Int. J. Engng Ed. Vol. 20, No. 2, pp. 234-243, 2004

Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2004 TEMPUS Publications.

Robot Control Teaching with a State
Machine-based Design Method*

ILYA LEVIN, ELI KOLBERG and YORAM REICH
Tel Aviv University, Israel. E-mail: i.levin@jieee.org

Mechatronics design provides an excellent project-based learning activity in engineering education.
It weaves together the Computer, Mechanics, and Electrical Engineering Curriculums, forming one
of the key issues in all of them. This paper proposes a design method for control of a robot that can
be used as a core part of a mechatronics course. This method includes: a) a universal formal
notation including the concepts of ASM (Algorithmic State Machine) and FSM (Finite State
Machine), as a basic aspect of designing a mechatronics control system, and b) an interactive
learning environment developed on the basis of the formal notation. In this paper, both of the above
components are presented in the context of a specific mechatronics design course based on a mobile
robot contest. The proposed approach a) decreases the gap between theoretical and practical skills
of students in mechatronics thus leading to a better robot design with a better contest-related
performance; b) improves the real robot performance; and c) opens up a way to enrich

mechatronics lessons by increasing the number of possible tasks and projects in a class.

GLOSSARY

ASM: algorithmic state machine

CPR: counts per revolution

DC: direct current

FSM: finite state machine

IR: infra-red

LED: light-emitting diode

PID: proportional integral derivative

PWM: pulse width modulation

RAM: random access memory

SMILE: state machine interactive learning environ-
ment

UV: ultra violet

VHDL: very high-speed integrated circuits hard-
ware description language.

INTRODUCTION

IT IS a widely known phenomenon, that students
experience difficulties while establishing a com-
prehensive interconnection between theoretical
knowledge of a complex subject and a practical
knowledge of the same subject. In particular, there
is a gap between theoretical university courses
from corresponding engineering curricula on one
hand, and practical courses of design on the other
hand. This gap is natural and fundamental, since
the theoretical courses are focused on analytical
and optimization skills, while the practical courses
are oriented towards developing an ability to
synthesize technical solutions.

It goes without saying that bridging such a gap
would be a desirable purpose for a teacher and a
fruitful achievement for a student during the

* Accepted 5 October 2003.

234

educational process. It has become possible
owing to both modern technological means, and
newly developed design methods.

Designing the control part of robots is a known
type of learning activity. Started in MIT (LEGO-
LOGO, 6.270 MIT Contest) [1, 2], robot control
design has become an accepted educational prac-
tice. The idea to introduce the state transition
methodology into control curricula was proposed
by Lewis [3]. The state machine-based approach is
also widely used, for example by Brooks [4].

In the present paper, we develop a state transi-
tion methodology for the field of control design
and show some directions of introducing this
methodology into education practice.

In the frame of this novel educational approach,
we propose to use a specialized means for design-
ing control systems, which is a specific toolkit
called ControlWare [5]. Blocks of such a specia-
lized toolkit, when being presented and given to
students for designing a control system in a class,
enable construction of the system, while synchro-
nously displaying it both as a state diagram of a
Finite State Machine (FSM) and as a flow-chart of
an Algorithmic State Machine (ASM). The simul-
taneous construction and display of the control
system in these representations demonstrate unity
of the theoretical and practical approaches to the
control logic design. The teacher is therefore able
to give, and the student is invited to acquire, both
the theoretical knowledge and the practical design
skills concerning the subject.

CONTROLWARE VERSUS SOFTWARE

The concept of ControlWare was first proposed
in [5]. ControlWare was defined as a special toolkit

Robot Control Teaching with a State Machine-based Design Method 235

specifically created for designing the control part
of any equipment in interactive learning environ-
ments. ControlWare differs from traditional soft-
ware in the following significant ways:

1. While software is a universal means, Control-
Ware is oriented to programming of control
units.

2. All traditional programs manipulate data flows
while ControlWare employs control flows.

3. ControlWare exhibits a high degree of trans-
parency; for instance, a student can immedi-
ately see the role and importance of behavior of
the equipment.

