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Entire undergraduate programs have been known to adopt PBL. This might be considered a
`macro-application' of this pedagogical approach. Sometimes micro-scale applications can be
useful, i.e. introduction of a single challenging and rather open-ended problem. The problem
selected should be generic in nature and rather difficult because to promote learning by the mere
mimicking of specific examples is poor pedagogy. Micro-to-meso-scale PBL initiatives have a
number of advantages: they familiarise faculty with the PBL approach, they have lower cost and
risk, the tutors start at an appropriate position on the PBL learning curve, and they are
administratively simple. A comparison between the activities of Engineering Design and Process
Modelling is presented. The PBL exercise described herein was developed around a set of linear
reservoirs that were specially constructed to provide the students with a hands-on verifiable
experience with mathematical modelling. This physical cascade system is unique in that an exact
analytical solution exists for the nth reservoir. The degree of success with this modelling exercise is
discussed.

INTRODUCTION

THERE ARE MANY WAYS to try to model
naturally occurring and/or engineering phenom-
enon. Three broad categories or methods are:

1. The building of physical models, followed
by laboratory measurements during model
operation.

2. Via deterministic modelling using analytical
solutions of, or numerical approximations to,
the governing differential equations.

3. Via non-deterministic modelling using `best-fit'
equations to mimic the observed processes
(without seeking a deeper understanding of
the underlying mechanics).

Numerical solutions themselves represent a large
number of possible approaches and much is known
about the magnitude of the errors that may be
expected for a given method. All of these
approaches are interesting and useful in their
own ways, but it is still a challenge to make this
material seem interesting to engineering students.
Today's engineering professor is also confronted
with a large array of software that purports to be
able to engage in process modelling in new and

better ways. This paper describes how the phenom-
enon of level-pool hydrologic routing was used in a
civil engineering course as a vehicle to introduce
students to all of these approaches, including a
powerful simulation software package that empha-
sises the development and use of the user's intuitive
understanding of the processes being observed.
Our on-going desire is to increase the amount of
environmental modelling in the course, thereby
increasing both its usefulness and the level of
interest experienced by students.

ACADEMIC CONTEXT

Dalhousie University course CIVL4720 `Civil
Engineering Computations' was originally con-
ceived as one in which various numerical methods
would be taught using examples specific to civil
engineering. Except for this selectivity it was, prior
to the fall of 2000, a fairly typical numerical
methods course. It had no laboratory component,
which is quite typical of such courses. This paper
describes an experience with teaching modelling
using the well-known hydrologic phenomenon of
level-pool routing as the pedagogic vehicle. In the
fall of 2000 a simpler version of the experiment
described herein was incorporated. It was based on* Accepted 25 January 2003.
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the more common case of non-linear reservoirs
(Hansen and George [1] ); specifically, a cascade of
small cylinders with outlets controlled by
orificesÐand for which no analytic solution
exists for the nth outflow hydrograph. The experi-
mental set-up was both inexpensive and easy to
build. The experiment described herein was
executed using a more elaborate system: a cascade
of linear reservoirs, for which an analytic solution
does exist for the nth outflow hydrograph. The
level-pool routing phenomenon was modelled in
CIVL4720 in five ways:

. physically;

. numerically, using traditional numerical
schemes;

. analytically;

. statistically, using non-linear transformations
and ordinary least squares regression (OLS);

. using a systems-simulation software package
known as Stella1 (HPS 2000).

It isbelievedthat this lastapproachrepresentsquitea
departure from what civil engineering students
normally encounter in their undergraduate
programs.

PROBLEM-BASED, DESIGN,
AND MODELLING

The underlying idea of PBL is already so
familiar to engineers that they may be wondering
what all the excitement is about. We would argue
that engineering design is the quintessential
PBL activity. Efforts by engineering professors to
incorporate more design in their academic
programs could be considered to be efforts to
make their curricula more PBL in orientation.

Students generally love design, but are not so
sure about modelling. It is therefore interesting
to compare and contrast the intellectual activities
of `design' and of `modelling'. Table 1 presents
such a comparison.

Therefore, although modelling is perhaps not as
inherently PBL as the process of design, there
appear to be many useful analogues between the
thought processes involved. It is definitely true that
sometimes the best way to advance a design effort
is to build or test a model.

