], pp. 9±11 for more details). A
natural prerequisite to understanding the behavior

Fig. 1. Model of a single story building. Fig. 2. Spring-mass-damper system.
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of a building during an earthquake is to know how
the building reacts to various initial conditions.
Hence, we shall assume that the initial displace-
ment u0 and initial velocity u1 are non-zero.

The IVP in equation (3) depends on two physical
constants, m and k. More constants will be intro-
duced later when damping and forcing are consid-
ered. Initially, it is convenient to ask the students
to analyze the effects of the parameters on the
system. This is obviously an open-ended question,
especially as the model gets more realistic.
However, it provides an opportunity to conduct
parameter analysis which can be done easily using
a CAS. More importantly, it motivates the utility
of non-dimensionalizing the problem. Explicit
dependence on m and k as well as dependence on
u0 is removed by simple changes of variables. Since���������

m=k
p

has units of time, let:

t �
����
m

k

r
�; u � u0y

Then the IVP in (3) reduces to the nondimensional
IVP,

�y� y � 0; y�0� � 1; _y�0� � v � u1

u0

����
m

k

r
�4�

where the dot indicates differentiation with respect
to the dimensionless variable � . The solution to (4)
exhibits simple harmonic motion. Although this
result is standard, it provides an opportunity to
discuss conservation of energy and motivate phase
plots. Specifically, multiplying the ODE in (4) by
the dimensionless velocity _y gives:

d

d�
E��� � 0; where E��� � 1

2
� _y2 � y2�

Requiring the students to interpret this result
analytically (derivative of energy is zero), and
graphically via a phase plot (circle centered at the
origin), enables them to conclude that energy is
conserved in the system. Note that for this par-
ticular system, the energy is proportional to the
square of the distance from the origin to the
trajectory. It is easy to see the exchange of kinetic
and potential energy in the phase plane. When
_y � 0 all of the energy is stored elastically by the
spring and when y is zero, all of the energy is
kinetic.

Following the traditional sequence of instruc-
tion, the students were asked to account for viscous
damping which leads to the well-known IVP,

�y� c _y� y � 0; y�0� � 1; _y�0� � v

where cÿ = �������
mk
p

. We also asked them to discuss
underdamped (0 < c < 2), critically damped
(c � 2), and overdamped motion (c > 2). All of
these can easily be examined graphically both by
plotting y versus � and by making phase portraits.

Because most structures are underdamped, engi-
neers often install friction devices in buildings [3]

to minimize oscillations. These devices provide a
damping mechanism similar to the friction caused
by sliding a block along a flat dry surface. Imagine
Fig. 2 without the wheels and dashpot. This is
called Coulomb damping. The frictional force,
F0 > 0, opposes the direction of motion, but is
independent of the magnitude of the velocity.

This was the only information given to the
students who were asked to derive the governing
IVP and find its solution. The IVP consists of
a linear differential equation with a piecewise
constant non-homogeneous term given in dimen-
sional form by:

mu00 � ku � ÿF0 if _y > 0

F0 if _y < 0;

(
u�0� � u0; u0�0� � u1 �5�

with appropriate initial conditions. Alternatively,
equation (5) can be expressed as an equivalent
nonlinear IVP given in dimensionless form by:

�y� y � ÿf0
j _yj
_y
; y�0� � 1; _y�0� � v; �6�

where f0 � �F0=kju0j�. While this ODE appears to
be trivial, its solution is deceptively difficult to
compute. First, it is not always valid. Whenever
the velocity is zero, if the spring force is not greater
than the frictional force, equation (6) does not
apply and motion does not continue. That is, if
_y � 0 and jyj � f0 (equivalently, u0 � 0 and
jkuj � F0), the building stops moving. Hence,
motion is likely to stop when y 6� 0. Physically,
this means that the building does not return to its
original position! Moreover, this happens in finite
time.

Note that multiplying (6) by _y gives

d

d�
E��� � ÿf0j _yj � 0:

So friction causes energy to decay, but only if
_y 6� 0. Thus, the energy will seldom decay to
zero. Therefore, elastic energy remains stored in
the structural members of the building after the
vibrations stop.