4. ControlWare offers both a rich set of learning
activities and direct proximity between the
definition of equipment behavior and their
implementation environment.

5. While traditional software is usually oriented
on standard sequential computer architecture,
ControlWare is based on a parallel architecture,
which is characteristic for control units.

6. A software program consists of a set of in-
structions, where each instruction causes the
computer to carry out a certain operation.
A ControlWare procedure comprises a non-
algorithmic set of intelligent bricks. Creation
of a complex control system is then a process of
connecting such bricks.

Any ContolWare toolkit presents the following
three issues: 1) a subject matter, 2) a technological
means of teaching, and 3) a formal model used
during the teaching. In [5], ControlWare comprises
a logical control concept as a subject matter, a
spreadsheet software environment and educational
mobile robots as technological means, and state
machines (FSM and ASM) as formal models of the
control unit to be designed.

In the present paper, we introduce ControlWare
based on different components. We will deal with
mechatronics as the subject matter. The formal
model will be a state machine notation. The
technological means will be a specially developed
interactive learning environment.

MODEL OF MECHATRONICS SYSTEM

We consider a mechatronics system as a com-
position of control and operational units [6]. The
operational unit of the system contains such build-
ing blocks as motors, sensors, lamps, manipula-
tors, etc. A control unit receives information from
the operational unit and produces the sequence of
control signals that leads to executing desired
operations by the operational unit.

Let micro-operation be an elementary step of
processing in the operational unit of the mecha-
tronics system, and let ¥ = {y,...,yn} be a set of
micro-operations initiated by the binary signals
V1, - ..,y from the control unit. In turn, the control
unit receives binary signals X = {xj,...,x.}
arriving from the operational unit.

In [7, 8], two main paradigms were suggested as
conveyors of very different cognitive approaches
to designing control units: the programming and
the design paradigms.

The key formal concept of the programming
paradigm is the Algorithmic State Machine
(ASM) [6]. An ASM is a directed connected
graph containing an initial vertex (Begin), a final
vertex (End), a finite set of operator vertices, and
conditional vertices. The final, the operator, and
the conditional vertices have one input each,
and the initial vertex has no input. The initial
and operator vertices have only one output each,
and each conditional vertex has two outputs
marked by ‘I’ and ‘0.” The final vertex has no
outputs. One of the logical conditions (input
binary variables of the control unit) of the set
X ={x1,...,x.} is written in each conditional
vertex. The micro-instruction Y, = {y,..., Vi, }»
which is a subset of the set of all micro-operations
Y ={y1,...,yn} that may be performed concur-
rently, is written in each operator vertex; y,, € Y,
u=1,...,U,.

An example of a specific ASM is presented in Fig.
1. In this figure: X = {x|,...,x¢} is a set of input
variables of the control unit, ¥ = {yi,...,y10} isa
set of micro-operations, and F = {Y},..., Y4} isa
set of micro-instructions, where, for example,
Y1 = {»1,y3,»s}. Notice, that here we relate to
the ASM just as a formal notation, while the
content of this ASM and the description of the
corresponding control unit is done below.

The alternative design paradigm is based on the
idea that the control unit is presented as a FSM.
The control unit can be characterized by its state
and may perform different functions (e.g., chan-
ging to other states) depending upon its current
state. A formal construct, which we consider the
most appropriate for the formal-model definition,
is the state diagram. The state diagram is a
representation of the system’s possible states and
possible transitions between them. Nodes in the
diagram indicate states, and arrows indicate tran-
sitions between the states caused by specific input
values. Also, the FSM can be represented in the
form of a state table (i.e. a tabular form of the state
diagram).