Savin-Baden [3] has presented and discussed a
number of interesting anecdotes of student experi-
ences with PBL under such categories as `Frag-
mentation' and `Self-validation'. `Fragmentation'
in the PBL context might be described as the
student's intellectual and emotional discomfort
caused by the expectation that he take greater
responsibility for his own learning. The student is
also expected to become facile with many disparate
pieces of information and techniques that must be
abstracted on a need-to-know basis from various
fields of knowledge, often including (and perhaps
especially) fields outside of the discipline in which
the student is nominally enrolled. From the point
of view of some students, particularly those
already feeling besieged with work, this is
worsened by the philosophy that they learn this
rather foreign-looking material quite indepen-
dently. Design, as an intellectual activity, is often
affected by fragmentation, regardless of whether it
is part of an undergraduate course in engineering
or is being done for profit. One might also expect
the activity of modelling to be affected by feelings
of fragmentation, though perhaps to a lesser
extent. In this PBL exercise the students were
required to draw on the knowledge to which they

Table 1. Engineering design versus process modelling.

Design Modelling

Nature: the quintessential PBL activity. Nature: An attempt to replicate the behaviour of an observable
phenomenon, often a naturally-occurring one.

Purpose: to create a product that can be sold at a profit. Possible purposes: to understand nature, to predict an impact
on a natural system, to optimise operation of an artificial
system, to inexpensively pseudo-test a prototype.

Has a morphology (see Dieter [2] for typical flow charts). Has a loose morphology, compared to design (see Figure 1).
Does not have one correct answer. Lateral thinking, criticism,

cross-disciplinary investigations, and teamwork often needed.
Often quite obvious as to how good an answer is (closeness-of-

agreement between observed and modelled outcomes).
Design has iterative components, esp. `Needs Analysis',

`Problem Definition', and `Generation of Alternatives'. These
steps drive much of the information gathering and on-the-
spot learning.

Best modelling approach might be arrived at iteratively; some
are more powerful than others but may not be justifiable due
to time constraints, or the need for a `good enough' answer.
Details of underlying physics and phenomenologies relatively
important and may need to be re-visited and enhanced.

Requires intuitive leaps, so as to finally arrive at an outcome
(prototype).

Nature of internal system connectivities requires the application
of intuition.

New design cannot be called a success until production units
have been subjected to long- term testing in the field.

Poorly designed and/or specified models (too few or too many
parameters) can produce deceptively credible results when
tested under a narrow range of conditions. Modelling tends
to make modellers believe that their models are `the truth'.

Outcomes (prototypes) cannot always be tested before being
used (especially in civil engineering).

Outcomes can be tested, and at almost no cost in the case of
mathematical modelling. Modelling permits repeatable
vicarious experimentation.

Confidence in a given design may be improved via the testing of
its systems and sub-systems.

Confidence in the final version of any model is undermined by
the problem of lack of uniqueness: two different sets of
parameter values can give virtually the same gross outcome.
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had previously been exposed in courses in differen-
tial equations, fluid mechanics, hydraulics and
hydrology. This material represented a sound
basis from which students began their modelling
efforts, but extension of this knowledge was also
required. Students were also expected to use
their own intuition to establish and test internal
system connectivities and phenomenologies. Some
students found this expectation disconcerting while
others welcomed it.

With respect to self-validation, engineering
students in conventional engineering courses in
Canada are rather notorious for being reluctant
to ask questions, being more accustomed to a
learning style referred to as `reproductive peda-
gogy' (Savin-Baden [3] ). This attitude is very much
the antithesis of one appropriate to PBL. Savin-
Baden [3] found that PBL-based programs forced
students to ask questions, which was interpreted as
leading to greater student `self-validation' and
`self-discovery'. That is, students began to realise
that frequent questioning enhanced their own
learning. Savin-Baden [3] describes this as
`students taking more personal responsibility for
their learning, and in a manner or style unique to
each individual.' Certainly, both design and
modelling require that pride, passivity and fear
be discarded; none are helpful in generating
design alternatives or in improving a model.
Neither do they assist in arriving at robust and
innovative final outcomes. We would perceive
these kinds of issues as depending largely on the
basic maturity of the students and of the kind of
classroom/laboratory culture that is fostered by
the instructors. In this context it was repeatedly
made clear that there was/is no such thing as a

stupid question; all questions were treated in a
welcoming manner and with the utmost respect
and professionalism. A good PBL environment
was further fostered by not immediately giving
out all the information necessary to model the
phenomenon in question.

Whiteman and Nygren [4] have presented a
diagram that is relevant to modelling and PBL; it
graphically illustrates the fact that nowadays soft-
ware may come into the picture at any and all
stages of the modelling process. For the modelling
exercise described herein, the upper part of this
paradigm did not applyÐthe physical reservoirs
were not a representation of any real cascade
system, and was therefore not refined. Apparently,
this did not detract from its pedagogical value.
However, the incorporation of a modern systems
simulation software package, to be described later,
was felt by the students to be critical to feeling
successful about the overall experience.

