Int. J. Engng Ed. Vol. 20, No. 2, pp. 267-276, 2004
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2004 TEMPUS Publications.

Necessary Metamorphoses of a Software

Engineering Program™

DANIELA ROSCA, WILLIAM TEPFENHART and JAMES McDONALD
Software Engineering Department, Monmouth University, West Long Branch, NJ 07764, USA.

E-mail: drosca@monmouth.edu

We present the main lessons learned over the 16 years we have been running a graduate degree in
software engineering at Monmouth University. It covers the challenges in delivering a program that
meets the needs of industry and students in a highly dynamic field. The evolution of the curriculum
induced by the domain’s continuous advances and industry practice is presented. This evolution is an
example of a transition from a ‘computer science curriculum with an engineering flavor’ towards a
software engineering curriculum. The special meaning of continuous course content development in
software engineering is argued through issues pertaining to dated textbooks and ever-changing
programming languages, operating systems, and software tools. The paper also presents our
experience of dealing with the diversity of the student body, and its influence on the curriculum and
course content. The paper concludes with recommendations for constructing a similar program and

ideas for future developments.

INTRODUCTION

ALTHOUGH SOFTWARE engineering was
recognized as a distinct field in 1968 at the
NATO-sponsored conference on the subject [1], it
took universities and colleges a significant amount
of time to respond to that fact. It was not until
1986 that Monmouth University (MU) started a
graduate program dedicated to software engineer-
ing, which was offered by its Computer Science
Department. In 1995 Monmouth created the first
Software Engineering Department in the United
States. Now it is one of the pioneer universities
offering a Bachelor’s degree in software engineering.

One motivation for creating a separate software
engineering program and department was the
awareness of the skills that industry would like
students to have upon graduation, which are not
stressed by most computer science curricula. These
skills include teamwork, communications, time
management, engineering problem-solving, quant-
itative and qualitative process management, reuse,
requirements management, system architecture,
testing and project management.

As one of the few universities with such an
extensive and comprehensive experience in offering
software engineering programs, we have learned
much about providing such a program. With more
and more undergraduate software engineering
programs appearing, we feel it would be beneficial
to other institutions for us to share our experiences
with them. A summary of the problems encoun-
tered and the lessons learned are presented here:

* Accepted 6 October 2003.

® Revolutionary curriculum changes. One can
expect to revisit the overall curriculum of the
program every four to five years, in order to
accommodate changes in industry practice and
educational expectations.

® Continuous development of course content. This
is critically necessary, due to the dynamics of
the field. The continuous development of
course content implies also a continuous devel-
opment of course projects, and dealing with
dated textbooks, ever-changing operating sys-
tems, programming languages and software
tools.

® Difficulties of attracting and retaining faculty.
The need for new faculty to have a record of
sustained scholarly accomplishments and indus-
trial experience imposes great restrictions on the
number of available candidates.

® Diversity of the student body. Issues raised by a
diversity of educational backgrounds, employ-
ment status, educational goals, and com-
munication skills bring challenges that need
to be dealt with by any software engineering
program.

The remainder of the paper discusses in detail the
topics presented above. We will look at the curri-
culum evolution over the history of our program,
discuss various issues involved in the continuous
changes of the software engineering course
content, outline our experiences in hiring and
retaining the faculty, and show the influence of
the diversity of the student body on the curriculum
and course content. Based on all these experiences,
the final sections present our advice for those
interested in starting a graduate program in soft-
ware engineering and identify where we expect the
MU program to head in the future.

268 D. Rosca et al.

REVOLUTIONARY CURRICULUM
CHANGES

Over its short history, software engineering (SE)
as a field has been a moving target. We have
observed the introduction of the Capability
Maturity Model, the Unified Modeling Language,
Personal and Team Software Process, and corpo-
rate adherence to ISO standards emerge as major
forces within software engineering organizations.
Therefore, a curriculum that addresses the skills
and practices required by professionals in this field
needs to continuously reinvent itself over time. In
order to accommodate industry’s needs and keep
pace with the advances of software engineering as
a field, we have added or dropped courses and
added new tracks and programs. The decisions
were made in the context of creating and main-
taining a balance between the theory, technology
and practical aspects of software engineering.

Changing the curriculum follows a well-defined
process. First, the faculty discusses the need for
change. Next, the program director writes a
proposal identifying the new curriculum, and any
additional courses that might be required. The
proposal is put forward to the faculty in the
department for comments. Once the proposal is
approved within the department, it is sent to the
chairs meeting within the school. After the even-
tual suggestions for change are incorporated into
the proposal, it is submitted to the university
graduate studies committee.