An example of a specific FSM corresponding to
ASM from Fig. 1 is presented in Table 1. Columns
of the table indicate in sequence: 4 number of a
transition of the FSM; «,, a current state; a, the
next state; X(a,,da,) an input signal, which is a
logical function equal to one of the transitions
from a, to a,; and Y(a,,a;) a corresponding
output (micro-instruction).

We will say that FSM implements a corres-
ponding ASM. Any ASM can be transformed to
the FSM form, and vice versa. To perform the
transformation from ASM to FSM, the following
steps have to be taken. First, the ASM has to be
marked by marks reflecting states of FSM. The
second step is the searching for paths between the
marks within the ASM. Every such path has to

236 I Levin et al.

K, ¥,

e
oy

4
=
4
=]

b a
[
=
.-

Fig. 1. ASM of the right wall navigation of the robot.

include one operator vertex. Each path can be
interpreted as a transition within the FSM. We
will represent the FSM as a list of transitions,
which are paths of the initial ASM.

MECHATRONICS PROJECT ‘FIRE
FIGHTING ROBOT’

The aim of this section is to show an application
of the proposed method of control design by an

Table 1. FSM of the ASM from Fig. 1

h am dg X(le, a.v) Y(anu as)
1 a ar 1 Y1
2 a ay X1 Y4
3 a X1 X2 Yo
4 ay X1X2 X3 Y,
5 az X1X2X3 Y;
6 as as X5 Y 0
7 as Xs Y
8 as ag X4 Yo
9 as X g

10 as as X2 Yo

11 ag X2 Yz

12 dg de X7 Y()

13 ag X2 Y3

14 ar ar X7 Y()

15 ay X2 Yo

16 as as X6 Yo

17 ai X6 Yo

example of a particular mobile robot used in a
classroom. For this goal, we have chosen an
autonomous robot [9] built by high school students
for the Fire Fighting Home Robot Contest
(Trinity College, USA, contest rules can be seen
in: http://www.trincoll.edu/~robot).

In this contest, a robot navigates through a maze
with four ‘rooms’ and searches for a room with a
lit candle in it. When it finds the room, it should
enter, scan for candle position, go to a distance of
30cm or less from the candle, and extinguish it.
There are white lines in each room entry and also
an arc of 30-cm radius around the candle.

There are optional bonus points for more diffi-
cult modes like non-dead-reckoning navigation,
‘furniture’ (obstacle) avoidance, sound activation,
return trip to starting point and more. There are
penalty points as well, for hitting the wall, and
others. Run time for each trial is limited to 5
minutes.

The arena size is 2.5m x 2.5m, four different
rooms, and 46-cm wide corridors. The robot size is
limited to a maximum of 31cm x 31cm x 31cm
cube. The robot must be autonomous, must not
change its shape during the contest, and must not
harm humans, or damage other robots or the
arena.

One robot designed for this contest is shown in
Fig. 2. According to the proposed approach, we
concentrate on developing the robot’s Control-
Ware taking into account the composition and
the structure of the robot’s operation part.

Operation part of the robot

The operation part of the robot includes sensors,
actuators, and drivers, assembled for performing
the robot’s goal. We show here a plurality of
components that comprise both the control and
the operational units of the robot. All these
components have to be assembled in a form that
enables to achieve the general complex goal of the
robot.

As can be seen from figures presented below,
sensors, actuators, and drivers are quite delicate
components of the system that could be damaged
during normal operation of the robot or even

Fig. 2. Fire fighting robot.

Robot Control Teaching with a State Machine-based Design Method 237

Fig. 3. IR analog distance sensor (GP2D12).

during any treatment performed by students.
Consequently, improved robust control should be
applied to overcome such incidences. One can also
see that careful design should be considered for
optimizing the use and operation of this robot’s
components.

Below we show the components of the robot’s
operation and control units.

Robot sensors include:

1. Six IR analog distance sensors (GP2D12) (see
Fig. 3) are used: two on the right and left sides,
one in the front, and one in back side of the
robot. The sensor’s output varies from 0.6 V for
a distance of 80 cm or larger from an object up
to 2.6V for a distance of 10cm.

