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This paper describes how the computer algebra system, Mathematica, can be used to introduce
students to the finite element method. Typical students are juniors, seniors, and beginning graduate
students in mathematics, computer science, and various engineering disciplines. Students were given
template code. They were instructed to modify the code in order to solve two-dimensional elliptic
boundary-value problems and to verify the correctness of their numerical solutions.

INTRODUCTION

THE FINITE ELEMENT method (FEM) is one
of the topics introduced in our upper-level under-
graduate course, Math 4503, Numerical Methods.
During the Fall 1999 semester, we used a computer
algebra system (CAS), Mathematica, to assist in
teaching an introduction to FEM. The textbook
used for this course [1] presents an introductory
section on finite elements, and we supplemented
this section.

A Mathematica notebook (program) that imple-
ments a basic two-dimensional FEM using linear,
triangular elements was made available to students
at the website, http://euler.mcs.utulsa.edu/ma4503/
index.html [2]. The use of this FEM notebook
assumes that students are fairly familiar with
Mathematica. This is a major requirement, since
it generally takes a good deal of exposure to
Mathematica to become comfortable using it at
the level required here (use of palettes, templates,
and the help browser in Mathematica Version 4
alleviates some of this requirement). At TU, we
introduce our students to Mathematica in second
semester calculus. Thereafter, many of our mathe-
matics courses, including third semester calculus,
differential equations, mathematical modeling,
and numerical methods, use Mathematica. One of
our faculty members has written a set of Mathe-
matica tutorials to assist students and faculty in
using this software effectively. These tutorials are
available on the web [3].

FINITE ELEMENT NOTEBOOK
AND ASSIGNMENT

When the FEM notebook is opened, it initially
appears in outline form, as shown in Fig. 1. Each
section of the notebook is closed, and only the
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topic heading from the section appears; that is, the
cell groupings are closed. Groups of Mathematica
cells can be either open or closed. When a cell
group is open, all the cells are visible to the user.
When a cell group is closed, only the first or
heading cell in the group is visible. Students
could double-click on any closed cell-bracket (or
use the menu option) to open the cell group and
view and access the enclosed code corresponding
to a specific portion of the notebook. This feature
of Mathematica essentially modularizes any large
program. Students can see the overall structure of
the method, i.e., the steps are shown explicitly, and
then can keep more focused on the specific step of
interest.

Students were given the following assignment.
They were to work in teams of three students per
team, access the FEM notebook (copy it onto a
disk), and use it to solve a suitable problem of
their choice. Suitable problems, i.e., those that
the Mathematica program could handle, are as
described in the documentation in the ‘Statement
of problem’ section of the notebook. The recom-
mended type of problem was a basic second-order
linear partial differential equation (e.g., Poisson’s
or Helmholtz’s equation) with Dirichlet boundary
conditions specified on [], a rectangle in the
plane:

—a(0%u/0x? + 0*u/dy?) + cu = f(x,y) in Q

u=g(x,y) on 92

This could represent, for example, a steady-state
heat conduction problem in which the unknown,
u, represents temperature. The problem type is
restricted, yet general enough so students can ask
‘what if” questions. Students could run a sequence
of cases to study the effect that varying some
parameter had on the behavior of the FEM solu-
tion. The equation coefficients, nonhomogeneous
term, domain size, and grid are among the quan-
tities that could be varied. More advanced students
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Fig. 1. Outline of Mathematica finite element method notebook.

could investigate rewriting the code to make it
more efficient or easier to understand.

Instead of providing a program in which
students would simply supply input parameters,
students were provided a template program in
which a specific boundary-value problem was
solved. This was done intentionally. One goal
was for students to experience a situation that
occurs in practice; that is, code that has been
intended to solve a specific problem is used to
solve a different, but related problem. In this
case, the code itself must be adapted to the prob-
lem of interest. Students must really understand
what parts of the code are relevant and what
operations these parts of the code perform.

Students were to modify the code as necessary
for their problems, solve their problems, and verify
the correctness of their FEM solutions. These
verifications could be done using analytic,
numerical, and/or graphical comparisons with
analytic solutions or numerical solutions
obtained by other methods, or by refining their
grids and verifying that their FEM solutions
behaved as expected. Since this template code
was provided, the only commands that required
updating were in the section, ‘Enter data (includ-
ing Dirichlet boundary conditions); compute grid
spacings’, and, additionally, one command in the
section, ‘FEM error estimates—Compute the
discrete sup norm of the error and plot related
graphs’.

This latter change involved a parameter that
became too large for moderately refined grids.
The author had inadvertently written a command
in a form that was essentially grid-dependent.
However, the way that some of the students
reacted to the resulting difficulties showed much
about their programming skills and their
approaches to dealing with the types of difficulties
encountered in using software to solve engineering

problems. This issue will be addressed in the
section, Discussion and Conclusion.