At the school chairs meeting, it may be decided
that a stronger business case is required. An
external body typically develops this business
case. It is either a survey developed by an inde-
pendent firm or by an external industrial advisory
committee. The business case reflects the needs and
state of industry, which will attract new students.

Next we present the evolution of the Monmouth
University’s graduate software engineering curri-
culum. This evolution shows a gradual transition
from a software engineering program created

inside a Computer Science department, towards a
program with engineering courses that span the
entire software lifecycle. It incorporates the results
of a strong collaboration between academia and
industry [2].

The initial curriculum (1986)

The initial curriculum consisted of 30 credits,
with six core courses and four electives (see Fig. 1).
The core courses covered in detail only the imple-
mentation (in Ada) and project management
aspects of the software lifecycle, due to the limited
availability of faculty with an appropriate back-
ground. The curriculum looked more like ‘a
computer science curriculum with an engineering
flavor’ [3], covering classic computer science
courses like algorithms, operating systems, compu-
ter architecture and database management
systems. The practical training of students was
accomplished in a 3-credit practicum course,
which consisted of a team project that would
develop a software system from initial require-
ments to the final, tested and documented product.
The early curriculum was biased more towards
theoretical aspects (notice the heavy concentration
on the mathematical foundations of SE), with less
exposure to specific SE technology and practice.

1991 curriculum changes

This curriculum added a number of SE courses,
including formal methods, formal specifications,
the software process and SE environments (see
Fig. 2). However, it still had a bias towards
computer science, offering an artificial intelligence
course, four courses of mathematical foundations
and formal methods, and four courses in network
technology, due to our geographic location in
an areca dominated by the telecommunications
industry.

1995 curriculum changes
In 1995 the curriculum was substantially
changed to include 36 credits, with 10 core and

Core Courses (6 courses = 18 credits)

SE 501 Mathematical Foundation of Software Engineering I (3 credits)
SE 505 Programming-in-the-large (3 credits)

SE 510 Computer Network Design (3 credits)

SE 516 Software Engineering I (3 credits)

SE 518 Project Management (3 credits)

SE 525 System Project Implementation (3 credits)

Elective Courses (4 courses =12 credits)

SE 502 Mathematical Foundation of Software Engineering II (3 credits)
SE 506 Programming-in-the-small (3 credits)

SE 509 Programming Languages (3 credits)

SE 511 Protocol Engineering (3 credits)

SE 512 Algorithms Design and Analysis (3 credits)

SE 514 Computer Architecture (3 credits)

SE 515 Operating Systems Implementation (3 credits)

SE 517 Software Engineering II (3 credits)

SE 519 Database Management (3 credits)

Fig. 1. 1986 curriculum.

Necessary Metamorphoses of a Software Engineering Program 269

Core Courses (6 courses = 18 credits)

SE 501 Mathematical Foundation of Software Engineering I (3 credits)
SE 505 Software System Design (3 credits)

SE 506 Formal Methods in Programming (3 credits)

SE 516 Software Engineering (3 credits)

SE 518 Project Management (3 credits)

SE 525 System Project Implementation (3 credits)

Elective Courses (4 courses =12 credits)

SE 502 Mathematical Foundation of Software Engineering II (3 credits)
SE 503 Introduction to Computer Communication Networking (3 credits)
SE 509 Programming Languages (3 credits)

SE 510 Computer Network Design (3 credits)

SE 511 Protocol Engineering (3 credits)

SE 519 Database Management (3 credits)

SE 522 Software Engineering Environments (3 credits)

SE 532 Software Process Quality (3 credits)

SE 534 Formal Specifications of Software Systems (3 credits)

SE 536 Fundamentals of Computer Security (3 credits)

SE 538 Advanced Topics in Networking Topology (3 credits)

SE 540 Introduction to Artificial Intelligence (3 credits)

Fig. 2. 1991 curriculum.

two elective courses (see Fig. 3), in order to comply
with the Software Engineering Institute model
curriculum [4]. That curriculum covered the
entire software lifecycle in detail, by offering
three new courses, specifically in requirements,
implementation and reuse, and testing and quality.
A former elective, software systems security,
became a core course. Having such a heavy core,
this curriculum offered little flexibility for learning
aspects of SE that students would be most inter-
ested in. Another major change was reflected in the
introduction of several new courses that would
form 6-credit elective specialization tracks: in
distributed software systems, software manage-
ment, information systems, and real-time systems.
These tracks were introduced as a response to the
needs and feedback from our local industry and
government collaborators [2]. The curriculum
change was made possible by hiring faculty
with both theoretical background and working
experience in industry, supplemented with substan-
tial help from adjunct faculty with expertise in
specialized areas of SE.