2. One ultrasonic distance sensor (see Fig. 4) is
placed in front of the robot. When a 10-us pulse
is fed to its trigger pin, a positive pulse relative
to the distance from the object appears at an
echo output pin of the sensor.

3. A digital UV sensor (see Fig. 5) is used for
detecting a lit candle when a robot is passing the
room entrance; the sensor output produces a
10-ms positive pulse every 30ms when the lit
candle is present.

4. An analog pyroelectric sensor (see Fig. 6) is
intended for aligning the robot towards the
candle. Its output is stabilized at 2.5V.
During the relative movement between the
robot and the candle, the sensor passes against
the candle, its output goes down to 0 V and then
to 5V and back to 2.5V while rotating in one
direction (e.g. right to left). When rotating in
the other direction, the output of the sensor is
reversed, first going to 5V, and then down to
0V and back to 2.5V.

5. A digital white line sensor with its driver (see
Fig. 7) is used for detecting a room entrance,
and the white line around the candle. Its output
goes from high to low when a white line is
detected.

Fig. 4. Ultrasonic distance sensor.

Fig. 5. Digital UV sensor.

6. An analog microphone sensor (see Fig. 8) is
intended for detecting the 3.5-KHz start signal.
This sensor makes frequency to voltage conver-
sion and issues an analog voltage, which is
proportional to the frequency depicted by the
microphone. A frequency of 1 KHz will cause a
voltage of 1V at the output, 2 KHz will give 2V
at the output, etc., up to 8 KHz.

We will discuss, as an example, building and using
the above sensor. This sensor may be used for a
relatively low cost frequency catcher, like a hand
clamp or a bark or a whistle etc., a tuning device,
tone code key, software filter. Figure 9 schemati-
cally shows such a circuit. Its three stages are
based on three chips: LM386 low voltage audio
power amplifier, LM2917 frequency-to-voltage
converter, and TC7660 DC-to-DC voltage
converter.

The first stage is an amplification stage, which
takes the microphone output and amplifies it with
a gain of about several tens. The next stage is a
frequency-to-voltage converter using the LM2917.
This chip is divided to a tachometer section and an
operational amplifier (op-amp) section. The chip is
used here with a ground-referenced tachometer
input and an internal connection between the
tachometer output and the op-amp non-inverting
input.

Following a data sheet recommendation for the
resistors and capacitors, with small changes, and

Fig. 6. Analog pyro-electric sensor.

238 I Levin et al.

Fig. 7. Digital white line sensor and driver.

Fig. 8. Analog microphone sensor.

disconnecting the output transistor collector from
the op-amp inverting input, the chip’s output is a
linear function where for 1 KHz it outputs 1V and
for input of 2 KHz it outputs 2V, etc. Note that
the chip cannot handle more then 8 KHz and will
output a constant voltage of 8 V for a frequency of
8 KHz or above.

The LM2917 needs 10V for a proper operation
in this mode. In order to make the circuit as
simple to the user as possible, we found the

TC7660 DC-to-DC converter to be useful. It gets
5V in pin 8 and following connection to pin 2
through a capacitor and two diodes, it gives
(2x5V—-2x0.7V)=8.3V at the cathode of D2.
This is less then 10V but it works well for the
LM2917. The analog voltage output from this
circuit is fed to one of the microcontroller analog
inputs that convert it to a binary value for further
processing.

The output of the microphone circuit can also be
converted to a digital binary bit that will indicate
whether the input frequency is above or below a
threshold one. It can be done by adding a simple
comparator circuit, as shown in Fig. 10, and
calibrating it to a desired frequency, so that when
it reaches the desired frequency it will output the
logic ‘1’. Below that frequency, it will output the
logic ‘0’. Input is fed from Fig. 9’s output. The new
output is a digital one. As can be seen, LM339 is
used for the comparator. Any other one will fit.