STRUCTURE OF FINITE ELEMENT
NOTEBOOK

The Mathematica notebook implements a basic
finite element method (FEM) program, using
linear, triangular elements, to solve a second-
order partial differential equation boundary-
value problem (pde-bvp) on a rectangular region
in the plane. Procedural programming was used
because this programming style is easier for most
students to follow (i.e., compared to functional
programming or rule-based programming). The
material in Fig. 2, which includes text, Mathema-
tica commands, and graphics, is a summary of the
notebook itself. For many of the Mathematica
commands, output is suppressed in Fig. 2 in
order to present this material more concisely.
The entire Mathematica notebook is available at
the website [2].

DISCUSSION AND CONCLUSION

The FEM is an especially good candidate for
CAS instruction since the method is very compu-
tationally intensive. Yet there is a well-defined
sequence of steps to be performed. Mathematica
takes care of the tedious computations, and
students are able to concentrate on the general
steps of the method. Students are not side-
tracked by tedious hand computations that
may obscure the overall nature of the method
[5]- This computer technology is used to comple-
ment the lectures/textbook portion of the course.
It is used to make the course more relevant
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1. Introduction:

This Mathematica notebook implements a basic finite element method (FEM) program, using linear
triangular elements, to solve a second-order partial differential equation boundary-value problem (pde-bvp)
on a rectangular region in the plane.

2. Statement of problem:
Solve the following pde-bvp using the FEM:

-VolaVu]+bdu/dy+cu=inQ=[0,L]x [-H1,H2],
u = g(x,y) ondfl,

where a >0, b, and ¢ are constants; f and g are bounded functions.

3. Preliminary commands:
(This section includes some Mathematica-specific commands, e.g., calls to Mathematica packages.
This section is not presented in this paper.)

4. Enter data (including Dirichlet bes) and compute grid spacings:

The current test problem is from Numerical Analysis, 6th edition, Burden and Faires, Brooks/Cole, 1997.
See Example #1, page 676, with exact solution u(x,y) = 400 x y. Note that the exact solution is bilinear in
the variables x and y, so this program will not yield the exact solution.

nxnodes and nynodes are the number of nodes in the x-direction and y-direction, respectively.
hx and hy are the x- and y-grid spacings, respectively.

L=1/2;

H1 =0,

H2 =1/2;
nxnodes = 6;
nynodes = 6;

hx = L/(nxnodes - 1)
hy = (H2 + H1)/(nynodes - 1)

a=1;
b=0;
c=0;
flx_y_1=0;

Set Dirichlet boundary conditions (bcs):
g(x,-H1) =0, g(x,H2)=200x, g(0,y)=0, and g(L,y)=200y, for0<x <L, -Hl =<y =H2.
ufem gives the FEM nodal values.

Table
Table
Table
Table

ufem[i] =0, {i, 1, nxnodes}]

ufem[nxnodes*(nynodes - 1) + 1] =200*(0 + (i - 1)*hx), {i, 1, nxnodes}]
If[Mod[i, nxnodes] == 1, ufem[i] = 0}, {i, 1, nxnodes*nynodes, nxnodes}]
If[Mod[i,nxnodes]==0, ufem[i]=200*(0+(i-nxnodes)/nxnodes)*(hy)],
{i,nxnodes,nxnodes*nynodes,nxnodes} |

s Leus Lons Raws)

Check that the Dirichlet boundary conditions are applied correctly:
Table[ufem[i], {i,nxnodes*nynodes}];

uTestExact[x_,y ]=400*x*y
Plot3D{uTestExact[x, v}, {x, 0, L}, {y, -H1, H2}];

Fig. 2. Summary if Mathematica finite element method notebook.
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Exact Solution, uTestExact

5. Construct grid and set remaining grid parameters:
(This section is not presented in this paper.)

6. Construct grid diagram:
triangle is a graphics object that is used to depict the grid.
For example, note this structure, and use it to construct the following loop and mesh diagram:

Table[meshPoints1{[1,k]],{k,1,3}];
triangle[k ]:=Graphics[Line[

{ meshPoints1[[k,1]], meshPoints1{[k,2]], meshPoints1{[k,3]],meshPoints1[[k,1]] } ] ]
Show[Table[triangle[k], {k, 1 ,ntriangles} ], AspectRatio->Automatic];

A R
|

i j \
N
Grid diagram

7. Construct FEM stiffness matrix and right-hand side vector

(proceed element-by-element):
elementContribution[elementc_]:=
Module[{xList, yList,area,aa,bb,cc,diag,phi},
{xList,yList}={gxcoord|elementc],gycoord|elementc]};
area=(1/2)Det[{{1,xList[[1]],yList[[1]]},{1,xList[[2]],yList[[2]]},{1,xList[[3]],yList[[3]1}}];
aa=RotateLeft[xList]RotateLeft[yList,2] - RotateLeft[xList,2]RotateLeft[yList];
bb=RotateLeft[yList]-RotateLeft[yList,2];
cc=RotateLeft[xList,2]-RotateLeft[xList];
phi[x_,y_]=(1/(2*area))(aa+bb*x+cc*y);
diag[x_]=InterpolatingPolynomial[{{xList[[1]],yList[[1]]}, {xList[[3]],yList{[3]]}}.x];
SetCoordinates[Cartesian[x,y,z]];
Do[ Do
stiffmat| elementc[[i]],elementc[[j]] |=
stiffmat[ elementc[[i]],elementc[[j]] |+Integrate[ (a*Grad|phi[x,y][[i]]].Grad[phi{x,y][[j]]] +
b*D{philx,yH{[j11,y*philx,y][[i]]+c*phi[x,y][[i]]*
phi[x,y1[[j11) ,{x,xList[[1]], xList[[2]]},{y,yList[[1]],diag[x]}1],
{i,1,3}];