When solving equation (6), one must carefully
consider the initial conditions to determine if the
velocity is initially positive or negative. Assuming
_y�0� � v > 0, the non-homogenous term is nega-
tive so that the friction opposes the motion.
One solution approach is to solve a sequence of
initial value problems. Let 0 < r0 < r1 < � � � < ri

< � � � < rn be the positive roots of the velocity
function (note n must be finite). Also, let y0��� be
the solution on �0; r0�, and let yi��� be the solution
to the IVP over the interval �riÿ1; ri� for i � 1.
Since the non-homogeneous term is ÿf0 for
� 2 �0; r0�, we easily obtain:

y0��� �
����������������������������
�1� f0�2 � v2

q
cos�� ÿ r0� ÿ f0
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where r0 � arctan
v

1� f0

� �
�7�

Note that the final conditions for y0 are the initial
conditions for y1, i.e.

y1�r0� � y0�r0�; _y1�r0� � _y0�r0� � 0

Since y1 has the same period as y0, r1 � r0 � �.
Solving the IVP for y1 and for successive yi, we
find:

yi��� �
����������������������������
�1� f0�2 � v2

q
ÿ 2if0

� �
� cos�� ÿ r0� � �ÿ1�i�1f0; i � 0 �8�

The solution for v < 0 can be found in a similar
fashion. This was the method typically employed
by the students. Many students solved for the
roots of _yi several times (usually numerically)
before realizing that the roots were periodic. Of
course, some simply never made the observation.

The solution persists until jyi�r0 � i��j � f0.
Note from (8) that if this stopping criterion is
not observed, then the solutions will eventually
grow in amplitude! This makes students seriously
consider the physics involved. A student who
does not initially realize the stopping criterion
is forced to do so because the solution is not
physically possible when the amplitude increases.

A CAS is particularly convenient for visualizing
the solution in different ways. Figure 3 shows y

Fig. 3. Solution for a Coulomb damped spring-mass system (f0 � :06).

Fig. 4. Undisturbed (dashed line/empty circle) model of a single story building and the nontrivial equilibrium configuration for a
Coulomb damped building for the solution given in Figure 3.
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versus � . Note that the final displacement is non-
zero and satisfies the restriction j yj < f0. In
contrast to the exponential decay of viscous damp-
ing, the amplitude decays linearly as exemplified by
the linear displacement envelope shown in Fig. 3.
This is readily verified by computing the difference
in amplitude over a full cycle of motion, i.e.

j y�r0 � i�� ÿ y�r0 � �i � 2���j
� j yi�ri� ÿ yi�2�ri�2�j � 4f0

Furthermore, a CAS can be used to graph the final
configuration of the building, as shown in Fig. 4,
and create phase portraits and the corresponding
vector field shown in Fig. 5. Here, it is obvious that
energy remains stored in the spring since the
trajectories do not go to the origin. Once a
trajectory enters the darkened interval around the
origin, �ÿf0; f0�, it never leaves.

We point out that although computer algebra
systems have many capabilities, they are not
flawless. Using the default options in NDSolve,
Mathematica was often unable to compute solu-
tions of equation (6) until the stopping criterion
was reached. This reminds students of the limita-
tions of technology.

The visualization techniques discussed above

clarify the differences between viscous and
Coulomb damping. Students often struggle with
viscous damping since vibrations theoretically con-
tinue indefinitely, albeit with exponentially small
amplitudes. However, they enjoyed Coulomb
damping because the vibrations actually stop,
which is consistent with their physical intuitions.

Forced vibrations
In the previous section, we modeled the

unforced vibrations of a building for non-zero
initial conditions. In this section, we consider the
motion of the building during the earthquake
(assuming harmonic forcing). Therefore, the build-
ing begins at rest in its upright position and the
movement of the ground causes the building to
move. If uG�t� is the horizontal displacement of
the ground, then the total lateral deflection is
uT�t� � u�t� � uG�t� as indicated in Fig. 6.

Students were asked to derive the governing
differential equation assuming a ground accelera-
tion of u00G � ÿA sin�! ���������

k=m
p

t�m/sec2. Without
damping, this gives mu00T � ku � 0, which implies:

mu00 � ku � ÿu00G � A sin !

����
k

m

r
t

 !
�9�

Fig. 5. Direction field and phase portraits for a Coulomb damped spring-mass system.
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By letting t � ���������
m=k

p
� and u � �A=k�y, we can

rewrite this equation in nondimensional form as:

�y� y � sin�!��; y�0� � 0; _y�0� � 0: �10�
Note that u is scaled differently than in the
previous section since the initial displacement
u0 � 0. The IVP (10) now depends solely on the
parameter of interest !.