Two Digital encoders are used for a PID control
feedback and for estimating the rotation degree.
The robot has two driving/steering gear DC motors
(Pittman) with built-in encoders (500 CPR), so that
with the gear ratio of 1:19.2 we get 9600 encoder
pulses per revolution. That is quite enough to take

8
'E | . 8 :l'r VIRIT 2
I ol n L :.“"
[= N -
=T 3 o B :._il:
T i o L3 LM |
MR | SR |
15 | 1 A I;'
c A= 10 Hrds
Ki LT o
i = J'~,_h .o TCTR
P Ho i
MCETPHONE Pl
L] |
| i .
O
}:‘H-' =] i
' c
& P
i 5 - thiacg | A
—1 4 LT P
1 | T
I‘-: |
FiC<x,

Fig. 9. Circuit of analog microphone sensor.

Robot Control Teaching with a State Machine-based Design Method 239

WOC sy
[
RE |
15 ;\:"- =
.I T
=
LEIIE
!.|“'."w- T
b
¥ i
-
Rl
_ i
i b
= WLE

Fig. 10. Conversion of output signal (Fig. 9) to binary form.

care with a clock interrupt handler (every
8.125ms), and to obtain a solid PID control. At
100 RPM, it will have 130 pulses every 8.125 ms.
The encoders are built in the backside of the
motors (see Fig. 11).

Robot actuators include:

1. Two driving/steering gear DC motors (see Fig.
11).

2. A fan DC motor with a propeller is intended for
extinguishing the candle.

Robot drivers include:

1. Two h-bridge based DC motor drivers are used
to control drive/steer motors, using the sign and
magnitude PWM. These drivers handle the
direct current up to 3 A continuous and tran-
sient current of up to 6 A. Control lines include
(1) PWM for speed determination, (2) direction
line, and (3) brake line (see Fig. 12).

2. The driver of the interface board connects all
sensors and logic data lines to the main con-
troller.

3. Drivers for voltage regulators (based on
LM338), which are capable of handling up to
5 A, help distribute the power.

4. The main power board driver with protection
was used to switch various sub-systems on and
off.

5. Indication LED boards are placed for testing
and debugging purposes.

6. A fan for the motor driver.

Fig. 11. Gear DC motor with encoder.

Control part of the robot

For implementing the proposed ControlWare,
the main controller was used (see Fig. 13). It is
based on the Motorola 69HC912b32 32K RAM
chip and includes: a 8-MHz clock, eight analog to
digital channels, four PWM channels, eight timer
channels, and one pulse accumulator. There are
more then 15 interrupt channels. The student
assembly program resides in RAM. All the data
from sensors is analyzed in this control unit, and
then the appropriate micro-instructions are sent to
the drivers.

Implementation of robot’s ControlWare

We present here one of the robot control
algorithms, namely: non-dead-reckoning robot
navigation in a corridor while aligning against
the right wall. The robot should stop when a wall
appears in front of it. The relevant sensors for this
task are right side and front analog distance
sensors; the actions are performed by two driv-
ing/steering DC motors through their appropriate
controllers.

For testing purposes, each micro-operation has
its identifying LED that enables to follow the

Fig. 12. H-bridge based DC motor driver.

240 I Levin et al.

Fig. 13. The Motorola 69HC912b32 main controller.

normal operation of the robot and visualizing its
erTorS.

In this example, we use the logical variables
X = {x1,...,x¢} where:

X1 1s ‘obstacle proximity has been detected in front
of the robot’ (which means that the analog
voltage of the front sensor goes beyond 2 V);

X3 is ‘robot in center of corridor as seen by right
sensors’ (based on front or back right sensors’
voltage of about 1.3V);

X3 18 ‘robot is close to right wall’ (based on front
and back right sensors’ voltage of more than 2V
in at least one of them);

x4 18 ‘direction of robot is less then 45 to the left
from right side wall’ (based on the positive
difference between front and back right sensors’
voltage of more than 0.9V and less then 2 V);

X5 is ‘direction of robot is less then 45 to the right
from left side wall’ (based on the negative
difference between front and back right sensors’
voltage of more than 0.9V and less then 2V);

X¢ 18 ‘robot is aligned to the right wall within +3°
(based on front and back right sensors’ voltage
of about 1.3V each).

