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This paper describes the use of Solver function, contained in the Microsoft Excel spreadsheet
package, in computing the chemical equilibrium of known substances in either an ideal or non-ideal
gas phase by the method of direct Gibbs energy minimization. Apart from some deficiency of Solver
in applying the generalized reduced gradient method for this type of problem, the approach is simple
to understand and apply and provides a direct solution procedure whereas the traditional approach
often employs a high-level programming language. The results are compared with those obtained by
a Fortran program, and found to be in satisfactory agreement.

SUMMARY OF EDUCATIONAL ASPECTS
OF THE PAPER

1. The paper discusses materials/software for
courses in Chemical Engineering Thermodynamics
and Physical Chemistry.
2. Course levels are 3rd year in a 4-year program
and 4th or 5th year in a 5±6-year program of
regular undergraduate courses.
3. Mode of presentation is by computer and
lecture.
4. Class hours required to cover the material is 3
semester-hours.
5. Student homework hours required for the
course: maximum 4 hours for initial preparation
of a general spreadsheet model; maximum 1±2
hours for modification to suit particular problems.
6. Novel aspects presented in this paper: use of
spreadsheets in direct minimization of Gibbs
energy to determine the chemical equilibrium
concentrations. A way is described to smoothly
run the spreadsheet Solver in solving this type of
optimization problems.

NOMENCLATURE

aji Number of gram atoms of element j in a
mole of species i

aji Matrix of aji's
bj Total number of gram atoms of element j in

the reaction mixture
f̂i Fugacity of species i in the gas mixture
f 0
i Fugacity of species i at its standard state
�Gi Gibbs free energy of species i in the gas

mixture
G0

i Gibbs free energy of species i at its standard
state

Gi Gibbs free energy of pure species i at
operating conditions

�G0
fi Standard Gibbs free energy of formation of

species i
K Total number of atomic elements
kij Binary interaction parameters
N Total number of species in the reaction

mixture
ni Number of moles of species i
nG Total Gibbs free energy of the system
P Total pressure of the system
Pc Critical pressure
R Gas constant
T Temperature of the system
Tc Critical temperature
yi Mole fraction of species i
Z Compressibility factor
�̂i Fugacity coefficient of species i in the gas

mixture
! Acentric factor

INTRODUCTION

IN THE engineering education literature, a
number of papers concerning the use of spread-
sheets as teaching/learning tools have been
described. They involved flowsheeting, database
development, material and energy balance calcula-
tions, solving algebraic and differential equations,
process optimization, curve fitting, modeling and
simulation, etc.

The usefulness of spreadsheets as a teaching/
learning tool underlies in its:

simplicity and user-friendliness;
built-in graphics capabilities;
flexibility in changing the model parameters;
universal availability;
ability to be used as or combined with a word-
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This paper presents a use of Solver function of
the spreadsheet in solving nonlinear programming
problems with an example of Gibbs energy mini-
mization in chemical equilibrium calculations.

Chemical equilibrium calculations have tradi-
tionally been made through the use of equilibrium
constants of known reactions ± a procedure still
useful for simple problems. However, when the
equilibrium composition is determined by a
number of simultaneous reactions, the compu-
tations required become complex and tedious. A
more direct and general method for solving these
complicated problems is the direct minimization of
the Gibbs function of the system, given by:

nG �
XN

i�1

ni
�Gi �

X
niG

0
i � RT

X
ni ln

f̂i

f 0
i

�1�

For gas phase reactions, f̂i � �̂iyiP. Since the
standard state is taken as the pure ideal gas state
at 1 bar (100 kPa), f 0

i � 1 bar. And since G0
i is set

equal to zero for each chemical element in its
standard state, G0

i � �G0
fi for each component.

Substituting these into equation (1) gives:

nG�nis;T ;P� �
X

ni�G0
fi �

X
niRT ln P

�
X

niRT ln yi �
X

niRT ln �̂i �2�
The problem now is to find the set of nis which
minimizes nG at constant T and P, subject to the
constraints of elemental balances:XN

i�1

niaji � bj; j � 1; . . . ;K �3�

The nonlinear programming model, comprising
the objective function (2) to be minimized and
the constraints (3), is traditionally solved by the
Lagrange multiplier method. Advances in compu-
tational techniques allow the direct solution of
such models by the sequential or successive quad-
ratic programming (SQP) (e.g. [1]) and the general-
ized reduced gradient (GRG) methods.