METHOD

The phrase `level-pool routing' in hydrology
refers either to the manner in which water moves
through a pond or reservoir, or to one of a number
of algorithms that may be used to simulate this
phenomenon. All such algorithms are based on the
simple principle of the conservation of volume. A
series of reservoirs is referred to as a cascade; a
typical outflow sequence for such a cascade is
shown in Fig. 2.

It was desired to make the students' modelling
experience more than just successfully generating
graph(s) that look like Fig. 2. It was hoped that by

Fig. 1. A modelling paradigm (after Whiteman and Nygren, [4] ).
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making the modelling effort more experiential and
by including an element of competition, that the
level of student interest would be increased. There-
fore, a linear cascade of three reservoirs was
designed and assembled out of aluminum (see
Fig. A1 in Appendix A), at a cost of about
$2000. Each tank was 1.2 m long by 0.25 m high
by 0.5 m wide. The outflow from each of these
reservoirs, placed in series, was controlled by a
weir with a triangular opening having an angle of
only 58.

Students used a vernier caliper and a measuring
tape to obtain `all relevant physical dimensions' of
the apparatus, such as weir angles and how the
surface area of each tank varied with depth.
Naturally, some students returned to obtain
measurements that they later realised were
needed in order to do the modelling. The proce-
dure was as follows: water coloured with fluores-
cent green dye drained through a series of tanks
and the students took pictures at regular intervals
of the state of the system while the water was
making its way though it. This was initiated by
having one student remove a blockage from the
top weir opening and start a clock at the same
moment. Another student took a sequence of
colour photographs with a digital camera, captur-
ing the water levels in each tank via a bank of
piezometers. Because there was a clock in the view
of the camera, the students were able to obtain the
time that had elapsed for any given set of water
levels. These images were e-mailed to the students
and they used the standard weir equation to
convert the water levels, as measured from the
images, into outflows. In this way they compiled
all the data associated with the complete passage
of the water that was initially only in the top tank.
This system for physically modelling hydrologic
routing was less expensive and complex than a
data acquisition system with three water level

pressure transducers connected to, say, a PC
equipped with Lab-View.

THEORY AND EQUIPMENT

The phenomenon associated with how the water
runs in, and out of, any given reservoir is governed
by the following equation:

Qin ÿQout � ds

dt
�1�

where `s' is the volume of water in any given
reservoir; Qin is the hydrograph supplied by the
next-most upstream reservoir.

Consider Fig. 3. If we integrate over H:

Q � Cd 2
�����
2g

p
tan

�

2

�H

0

�Hÿ h�h1=2dh

we obtain the Qout governing a weir outlet:

Qout � Cd
8

15

�����
2g

p
tan

�

2
H5=2 �2�

In this case it was found necessary to make �
only 58. Computer simulations indicated that
larger angles would drain the tanks so quickly
that the students would probably not have time
to collect a data set with enough points to nicely
describe the gibbus (bump) of a hydrograph. This
was also a concern because the digital camera used
to record the state of the system at any given
moment required a few seconds to write each
image to its memory card. This did make the
weirs more difficult to fabricate than would have
been the case for larger openings. In the interests of
future experimental flexibility, the tanks were
designed to accommodate weirs with values of �
up to about 308 (see Fig. A1 in Appendix A). It is

Fig. 2. Outflow hydrographs for a cascade of three reservoirs. (The first reservoir had no inflow; it drained an imposed initial volume).
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noteworthy that the discharge coefficient Cd

actually varies with the head.
Fortunately, the range of Cd is not large. The

problem of how to account for Cd was representa-
tive of a very important question that we wanted
the students to deal with: Is it always necessary to
incorporate all the known physics in order to
adequately replicate a phenomenon? The answer,
of course, is that it is certainly not always necessary
to do so. We deliberately refrained from providing
the students with the above information until they
demonstrated that they had successfully achieved a
measure of success in their initial modelling efforts.

With respect to the reservoirs themselves, in
order for an analytical solution to exist for the
nth reservoir, a linear relation between storage and
outflow is needed:

s � KQout �3�
It is a classical derivation in hydrology to combine
Equations (1) and (3) through successive reservoirs
in a cascade in order to obtain the nth hydrograph.
The result is founded on the gamma-function (see
Appendix C). The side-walls of the tanks were
designed so that the volume s in each tank increased
with depth in such a way that the non-linearity of the
weirs was offset, making Equation (3) a reality (see
also the terms defined for Equation (4) ).