1996 curriculum changes

In 1996 minor changes were made in the curri-
culum. It remained a 36-credit program, but
students now had nine core and three elective
courses, which offered a bit more flexibility than
the previous program. The curriculum covered all
the aspects of the software lifecycle. The capstone
course was either a 3-credit practicum, or 6 credits
of thesis research. The introduction of a thesis
option was made possible by attracting faculty
with the desire to engage in research activities.

1998 curriculum changes

The 1998 curriculum, which is the curriculum that
we currently follow, represented another major
change by providing for much more flexibility in a

36-credit program, with five core and five elective
courses, and a 6-credit practicum or a 6-credit thesis
(see Fig. 4).

All the knowledge areas of the Software Engin-
eering Body of Knowledge (SWEBOK) project, as
described in the Stone Man report [5], can be
identified in this curriculum. The recognition of
the importance of exposure to practical experience
in a software engineering program has lead to an
increase in the practicum project from 3 to 6
credits, and to the introduction of term projects
in most of the courses in the curriculum.

Two of the former core courses, mathematical
foundations of SE and principles of SE, have been
transformed into preparatory (bridge) courses (see
Fig. 4). Together with three other programming
courses, the ‘bridge’ program is offered for
students with an undergraduate major other than
computer science, computer engineering, electrical
engineering, or information systems. After taking
the 15-credit preparatory courses and a one-
semester project course, students can receive a
certificate in software development if they do not
wish to pursue a Master’s program.

The 1998 curriculum has added a new course,
The Process of Engineering Software, which
largely follows Watts Humphrey’s Personal Soft-
ware Process (PSP) principles [6]. The introduction
of this course was justified by the need for gradu-
ates who are aware and have the necessary skills
for predictably producing high-quality systems, in
a timely and cost-effective manner, using reusable
components as much as possible in their work. In
spite of the hard work necessary for the manual
input of the data for the various forms and
templates involved in the PSP, students have
given us very positive feedback about the useful-
ness of the principles learned in this course. For
alleviating the clerical work related to the manual
input of data, we created a semi-automated tool
to support the PSP process [7]. This tool was the

270 D. Rosca et al.

Core Courses (10 courses = 30 credits)

SE 501 Mathematical Foundation of Software Engineering I (3 credits)
SE 504 Principles of Software Engineering (3 credits)
SE 505 Software System Design (3 credits)

SE 506 Formal Methods in Software (3 credits)

SE 507 Software Systems Requirements (3 credits)

SE 508 Software Implementation and Reuse (3 credits)
SE 512 Software Testing and Quality (3 credits)

SE 513 Software Systems Security (3 credits)

SE 518 Software Project Management (3 credits)

SE 525 System Project Implementation (3 credits)

Advanced/Elective Specialization Tracks (2-course track = 6 credits)

Distributed Software Systems SE 526 Networked Software Systems I

SE 527 Networked Software Systems II

SE 531 Software Organization Management

SE 532 Software Quality Management

SE 541 Information Systems Architecture

SE 542 Information Systems Engineering

SE 551 Real-Time Software Analysis & Specification
SE 552 Real-Time Software Design & Implementation

Software Management
Information Systems

Real-Time Systems

Fig. 3. 1995 curriculum.

Preparatory Courses (15 credits)

CS 500 Program Development

CS 503 Fundamental Algorithms I

CS 505 Operating Systems

SE 501 Mathematical Foundation of Software Engineering

SE 504 Principles of Software Engineering
Core Courses (15 credits)

SE 500 The Process of Engineering Software

SE 505 Software System Design

SE 506 Formal Methods in Software

SE 507 Software Systems Requirements

SE 512 Software Testing and Quality
Capstone Course (6 credits)—Practicum/Thesis

Specialisation Tracks (15 credits)

Organizational Management Track
Required (9 credits)
SE 531 Software Organizational Management
SE 532 Software Quality Management
SE 518 Software Project Management
Guided Electives (6 credits)
BM 525 Management of Human Resources
BM 565 Management of Technology
SE 560 Software Risk Management
SE 565 Software Metrics

Telecommunications Track
Required Courses (9 credits)
EE 537 Wireless Communications
SE 526 Network Software System I
SE 527 Network Software System II
Guided Electives (6 credits)
CS 526 Performance Evaluation
CS 535 Telecommunications
EE 505 Communications Technology
EE 581 Data Networks
SE 513 Software System Security
SE 598T Special Topics (Telecommunications)

Embedded Systems Track
Required Courses (9 credits)
SE 526 Network Software System I

SE 551 Real-Time Software Analysis and Spec.