Micro-operations Y = {yy,...
are the following:

,¥10} of the robot

y1 1s ‘turning on right motor forward direction’;
¥7 is: ‘turning on right motor backward direction’;
y3 is: ‘turning on left motor forward direction’;
V4 18: ‘turning on left motor backward direction’;
ys is: ‘turning on led1’;

V6 1s: ‘turning on led6’;

y7 1s: ‘turning on led7’;

yg is: ‘turning off right motor’;

Yy is: ‘turning off left motor’;

Y10 1s: ‘turning on led14’.

The above micro-operations form the set
F={Y,,...,Y4} of the following micro-
instructions:

Y1 = {»1,y3,»s5} is ‘move forward’ (rotating two
motors forward);

Y2 = {y1,y4,y7} is ‘pivot left turn’ (rotating right
motor forward while rotating left motor
backward);

Ys = {»2,y3,p6} is ‘pivot right turn’ (rotating
right motor backward while rotating left motor
forward);

Yy ={ys,y9,y10} 1s ‘stop’
motors).

(stopping both

o|@(e] x[n] | @] v] |l = v Ol

Fig. 14. The SMILE-environment screen shot.

Robot Control Teaching with a State Machine-based Design Method 241

The ASM corresponding to the above algorithm
was shown in Fig. 1. The FSM implementing the
ASM was presented in Table 1.

Both ASM and FSM descriptions of the robot’s
behavior can be considered as high-level descrip-
tions of the corresponding system’s behavior and
according to [7] represent different approaches to
designing control schemes. At the same time, these
descriptions can be easily implemented by various
hardware and software means. In the ‘Robot Fire
Fighting Project,” this control algorithm was
implemented as a program of the above-mentioned
microcontroller. The program for the microcon-
troller was produced by the specialized interactive
learning environment SMILE that is discussed
next.

INTERACTIVE LEARNING ENVIRONMENT

An interactive learning environment was devel-
oped in the framework of SMILE-project (State
Machine Interactive Learning Environment) in the
School of Education of the Tel-Aviv University
[10]. The SMILE-environment implements the
aforementioned ideas, i.e.:

e constitutes the ControlWare toolkit;

® supports both the programming and design
paradigms of teaching control concepts; and

® is capable of controlling various kinds of real
equipment.

SMILE comprises two editors with dedicated
display windows shown in Fig. 14: the ASM
editor (on the right) and the FSM editor (on the
left). The environment enables students to design a
control unit both in the form of a FSM by the
FSM editor, and in the form of an ASM by the
ASM editor. When the control unit is designed in
one of these editors, it can be visualized simulta-
neously in the windows of both editors. Any
change made in one of the editors is propagated
immediately to the second editor.

Both state machine editors support a number of
very powerful features for describing virtually any
type of state machine. For example, a student can
describe a state machine hierarchically, i.e. if it has
a large number of states, it can be described in
multiple levels. For debugging the state machine,
two very important features are available. The first
is an animated simulation where any step in the
control process is depicted by a change in the color
of the ASM (and/or FSM) symbolic states, which
can be seen in the appropriate display windows.
The second feature is that the process of control of
the real equipment can also be visualized.

It should be noted that when the control unit is
debugged, SMILE can generate a state machine
file in various forms: software for a specific micro-
controller; computer program; standard hardware
description language (VHDL, Verilog), etc.

SMILE has not been fully tested with the fire
fighting autonomous robot presented above.