To solve such models numerically, one usually
develops a computer program which requires
considerable testing and debugging before results
can be obtained. Moreover, the model is usually
obscured from the user unless relevant documenta-
tion is provided, and cannot be modified without
recompilation. Instead of developing computer
programs, one can also use commercial scientific
computing libraries. However they still require
driver programs and are usually not particularly
user friendly and often are machine or software
specific. Although there are commercial software
packages for solving chemical equilibrium
problems, the calculation steps are hidden from
the user, and hence they are not suitable to use as
teaching and learning aids.

Using the spreadsheet offers some unique
features which the conventional approach does
not usually provide, such as graphics capability

and flexibility in experimenting by changing input
data or independent variables. It is also available
universally on nearly all personal computers.
Although preparing the spreadsheet models may
take some time, for most students it is easier than
writing computer programs. The spreadsheet
allows the naming of cells which enables the
users to readily understand the model.

Among the variety of scientific and engineering
problems that have been solved using spreadsheets,
several chemical engineering applications have
been reported [2±9]. Most of the papers are
concerned with using the ability of the spreadsheet
for entering formulas and solving simultaneous
equations, using built-in solving capabilities.

In his paper on the use of spreadsheets in under-
graduate thermodynamic calculations, Savage [3]
has described the chemical equilibrium calcula-
tions of single chemical reactions occurring in
either an ideal or non-ideal fluid phase by the
stoichiometric method. The method is based on
the reaction equilibrium constants. This paper will
describe how the optimization feature of the
spreadsheet Solver can be used to perform chemi-
cal equilibrium calculations for known substances
in either an ideal or non-ideal gas phase by the
method of direct Gibbs energy minimization.

METHOD

The minimization model consisting of the objec-
tive function (2) and the constraints (3), can be
directly solved by using Microsoft Excel Spread-
sheet's Solver feature. This feature allows the user
to specify a cell or set of cells whose numerical
values are to be varied such that another cell gets a
specified value or optimized subject to the cells
that are constrained to constant values. The
Solver applies the Generalized Reduced Gradient
(GRG) method to solve nonlinear programming
problems.

The spreadsheet shown in Fig. 1 gives a solution
to the example problem appearing in [10, 11].

The problem statement is as follows:

Calculate the equilibrium compositions at 1000 K and
1 bar (100 kPa) of a gas-phase system containing the
species CH4, H2O, CO, CO2, and H2. In the initial
unreacted state, there are present 2 mol of CH4 and
3 mol of H2O.

The problem is solved as an example in these
references [10, 11] by using the Lagrange multiplier
method on the model (2)±(3). To solve the problem
on the spreadsheet, the user supplies the chemical
identities, starting moles, temperature and pressure
of the system, atomic matrix aji, critical constants
(Tc, Pc, !) and the ideal gas standard Gibbs free
energy of formation of each species at T, binary
interaction parameters (kij), and initial estimates of
moles of components and compressibility factor
(Z) of the mixture. The initial estimate for Z is
unity. On the spreadsheet given in Fig. 1, the cells
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for input data and those for initial estimates are
shown in double outlines and thick outlines,
respectively. Chemical equilibrium occurring in
an ideal gas phase can be so indicated. For the
Gibbs energy of formation, the temperature-
dependent equation (�G0

f � a� bT � cT2), if
available, can be directly entered as cell formulas
to the respective cells (B15:F15). Alternatively,
it can be calculated, on the same spreadsheet or
a separate sheet and then linked, from the
standard Gibbs energy of formation at 298 K

and the temperature-dependent equation for
standard enthalpy of formation. On the spread-
sheet the linked cells are shown in thick broken
outlines.

The spreadsheet then uses the data to calculate
the terms in the right-hand side of equation (2).
The fugacity coefficient of each species in the
mixture is calculated via the Soave-Redlich-
Kwong (S-R-K) equation of state [12]. Finally
the Gibbs function of the system, the left-hand
side of equation (2), is computed.