MODELLING APPROACHES USED

Having researched the basic theory and having
their data-set in hand, the students sought to
computationally reproduce (model) what they
had observed, in four ways:

. using the appropriate exact analytical solution
for each tank;

. using numerical solutions to equations [1] and
[2], executed in MS-Excel1;

. using a modern drag-and-drop icon-based
simulation package known as Stella [6];

. statistically, via non-linear OLS curve-fitting.

The first three methods were presented in the
lecture-component of the course as examples of
`deterministic modelling', the last as an example of
`non-deterministic modelling'.

Note on Physical modelling
This component has been described above. Low

heads corrections to weir behaviour were not
required of the students, although a couple of the
more perspicacious ones asked if they should
include this effect. A great deal is known about
the physical modelling of hydraulic phenomena
occurring in open channels (rivers) and over struc-
tures (such as spillways), which are usually based
on Froude scaling laws. It does not appear that
much work has been done on inferring the beha-
viour of real reservoirs using model reservoirs.
This may be investigated at a future date, espe-
cially with regard to the trapping of model sedi-
ment. At this stage the students were not required
to make any such inferences; the outcomes of
the laboratory work were taken and used at face
value.

Analytical solution
As previously mentioned, the surface area of

these three reservoirs was designed to increase in
such a way that the non-linearity of the outlet
(a triangular weir) was negated. The closed-form

Fig. 3. Definition sketch used in derivation of expression for
discharge from triangular weir.

Fig. 4. Variation in weir coefficient with head (after Daugherty and Franzini [5] ).
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solution for the discharge from the first tank is (see
Appendix C):

Qout � so

K
exp ÿ t

K

� �
(C-1)

The closed-form solution for the discharge leaving
the second tank is (see Appendix C):

Qout � so

K2
t exp ÿ t

K

� �
(C-11)

The solution for nth tank is (see Appendix C):

Q

Qmax
� t

tQ max

� �m

exp
tQ max ÿ t

tg ÿ tQ max

� �
(C-21)

where: m � tQ max=�tg ÿ tQ max�.
Discharge hydrographs computed using the

above equations could therefore be compared with
the hydrographs obtained from the laboratory
measurements.

Numerical modelling
There are many well-known numerical schemes

for solving both ordinary differential equations
(Orvis [7] ) and partial differential equations
(Hansen [8], Hansen and Droste [9], Olsthoorn
[10], Townsend et al. [11] ) that can be executed
efficiently in spreadsheets such as Excel1 (see also
Wolff [12] ). In this case the method of Euler, as
well as Heun's improvement upon it, (Chapra and
Canale [13] ) were applied to the differential equa-
tion in question (for the hydrologic theory see
Bedient and Huber [14] ):

dh

dt
� Qin ÿ phq

AR
� f �h; t� (4a)

AR � mhn �4b�
where:

h� depth above the invert of the weir (L);
Qin� inflow hydrograph to the tank in question

(L3/T);

p & q� empirical parameters governing outflow
hydraulic (a triangular weir herein, so q� 2.5);

AR� surface area of the reservoir at a given
depth h;

m and n� empirical parameters relating AR to h. In
this case the flair of the side-walls was adjusted so
that m� 48 and n� 1.5 (for AR in cm2).

The Euler-Heun algorithm can be efficiently
executed in the tabular form for which spread-
sheets are famous (see Tables 2a and 2b). Modern
desktop computer CPUs are so fast that there
now seems to be little interest in the relative
efficiency of algorithms used to solve many civil
engineering problems. In addition, we feel that it is
more important in an educational setting that (i)
students implement the relevant mathematics per-
sonally and pseudo-manually (not using black-box
software), and that (ii) students be able to imple-
ment the mathematics efficiently. It seems that an
excessive amount of time is often spent debugging
conventional code, necessitating the impartation of
fewer numerical methods and the assigning of
fewer problems. This aspect is a very important
consideration when teaching engineering students
because their academic load is quite heavy.

The result of the first numerical solution is the
outflow hydrograph from the first tank. This
becomes the inflow hydrograph to the second
tank, and so on.