Students were required to solve the ODE in (10),
plot the solutions for various values of !, and
discuss the behavior of the solutions. This was a
rather open-ended question and hence responses
varied widely. However, it was an opportunity for
students to explore the concepts of beats, resonance,
and long-term behavior on their own while wres-
tling with the open-ended structure of the problem.

Next, we asked the students to consider viscous
and Coulomb damping. The treatment for viscous
damping is well known. However, for Coulomb
damping, the building does not move unless the
resultant of the spring force and external force
are larger than the friction force, i.e.,
jkuÿ A sin�! ���������

k=m
p

t�j > F0. Thus, it is possible
for motion to stop temporarily and restart when
the resultant force becomes large enough. This
phenomenon is called stick-slip, see [8] for more
details. It is another example of a problem for
which standard numerical solvers can fail, but

physical intuition can be used to overcome their
limitations.

Finally, students were asked:

1. If the building is designed to withstand deflec-
tions of less than 0.75 m, how long could an
undamped building endure forced vibrations at
the resonant frequency?

2. Determine the smallest value of the viscous
damping coefficient, c, that prevents cata-
strophic failure if the building is forced at the
resonant frequency ! � 1.

3. Determine the magnitude of the force required
for a Coulomb-damped building to begin oscil-
lating. Does the frequency of the applied force
matter?

Multi-story buildings
In this section, we model the structural dynamics

of a building consisting of three floors, although
the analysis easily generalizes to n stories. As in the
single-story case, the mass of each floor is modeled
as though it were concentrated at its center of
mass, so the problem essentially reduces to the
interaction of three masses as shown in Fig. 7. For
convenience, assume that the floors have equal
mass, all structural members have equal stiffness,
and the physical constants and ground accelera-
tion are the same as given above.

Students were expected to derive and analyze a
non-dimensionalized system of equations for both
free and forced vibrations. The model is derived
from standard arguments, but differs slightly from
presentations in traditional ODE textbooks since
one end of the spring/mass system is free. If we
ignore damping (no dashpots in Fig. 7) and let ui

be the displacement of the ith floor, then the
governing system of ODE's in matrix form is
given by:

�u� Au � f �t�;

where u �
u1

u2

u3

0@ 1A; A �
2 ÿ1 0
ÿ1 2 ÿ1
0 ÿ1 1

0@ 1A
�11�

and f �t� is an applied external force.
With f �t� � 0, equation (11) strongly resembles

the scalar equation (4). Thus, it is reasonable
to seek solutions of the form u �

Fig. 6. Building model with ground motion.

Fig. 7. Spring-mass-damper system with 3 masses.
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���c1 sin r� � c2 cos r��. This yields the eigenvalue
problem

A� � r2�� �12�
Because the top of the building is free, the eigen-
values are not simple to compute. It is convenient
to find the eigenvalues numerically with a CAS.
The initial conditions:

u1�0� � u2�0� � 0:1; u3�0� � ÿ0:1;

_u1�0� � _u2�0� � _u3�0� � 0 �13�
were specified and students were asked to graph
their solutions.

Again, the utility of a CAS is obvious. Further-
more, actual animations of the model building are
easy to produce. The following Mathematica
commands numerically solve equations (11) and
(13) and produce an animation of a three-story
building. Two snapshots of this animation are
shown in Fig. 8.

sol=NDSolve[{u100[tau]+2 u1[tau]-u2[tau]=
=0,u200[tau]-u1[tau]+2 u2[tau]-u3[tau]=
=0, u300[tau]-u2[tau]+u3[tau]==0,u1[0]=
=.1, u10[0]==0, u2[0]==.1, u20[0]==0,

u3[0]==-.1, u30[0]==0}, {u1, u2, u3},
{tau, 0, 30}]

x1=1+First[Evaluate[u1[tau]/.sol]];
x2=1+First[Evaluate[u2[tau]/.sol]];
x3=1+First[Evaluate[u3[tau]/.sol]];
tb={{1,0},{x1,1},{x2,2},{x3,3},{1+x3,3},
{1+x2,2},{1 + x1,1},{2,0},{1 + x1,1},
{x1,1}, {x2,2}, {1+ x2,2}};