Nevertheless, several simulations have been
made. ASM of the robot right wall navigation
was written, and the software issued the corres-
ponding FSM and state table. These allowed for
better debugging, where missing states were easily
discovered and corrected, some paths were found
to be duplicated and canceled, making the code
shorter. It took several minutes for a teacher to
learn and start using the software with all its key
features, therefore, we estimate that it would take
students up to one hour to learn and use.

The duality of the representation and the transi-
tion from the algorithmic to the finite state
machine, and vice versa, allows the students to
solve a problem in the more convenient representa-
tion for them. Having such a friendly and powerful
environment to design the control scheme at a high
level is a big advantage since about half of the
crucial failures of robots during contests are
caused by failures of control of well-designed
robots. In many cases, some states were ignored
or misinterpreted. We believe that SMILE will
improve significantly the students’ understanding
of the robot function and the control theory used
to program the robot’s behavior.

We base this believe also upon one experience in
which one team, used FSM as the robot function
representation and programmed it accordingly.
They called it ‘action-event’ programming. It was
the first time, that all possible situations could be
easily discussed, and tested separately. When all
the states were examined, most of the program-
ming was over. Some of the team members,
though, had a cognitive gap and encountered
some difficulties to switch from ASM, which they
were used to program with, to FSM programming.

For majority of the students, ASM is the
‘natural’ way to represent the robot function.
Using SMILE will allow them to improve the
robot control, better understand its functions,
and more easily debug their software. FSM can
be seen as a parallel activity, and thus improving
students’ parallel thinking, which has a significant
value to students’ problem-solving skills [11].

DISCUSSION AND CONCLUSIONS

We described an approach for designing and
implementing a control part of a mechatronics
system. This approach called ‘the state machine-
based design method’ utilizes the concept of a state
machine. Being presented in a form of the algo-
rithmic state machine the specification of a mobile
robot from the one hand becomes highly appro-
priate for regular software implementation, and
from the other hand, can be used as a Control-
Ware of the mobile robots.

The design method is supported by specific soft-
ware, SMILE (State Machine Interactive Learning
Environment), allowing the programming of a
robot control part by using various representations
of state machines.

242 I Levin et al.

We presented a specific application of the
proposed approach by an example of a mobile
robot built by high school students involved in a
robot contest. This example shows a high level of
transparency of the control algorithms developed
by students. It demonstrates that the approach can
lead to the significant improvement in the perfor-
mance of the robot in real contest setting, thus
filling an existing gap between design and actual
performance of robots [12]. Given this conse-
quence and its demonstrated ease of use, it can
support the teaching and utilization of control
concepts to high school and undergraduate
students and has already become a standard part
of high school mechatronics teaching.

Notice that the presented example of the
‘fire fighting robot’ application of the proposed
approach demonstrates its relevance for high
school students. At the same time, a similar
approach was successfully used by the authors
also for undergraduate students at the School of

Engineering, Tel Aviv University and in the
Computer Systems Department, Holon Academic
Institute of Technology. In both of these institu-
tions, the method was applied in mechatronics
lessons.

Applicability of the approach both to high
school and undergraduate students can be consid-
ered as an advantage. Indeed, the same metho-
dological basis being introduced once in a high
school can be extended in subsequent stages of
technology education. Differences between the
high school and the undergraduate lessons reflect
different degrees of understanding of the theo-
retical basis of state machines and practical
implementations thereof. Nevertheless, the main
teaching method remains the same in both
cases.

We believe that the proposed design methodol-
ogy will permit the reduction of the gap between
theoretical and practical components in learning
mechatronics.

REFERENCES

1. F. Martin, A toolkit for learning: technology of the MIT LEGO Robot Design Competition,
Workshop on Mechatronics Education hosted at Stanford University (1994). http://www.media.
mit.edu/publications/.