Statistically
One generic aspect of CIVL4720 is the use of

OLS curve fitting and nonlinear transformations
to describe processes non-deterministically. The
solution to the outflow from the first tank will be
used to demonstrate what the students did in this
regard. The analytic solution is:

Qout � so

K
exp ÿ t

K

� �
�5a�

It is therefore appropriate to regress ln(Qout),
as the dependent variable, against time as the

Table 2a. Tabular execution of level-pool reservoir routing, using the Euler method to solve Equation (4)

Time
(sec)

Inflow Qin

(cm3/s)
Head in tank 1

(m)

Outlow
Qout

(cm3/s)
Area AR

(cm2)
Slope
f(h, t)

h(t��t)
(cm)

0 0

2

etc

Table 2b. Tabular execution of level-pool reservoir routing, using the Euler-Heun method to solve Equation (4)

Time
(sec)

Inflow
Qin

(cm3/s)

Head in
tank 1
(cm)

Outlow
Qout

(cm3/s)
Area AR

(cm2)

1st
slope
f(h, t)

Revised
Qout

Revised
AR

2nd
slope
f(h, t)

average
�f h(t��t)

0 0

2

etc etc
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independent variable. The nominal or apparent
slope SA associated with the linear regression
outcome can be used to obtain K according to:

ÿ 1

K
� SA �5b�

The nominal or apparent intercept IA associated
with the linear regression outcome can be used to
obtain so/K found in Equation (5a), according to:

so

K
� exp�IA� �5c�

The student used about 30 data points, collected
over 15 minutes, to compare independent estimates
of so/K to those found using the actual initial
volume so and measurements of the tank(s).
Similar efforts were applied to the transforms
and lumped parameters implied by equations
C-11 and C-21.

USING SYSTEMS SIMULATION
SOFTWARE (STELLA1)

STELLA1 is an environment for constructing
and interacting with models. It has two main

layers, the `high-level mapping' layer and `model
construction' layer. The former is used to create a
system map that identifies the important opera-
tives in a given system. The latter, which was the
only layer used for the application described
herein, makes it possible to develop a detailed
representation of the individual processes in the
system being considered. Instead of the lengthy
and complex codes used by conventional program-
ming environments, the STELLA1 environment
uses only four icons to achieve system representa-
tion. These four icons represent state variables
(Stocks), activities in the system (Flows), conver-
sion of inputs into outputs (Converters), and
information transmission between the other three
elements of the model (Connectors). This not only
simplifies model building, it provides an enhanced
interactive environment between the model and the
model builder.

STELLA1 has been used to model the learning
process itself. Eftekhar et al. [16] used it to
determine the effect that structure, time delays
and policies have on the amount that under-
graduate students learn (the stock in STELLA1

was `the amount learned'). The same authors
subsequently investigated the effects of student

Fig. 5. Template for the reservoir cascade created using STELLA1 systems simulation software. (The template becomes animated
during simulation, with the tanks filling and emptying.)
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values, external reinforcement, and student effort
on learning. In a more environmental vein,
Ndegwa et al. [17] used STELLA1 to simulate
the biological and nutrient kinetics of composted
manure, successfully mimicking its cyclical changes
in temperature and moisture content. The diversity
in the applications cited underlines the fact that
STELLA1 falls in a class of relatively new generic
software, one that has both significant pedagogic
potential and practical use.

OUTCOMES

We were reasonably pleased with the students'
reports, especially considering that this was the first
time that this experiment had been attempted. The
requirements as to what the report had to contain
were stated in too general a fashion. Instructions to
`compare outcomes' were generally not well-
executed by the students. It was assumed that the
general idea of modelling a physically observable
phenomenon using theories, as compared to
approximations to theories, was already under-
stood. This was apparently not uniformly the
case. Many students seemed to treat all of the
outcomes, including the physical modelling
effort, as having completely equal validity and
significance, in that many students did not seem
to treat the experimental data as the ultimate basis
for making comparisons. They were also weak in
their appreciation of (i) the role of errors in their
physical measurements on the outcomes, and of (ii)
the idea that parameter estimates arising from
modelling efforts might not be perfect, and might
in fact be honed or calibrated in order to improve
the agreement between computed and observed
outcomes. Appendix A presents a statement of
how the initial data collection and processing was
to be executed. A progress report was required
shortly afterwards, so as to spread out the work in
a more explicit manner (students being notoriously
poor at beginning the analysis of fresh data in a
timely manner). Appendix B is the statement of
what was expected of each groupÐa formal report
in which all the methods used to model the routing
phenomenon were to be compared. Appendix C is
a classical mathematical derivation of the expres-
sion for the hydrograph from the nth tank of a linear
cascade (expanded from Viessman et al. [15] ).