Fig. 1. Spreadsheet solution of the chemical equilibrium problem given in [10, 11].
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The fugacity coefficients are calculated as follow
[13]:

ln �̂i � Bi

B
�Z ÿ 1� ÿ ln�Z ÿ B�

�A

B

Bi

B
ÿ 2

a�

X
j

yj�a��ij
" #

ln 1� B

Z

� �
�4�

where Z is given by S-R-K equation of state:

f �Z� � Z3 ÿ Z2 � �Aÿ Bÿ B2�Z ÿ AB � 0 �5�
The parameters A, B, Bi, (a�)ij, and a� of these
equations are calculated by the formulas given in
[13]. On the spreadsheet shown in Fig. 1, nG
occupies the target cell (H53) that is to be mini-
mized. The moles of the species and the compres-
sibility factor occupy the set of cells (B13:F13,D47)
whose values are to be varied (change cells). The
constrained cells include the atomic balances of C,
H and O given by (3) (H46:H48), the function of Z
representing the equation of state given by (5)
(E47), and the non-negativity constraints of the
change cells. Because the computation involves the
logarithmic function of the decision variables, the
lower limits of the non-negativity constraints must
not be zero.

Once these have been defined and put in the
Solver Parameters dialogue, and the Use Auto-
matic Scaling box in the Solver Options dialogue
has been checked to minimize the effects of poorly
scaled models, the problem can be solved. The
search conditions and solution parameters,
contained in the Solver Options dialogue, give
control over the time, precision and structure of
the solution. Once a solution has been generated,
Solver permits the user to keep or reject the
solution found. Additionally, Solver can create
reports that summarize the sensitivity, answer
and limits of the solution found.

One drawback of the current GRG spreadsheet
solver, especially in solving this type of model, is
that it seems to violate the non-negativity
constraints. This may be due to the fact that the
GRG algorithm can reach at nonfeasible points in
trying to get to the optimal solution [14, 15],
combined with the involvement of logarithmic
functions of the variables. In order to avoid the
error message generated by this deficiency of the
Solver, one can use the MAX function available in
Excel spreadsheet to replace the non-negativity
constraints. Accordingly, the change cells for
mole numbers are replaced by the cells B12:F12
labeled as Initial Estimates. The MAX function
will return the positive values to B13:F13
from whatever values of B12:F12 before sub-
sequent calculations so that the Solver can run
continuously without being interrupted by the

error message. Copies of the spreadsheets, includ-
ing the equations used, are available from the
author.

When the Solver completion message `Solver
found a solution, all constraints and optimality
conditions are satisfied' appears, it means that a
locally optimal solution has been found. The solver
should be run from several sets of initial estimates
for the decision variables to increase the chances
that the globally optimal solution has been found.
For details about the GRG Solver stopping con-
ditions and completion messages, refer to a Micro-
soft Excel reference manual or online help.

Although the original example contained in
[10, 11] assumes the ideal gas phase because of
the low pressure and high temperature, the spread-
sheet model was developed to include non-ideal
gas phase systems. The results are compared with
the solution of the example problem and those
obtained by the Fortran program developed by [1],
and found to be in satisfactory agreement.

To consider the non-ideality of the mixture, the
same problem for 20 bar pressure is also solved by
the Solver. The results are compared with the
solutions of the Fortran program [1] and the
Lagrange multiplier method, and found to be in
good agreement.

This approach of using Solver can be applied to
solve general nonlinear programming and other
problems encountered in many engineering and
thermodynamic computations such as nonlinear
regression, calculation of adiabatic flame tempera-
ture of reversible and irreversible reactions,
entropy maximization and Gibbs energy minimi-
zation in solution thermodynamics, vapor-liquid
equilibrium calculations, etc.

SUMMARY

The use of spreadsheet Solver in solving
nonlinear programming problems is presented
with an example of direct Gibbs energy minimiza-
tion for computing the chemical equilibrium of
known substances in either an ideal or non-ideal
gas phase. A method to run the Solver continu-
ously without error messages being generated due
to the violation of non-negativity constraints is
described. The approach is simple to understand
and apply, and provides a direct solution proce-
dure. The results are compared with those
obtained by using conventional Fortran programs
and found to be in good agreement.
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