Fig. 2. Continued.
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xList[[2]]},{y,yList[[1]],diag[x]}],
{-1,3}1 |

contributions and store in the appropriate locations:
Table[rhs[1]=0, {i,nunknowns} |;
Dol

elementc=elemconnectivity[[k]];

elementContribution[elementc],
{k,ntriangles}] ]

(This section is not presented in this paper.)
9. Solve the FEM linear system:

(This section is not presented in this paper.)

(This section is not presented in this paper.)

and present graphics:

ViewPoint->{1.2,1.2,1.2}];

(hands-on), make the material easier to learn,
and because, for most of these students, this is
the context in which they will eventually use
numerical methods.

As numerical methods have tradeoffs, so do
methods of teaching numerical methods. This use
of Mathematica with a template FEM program is

rhs[elementc[[j]] |=rhs[elementc][[j]] ] + Integrate[f[x,y]*phi[x,¥][[j]], {x,xList[[1]],

Initialize stiffness matrix and rhs vector to be zeros. Then loop over all elements to compute their

Caution: Be sure that stiffmat and rhs are zeroed out appropriately.
elemente stores the x- and y-coordinates of the three nodes that define a specific triangular element.

Timing[ Table[stiffmat[i,j]=0, {i,nunknowns},{j,nunknowns} J;

8. Apply Burnett's method of enforcing the essential boundary conditions
(essentially this decreases the size of the FEM linear system,
and consequently we are working with actual unknowns):

10. Form FEM solution on each element (triangle):

11. Construct global piecewise linear FEM solution

Following are plots of the finite element approximation (femApproximation) and the
corresponding exact solution, uTestExact. 2D-plots, 3D-plots and contour plots are given.

Plot3D[femApproximation|[x,y],{x,0,L},{y,-H1,H2},

0.50.5
3-D plot of finite element approximation, femApproximation

ContourPlot[femApproximation[x,y], {x,0,L},{y,-H1,H2}];
Fig. 2. Continued.

more of a ‘middle of the road” approach [6].
Students have access to the code, should they
wish to modify the program; however, on the
other hand, this template can more or less be
used as a ‘black box’ in which case students
update only the required commands. In either
scenario, the notebook provides students with the
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0 0.1 0.2
Contour plot of finite element approximation, femApproximation

ContourPlot[uTestExact[x,y],{x,0,L},{y,-H1,H2}];

0.3 0.4 0.5

12. FEM error estimates-

(This section is not presented in this paper.)

0 0.1 0.2
Contour plot of exact solution, uTestExact

Compute the discrete sup norm of the error and plot related graphs:

0.3 0.4 0.5

Fig. 2. Continued.

capability to interactively explore and observe how
the numerical solution depends on the values of
certain parameters.

This approach enabled the author to see how
some of the students reacted when a particular
command took too long to evaluate. One
command in the section, ‘FEM error estimates—
Compute the discrete sup norm of the error and
plot related graphs’, involved a parameter that
became too large for moderately refined grids.
The author had inadvertently written a command
in a form that was grid-dependent. Mathematica
was performing a doubly nested loop in sampling
the absolute value of the error at selected points. In
the original code, 50 sampling points were used
per grid step, both in the x-direction and in the
y-direction. Thus, for the choice of 6 nodes in
the x-direction and similarly in the y-direction,
there were 2502 = 62,500 sampling and com-
parison operations. However, when the students
ran their problems with more refined grids,

Mathematica got hung-up on this command.
And this makes sense, because several hundred
thousand (or more) operations were required.
But instead of looking at the code and determining
what might be the cause of this difficulty, some of
the students just left Mathematica running all
night! We have been introducing technology to
our students as labor saving tools, and apparently
the students interpreted this as saving all mental
labor as well. This episode did generate a dis-
cussion with the students about looking at the
code (in this case, the nested loops) and attempting
to understand the cause of the difficulty and
determining more effective ‘fixes’.

Particularly with respect to the topic of finite
elements, care must be taken in introducing this
topic at the undergraduate level [7]. CASs can play
a unique role in rendering this topic suitable for
this level of presentation. If students have the
mathematical background provided by three
semesters of calculus, an introduction to linear
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algebra, and some exposure to partial differential Acknowledgement—The author acknowledges The University

equations (for the application presented in this of Tulsa Faculty Development Summer Fellowship (1999),
e . . . which enabled her to write the Mathematica finite element

paper), CASs can facilitate in presenting the salient method notebook.

aspects of this method [8, 9].
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