STUDENT REACTION

The experiment and associated report-writing
requirement were not favourably rated in the
formal evaluation of the course (conducted by

the faculty). Informal discussions that took place
some months later indicated that students felt that
although the exercise was valuable, it was too
much work for the marks allocated, and that the
evaluations had been harsh. Recent comments
from two of the more mature students in the
class were as follows:

`Through completing the linear reservoir modelling
exercise we uncovered many principles and concepts
that could only be discovered through self-directed
investigation and shared learning among the team.
One reward was the exposure of the advantages and
limitations of each modelling approach, and how
these were controlled by varying model controls and
input parameters.'

`All too often computer modelling becomes a poorly
understood ``black box'' situation, but by applying
the same numerical algorithm in spreadsheets as was
used in STELLA1, a greater understanding of both
the advantages and the disadvantages of the software
was gained. This learning process was complimented
by using non-deterministic methods to gain an under-
standing of their own usefulness and limitations. It
was gratifying to find that the same approximate
coefficients as were used in the theoretical solution
could be recovered from the non-deterministic model.'

There were no complaints of cognitive fragmenta-
tion, possibly because most of the tools that were
needed to do the modelling were provided along
the way, in various forms. The students did not,
however, successfully use all of the available tools
in all cases. There did not appear to be any `rhyme
or reason' to this selectivity.

CONCLUSIONS

Hydrologic routing was successfully used as a
vehicle to introduce civil engineering students to
the idea that there are many ways to simulate a
phenomenon. The thought processes and decisions
associated with such modelling efforts appear to be
analogous to the thought processes associated with
design, which is highly PBL in its essence. The data
collection of time-varying water levels via a digital
camera was reasonably successful (achieving the
right lighting was found to be difficult), but might
in future be simplified by creating a digital video
clip that could be mounted on the WebCT site for
the course. Many of the students were very intri-
gued by the possibilities implied by the STELLA1

systems simulation software. The new experiment
was a qualified success and will be used on a
regular basis. The MS-Word1 file for this article,
as well as the AutoCAD files for the linear tank
design, can be obtained for free from the first
author.
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APPENDIX A

Data collection from a physical model of a linear reservoir cascade

CIVL4720 Civil Engineering Computations Laboratory Assignment
Today you will photographically record the behaviour of a physical model that represents a reservoir
cascade. You are not restricted to recording the temporal variation in water levels by this method only. In
this case the cascade is a series of three aluminium tanks arranged horizontally in a series. These reservoirs
have a special shape and each has a weir at the outlet.

1. Ensure that the above apparatus is level, so that the tank outlets are vertical.
2. Use a black dry-erase marker to write the date and the Trial No. on the small white-board above the

piezobank.
3. Insert the triangular dam into the weir opening of the (empty) top reservoir.
4. Use the hose to fill the top reservoir nearly to the top. Use the tap (hand-valve) in the SE corner of the

lab to control the fill-up.
5. Put the clock back on the stand, plug it in, and zero it. Turn on the light and hold it near (but not in front

of) the clock. The light is important in illuminating the clock face, so as to be clearly seen in the photos
(ie. you will use a series of jpg's to read off the times so the clock face needs to be well-lit).

6. Get the photographer in position. You need a photo at t=0 -. Measure the starting water level in the top
tank.

7. Have someone simultaneously pull the plug and flick the start-switch on the clock.
8. Take a sequence of pictures to document what happens with respect to water level variation in the three

reservoirs, through time. Note any unusual behaviour.

Before you leave:

. Make sure you understand how to read the clock-face. (The major divisions are not minutes and the
smallest divisions are not seconds).

. Make sure you understand how to read the scale on the piezobank.

. Determine what piezometer reading is associated with zero flow in each case.

. Measure all relevant physical dimensions that, in your opinion, affect the behaviour of the cascade (using
a ruler, calipers, etc.)

D. Hansen et al.690



Initial processing and presentation of raw data:

1. Find the governing equation for a weir in a fluid mechanics or hydraulic structures textbook (stated as
flow, Q, as a function of depth h over the invert). These books are in the TA347 and TC5 sections of our
library. Write down the reference for the book(s) in formal academic citation style. Study the part of the
text associated with the governing equation and write down all of the assumptions that are inherent to it.

2. The TA will e-mail the jpg images to you. Use a paper printout of these jpg's to obtain a series of water
levels (heads) and times (by reading the clock in each view). Separate your data-sets by tank. Your jpg's
can be viewed by MS Photo-editor or Paint. Increasing the brightness and contrast (along with the
percent magnification) may assist you in reading the times from the clock.