2. M. Resnick, O. Stephen and S. Papert, LEGO, logo, and design, Children’s Environments
Quarterly, 5(4), 1988.

3. P. Lewis, Introducing discrete-event control concept and state transaction methodology into
control system curricula, IEEE Trans. Education, 37(1) 1994, pp. 65-70.

4. A. R. Brooks, 4 Robust Layered Control System for a Mobile Robot, Massachusetts Institute of
Technology, Artificial Intelligence Laboratory (1985).

5. L. Levin, V. Levit, ControlWare for learning with mobile robots, Computer Science Education,
special issue: Robotics in Computer Science and Engineering Education, 8(3) 1998,
pp. 181-196.

6. S. Baranov, Logic Synthesis for Control Automata, Kluwer Academic Publisher, Dordrecht/
Boston/London (1994).

7. 1. Levin and D. Mioduser, A multiple-constructs framework for teaching control concepts, [EEE
Trans. Education, 39(4) 1996, pp. 488-496.

8. D. Mioduser and I. Levin, Cognitive-conceptual model for integration robotics and control into
the curriculum, Computer Science Education, special issue: Robotics in Computer Science and
Engineering Education, 7(2) 1996, pp. 199-210.

9. J. L. Jones, B. A. Seiger and A. M. Flynn, Mobile Robots, Inspiration to Implementation, A. K.
Peters, Massachusetts (1999).

10. I. Levin and E. Lieberman, Developing analytical and synthetic thinking in technology education,
Proc. Int. Conf. Technology Education, Braunshweig, Germany, September 2000.

11. S. Waks, Lateral thinking and technology education, J. Science Education and Technology, 6(4)
1997, pp. 245-255.

12. E. Kolberg, Y. Reich and I. Levin, Project-based high school mechatronics course, Int. J. Eng.
Educ., 19(4), 2003, pp. 557-562.

Dr. Ilya Levin received the Ph.D. degree in Computer Engineering from the Latvian
Academy of Science. During 1985-1990 he was the Head of the Computer Science
Department in the Leningrad Institute of New Technologies (Russia). During 1993-1996
he was the Head of the Computer Systems Department of the Center for Technological
Education, Holon (Israel). Being presently a faculty of the School of Education of Tel Aviv
University, he is a supervisor of Engineering Education program. He is an author of more
then 50 papers both in Design Automation and in Engineering Education fields.

Eli Kolberg is a Ph.D. student in the Department of Solid Mechanics, Materials and
Systems, Faculty of Engineering, Tel Aviv University, Israel. He received his B.Sc. in
Mechanical Engineering from Tel Aviv University in 1980 and M.Sc. cum laude in
Education in Technology and Science from the Technion in 2001. During 1980-1987 he

Robot Control Teaching with a State Machine-based Design Method

practiced mechanical and aeronautical engineering in the Israeli Air Force. During
1987-1995 he practiced design and hardware engineering in the computers industry.
During 1991-1994 he developed a robotics program for high school students and initiated
the program in 1994. Since then, he has been involved in integrating successfully the
robotics curriculum in high schools in Israel and abroad. He serves as a member in the
Ministry of Education Robotics steering committee.

Yoram Reich is an associate professor in the Department of Solid Mechanics, Materials and
Systems, Faculty of Engineering, Tel Aviv University, Israel. He received his B.Sc. (Summa
Cum Laude) and M.Sc. (Magna Cum Laude) in Mechanical Engineering from Tel Aviv
University in 1980 and 1984, respectively. Before obtaining the Ph.D. degree in Civil
Engineering from Carnegiec Mellon University, Pittsburgh, PA, in 1991, he practiced
engineering design for over 7 years in the audio, structures, and marine industries. Dr.
Reich has authored or co-authored over 100 papers and is a member of the editorial board
of the journal Advanced Engineering Informatics. His research focuses on several inter-
related topics: knowledge management; design methods, theories, philosophy, research
methodology, and education; collaborative design; and knowledge discovery techniques for
engineering applications.

243