Do[ListPlot[tb,PlotJoined->True,
PlotRange->{{0,3},{0,3.5}},
AspectRatio->Automatic,
Epilog->{Disk[{x1+.5,1},.08],
Disk[{x2+.5,2},.08],
Disk[{x3+.5,3},.08]}], {tau,0,30,.2}]

A major difference between the multiple-story
and single-story buildings is that simple harmonic
motion does not occur in general for a system. Only
if the initial conditions happen to coincide with an
eigenvector of A will simple harmonic motion
result. These eigenvectors mathematically represent
the different possible modes of vibration, and any
free vibration of the multiple-story building is a
linear combination of these modes. It was quite
enlightening for students to visualize the vibration
modes via an animation. This traditionally difficult
concept became quite clear almost immediately.

Fig. 8. Two snapshots from the animation of a vibrating three-story building.
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The next topic of the project involved sinusoidal
forcing for the multi-story case. If the bottom
floor is accelerated by the ground, then f �t� �
�1; 0; 0�T sin!t. Students generalized their know-
ledge of the method of undetermined coefficients
or variation of parameters to systems by referring
to a standard text such as [2]. Alternatively, solu-
tions could simply be found numerically. Although
! � 1 is the resonant frequency for the single-story
building discussed earlier, it is not a resonant
frequency for the three-story building. Students
were asked to discuss why this is the case from
both mathematical and physical perspectives.
Finally, the resonant frequencies were computed
and solutions were obtained for a building which
begins at rest in its upright position. Again, anima-
tions of the solutions were quite valuable for
developing physical intuition. Students were able
to ``see'' the eigenvectors in the excited modes of
vibration.

SUMMARY AND EXTENSIONS

We found that the project was extremely effec-
tive at developing several mathematical skills
among the students. It targeted several mathema-
tical concepts used to study ODE's and gave
students the opportunity to explore concepts on
their own, address open-ended questions, realize
physical limitations of mathematical models,
encounter some of the limitations of numerical
solvers, enforce and develop their linear algebra
skills, enhance their skills with CAS's, and further
develop their understanding of several concepts in
ODE theory and interdisciplinary applications.
The animations were extremely effective at devel-
oping their understanding of vibration phenomena
and only required a small investment of time.
Perhaps the most gratifying result was that many
students commented that this project really forced
them to think!

We reiterate that the basis of this project was
designed for students taking a Calculus with
Differential Equations course, which is required
for all cadets at USMA. As such, the amount of
ODE theory covered was significantly less than
what one would typically find in a course devoted
solely to differential equations. In particular, at

this level, the primary goals of the course involved
first-order ODE's and second-order differential
equations which could be solved using the
method of undetermined coefficients and equiva-
lent systems of ODE's. Additionally, there was a
brief introduction to numerical solutions to differ-
ential equations. Needless to say, we believe that the
students were much more prepared to be successful
in their engineering and applied mathematics
courses as a result of completing this project.

There are a tremendous number of possible
extensions to this project which can be used to
develop mathematicians and engineers. One possi-
bility is to consider different forcing functions such
as delta functions, piecewise continuous functions,
etc., which motivate Laplace transforms for scalar
equations and for systems. Also, since sinusoidal
forcing does not approximate the motion of an
earthquake very accurately, actual ground motion
data can be obtained and solutions derived
numerically. Of course, this can naturally lead to
many discussions involving Fourier analysis.
Several internet sites provide sources for obtaining
actual data [9, 10], and links therein for additional
information.

Another possibility is to incorporate damping in
the multi-story model. Viscous damping leads to a
system of the form:

Mu 00 � Cu 0 � Ku � 0 �14�
where M is a mass matrix, K is a stiffness matrix,
and C is a damping matrix. Noting the similarity of
this system to equation (1) and seeking solutions of
the form u � �ert, leads to a generalized eigenvalue
problem:

�Mr2 � Cr� K��� � 0 �15�
Alternatively, the system in equation (14) can be
cast as a first-order system. See [6] for a discussion.
With Coulomb damping, floors may stop and start
several times before the entire building comes to
rest.

The interested reader should consult [3] and [4]
for other interesting topics such as base isolation,
inelastic phenomena, and vibrations of structures
with distributed mass, e.g. chimneys, cooling
towers, etc.
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