3. Convert the heads to outflows using the weir equation from step (i).
4. Plot the variation in water level, over time, for all three tanks (on one page). Make the ordinate depth in

cm and the abscissa time in minutes. Also plot the three outflow hydrographs (differentiating them by
tank) on a single page. Make the ordinate flow in cm3/s and the abscissa time in minutes.

5. Prepare a schematic of the experimental set-up, showing dimensions and distances. Pass in (to the office,
with the TA's name on it ) the two graphs, your schematic, and just one of your jpg views by Friday of
the same week, for a preliminary evaluation. Use this handout as your cover page.

# D. Hansen, Dalhousie University

APPENDIX B

Modelling a linear cascade via level-pool routing

Laboratory #2

1.0 Introduction. Explain what the words `level-pool routing' mean. Give real-world example(s) of a
cascade. Contextualise your laboratory work by indicating the general applicability of the phenomena being

Fig. 6. The cascade of linear reservoirs (weir plates not installed).
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observed. Who would be interested in this phenomenon, in general? Indicate how practitioners would use
this type of data if it had been collected from a prototype-scale case.

2.0 Objectives. Present your objectives as a list. Use this list to explain the scientific issues being addressed.
Essentially, your purpose is to simulate the behaviour of a sequence of small reservoirs. See the material
below regarding the additional details that are of interest. State all goals, great and small, in the language of
`Objectives'. Use a narrower point of view than that found in section 1.0.

3.0 Method of Investigation. Describe the physical model (apparatus) both qualitatively and quantitatively.
Present a labelled schematic of your apparatus and show a representative photo. Describe how the
apparatus works. Give the procedure that you followed for your experiments.

4.0 Analysis. Present the relevant theories. State and explain the meaning of the equations that you used to
interpret your data (see guidelines on presenting equations). State any implicit limitations or assumptions
associated with the equations/theory.

. Deterministic Approach 1. Briefly present the mathematical basis for the analytical solutions, using
nomenclature appropriate to this particular problem.

. Deterministic Approach 2. Present the mathematical basis for the Euler-Heun Method, using
nomenclature appropriate to this particular problem.

. The STELLA1 software package. Present your template and explain the meaning and function of its
components. Describe how you applied this software to model this phenomenon and its sub-components.

. Non-deterministic Approach. State the transformations (if any) that you used to obtain OLS-based `best-
fit' equations to describe your experimental outcomes. In some cases did you to minimise the sum of the
squared errors without the use of transformations, and if so, why? Mathematically demonstrate the
physical significance of the regression constants, where applicable.

5.0 Presentation and Discussion of Results. Interleave within this section those representative figures/tables
that support your most important results (the rest of the figures may be placed in an appendix).

. Deterministic approach 1. Present graphical comparisons* (observed and simulated hydrographs), and
discuss.

. Deterministic approach 2. Present graphical comparisons (observed and simulated hydrographs) and
discuss.

. Simulation software. Show how your Stella-based model properly demonstrated how the physical
characteristics of the cascade affect its simulated behaviour. Explain how these `control outcomes'
make sense.

. Non-deterministic approach. Compare constants having physical significance. What can you infer about
the system?

. Compare the above outcomes. Show the effect of changing �t (where applicable). Use the analytical
solutions to quantify the magnitude of your numerical errors. Use an objective measure of overall
goodness-of-performance to quantitatively evaluate your degree of success in simulating the observed
phenomenon. Is there a best model? Where possible, use the modelling techniques to infer the values of
any physical constants or lumped parameters. Compare the inferred and observed constants. Discuss the
effect of adjusting those model controls that appear to improve the predictions, such as �t and the type of
numerical method. In light of how the data was collected and your imperfect knowledge of the physical
system tested, is there a point at which you would not be able to recognise an outcome as being better,
had it been an experimental outcome? Did any refinements to the underlying physics prove not to be
necessary or helpful?

6.0 Summary and Conclusions

7.0 References

8.0 Appendices

. Supporting Mathematical Derivations (if any).

. Supporting Figures.

. Further details on Laboratory Set-up (if still required, in light of Section 3.0).

. Supporting Tables and Computer Printouts (computer printouts are best summarised as neatly-done and
easily-read tables, do not include them `raw').

* Important: Follow the guidelines provided on the presentation of graphs and tables.

# D. Hansen, Dalhousie University
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APPENDIX C

Deriving a general expression for the outflow from a cascade of linear reservoirs

Adapted by D.H. and G.H.G. from pp. 223±4 of Viessman & Lewis, Introduction to Hydrology, 4th ed.,
Harper-Collins.

In general the conservation of the volume in a reservoir dictates that:

Qin ÿQout � ds

dt
(C-1)

where Qin is the inflow, Qout is the outflow, and ds/dt is the rate of change of storage volume in the reservoir.
For a linear reservoir:

s � KQout (C-2)

If Equation (C-2) governs the behaviour of the reservoir (not the case for most reservoirs), from Equation
(C-1) we may write:

Qin ÿQout � K
dQout

dt
(C-3)

First reservoir. Let the first reservoir have an instantaneous volume appear in it, so Qin� 0 after t� 0.

ÿQout � ds

dt

����
t> 0

(C-4)

Substituting (C-2) into (C-4) gives:

ÿQout � K
dQout

dt

����
t> 0

(C-5)

or:
Qout

dQout
� ÿK

1

dt

����
t> 0

or:
dQout

Qout
� ÿ 1

K
dt (C-6)

Integrating (C-6) from t� 0+ to time t:�t

0�

1

Qout
dQout � ÿ 1

K

�t

0�
dt

ln Qout ÿ ln Qoutjt� 0� � ÿ
1

K
or: ln

Qout

Qoutjt� 0�

� �
� ÿ t

K
or:

Qout

Qoutjt� 0�
� exp ÿ t

K

� �
(C-7)

From (C-2) Qout � s=K so it is also true that:

Qoutjt� 0� �
so

K
(C-8)

Substituting (C-8) into (C-7) gives:

Qout

so=K
� exp ÿ t

K

� �
or: Qout � so

K
exp ÿ t

K

� �
(C-9)

Note: If we want to know the volume drained after a given elapsed time for tank 1, from equation (C-9):

8 �
�

Qout dt �
�t

0

so

K
exp ÿ 1

K
t

� �
dt

Denoting � as so/K and � � 1=K:

8 �
�t

0

� exp�ÿ�t� dt � ÿ �
�

exp�ÿ�t�
����t
0

� ÿ �
�

exp�ÿ�t� � �
�

8 � �

�
ÿ �
�

exp�ÿ�t�
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Using the definitions:

8 � so 1ÿ exp ÿ 1

K
t

� �� �
Second reservoir. Let us now route this exponentially-decaying flow coming out of reservoir #1 (described
by equation (C-9) ) through reservoir #2 (i.e. `pour' this outflow into tank #2). Substituting (C-9) into (C-3)
with the Qout of (C-9) as the new Qin gives:

so

K
exp ÿ t

K

� �
ÿQout � K

dQout

dt
(C-10)

Solving using an integrating factor gives:

Qout � so

K2
t exp ÿ t

K

� �
(C-11)

In the limit (3rd reservoir and beyond). Repeating the entire procedure n times gives the following equation
for the general outflow Q:

Q � so

�nÿ 1�!Kn tnÿ1 exp ÿ t

K

� �
(C-12)

Note that the well-known two-parameter ÿ function (with so� 1) is:

Q � 1

ÿ�n�Kn
tnÿ1 exp ÿ t

K

� �
(C-13)

The same function with an initial volume so is then:

Q � so

ÿ�n�Kn
tnÿ1 exp ÿ t

K

� �
(C-14)

The PMF of the ÿ distribution (associated with equation (C-13) ) is more commonly written:

f�x;�; �� � 1

ÿ����� x�ÿ1 exp ÿ x

�

� �
(C-15)

Comparing (C-14) and (C-15), it is obvious that time t is x, n�� and K� �.
Applying (C-14) to the peak flow of a given hydrograph:

Qmax � so

ÿ�n�Kn
tnÿ1
Q max exp ÿ tQ max

K

� �
(C-16)

Dividing (C-14) by (C-16):

Q

Qmax
� t

tQ max

� �nÿ1

exp
tQ max ÿ t

K

� �
(C-17)

The expected value of equation (C-15) is

tg � �� � nK (C-18)

The mode of the gamma distribution is:

xmod e � ��ÿ 1��
or, in hydrograph routing nomenclature:

tQ max � �nÿ 1�K (C-19)

The difference between the mean and the mode is then:

tg ÿ tQ max � K

The exponent nÿ 1 in equation (C-17) is:

nÿ 1 � tQ max

K
� tQ max

tg ÿ tQ max
(C-20)
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Equations (C-17) and (C-18) lead to:

Q

Qmax
� t

tQ max

� �m

exp
tQ max ÿ t

tg ÿ tQ max

� �
where m � tQ max

tg ÿ tQ max
(C-21)
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