SE 552 Real-Time Software Design and Impl.
Guided Electives (6 credits)

CS 525 Simulation

CS 526 Performance Evaluation

EE 509 Digital Signal Processing

SE 508 Software Implementation and Reuse
SE 513 Software System Security

SE 527 Network Software System II

Information Management Track
Required Courses (9 credits)
SE 541 Information Systems Architecture
SE 542 Information System Engineering
SE 518 Software Project Management
Guided Electives (6 credits)
BM 520 Information System in Organisation
BM 565 Management of Technology
BM 571 Introduction to US Health Care
CS 517 Database Systems
CS 530 Knowledge-Based Systems
SE 508 Software Implementation and Reuse
SE 526 Network Software System I

Fig. 4. The 1998 curriculum.

Necessary Metamorphoses of a Software Engineering Program 271

result of a two-semester practicum project of one
group of students.

The elective courses included in this curriculum
were necessary for completing a chosen speciali-
zation track, such as organizational management,
telecommunications, embedded systems, and infor-
mation systems. These 15-credit tracks were much
more comprehensive than their counterparts in the
1995 curriculum. They comprise courses from other
disciplines, such as business, electrical engineering
and computer science. However, students were able
to select elective courses across tracks if they did not
want to pursue a specialization. A brief description
of the specialization tracks follows:

® The Organisational Management track prepares
students to become software development
managers or specialists in software process
improvement. Topics of study include process
improvement, quality management, organ-
isational development and management,
risk management and project planning and
management.

® The Telecommunications track prepares stu-
dents to become specialists in telecommunica-
tions. Topics of study include networks,
software systems security, and evaluation of
telecommunications systems.

® The Embedded Systems track prepares students
to become specialists in embedded systems
development. Topics of study include specifi-
cation and analysis of embedded real-time
systems requirements, design and implementa-
tion of embedded real-time software systems,
performance evaluation of embedded real-time
software systems, and development of real-time
components.

® The Information Management track prepares
students to become chief information officers
or specialists in information systems integration
and development. Topics of study include infor-
mation technology management, specification
and analysis of information systems, evaluation
of information systems, and development of
information systems software components.

2002 curriculum changes

The 2002 curriculum added a new specialization
track: Management of Software Technology. This
is offered in collaboration with the Monmouth
University School of Business. The idea of this
track grew out of the recognition that industry is
outsourcing increasing amounts of software devel-
opment. This track prepares students to be chief
technology officers or specialists in the acquisition
of software systems for businesses. Topics of study
include assessing the impact that software can have
on organizations, development of requirements for
system acquisition via purchase or outsourcing,
assessment of software technologies with regard
to organizational needs, and implementing a
controlled introduction of technology into an
organization.

CONTINUOUS DEVELOPMENT OF
COURSE CONTENT

Technologically, the computing field has under-
gone significant changes that have forced altera-
tions in the material taught within Software
Engineering courses. Since the inception of our
SE Master’s program, we have witnessed the wide-
spread adoption of Object-Orientation (along with
massive changes in techniques and methodologies),
the phenomenal explosion of the World Wide
Web, the emergence of Java, and the move of
security requirements from corporate to consumer
platforms, just to name a few of these changes.
Therefore, the material covered within a curricu-
lum that addresses the technological understand-
ing required by professionals in this field needs to
be continuously updated over time. This problem
emerges in several different forms, particularly:

® continuous course content changes;

e dated textbooks;

® operatingsystem/programminglanguagebigotry;
and

® continuous development of course projects.

We will now discuss each of these areas in greater
detail.

Course content changes

One can expect to have to revise course material
every year. This is necessary to accommodate tech-
nological changes and incorporate new industrial
practices. For example, since the inception of our
program we have changed the programming
languages taught in class from Ada to C++ and
Java; we have added object-oriented analysis
methods to the structured analysis methods in the
requirements engineering course [8]; in the design
course we have made the transition from structured
design to object-oriented design, component-based
design, and architectural design. In the testing
course we have added segments on testing applica-
tions that are constructed using commercial off-the-
shelf (COTS) components, using automated testing
and test management tools. For project manage-
ment, we have gradually introduced more content
on the use of scheduling tools such as MS project
and risk simulators like Risk+, and discussion of
the use of buffer tasks in the planning of software
development projects [9].

Dated textbooks

As technology changes and software engineering
evolves, the ability of texts to keep up with the
changes is severely stressed. An instructor will find
himself or herself utilizing three or four texts in
order to properly cover a topic area. Books will
seemingly contradict each other, only because they
were published two years apart. Often, a book that
is only three years old will contain many concepts
that have already been superceded. Many excellent
textbooks have not been updated to use current
representations, such as UML, for instance. These

272 D. Rosca et al.

generate the need to continuously research the
new and updated prints, and take into considera-
tion student feedback on the usefulness of the
recommended textbooks.

Operating system/programming language bigotry

Few topics seem to generate as much debate as
which operating system (OS) or programming
language should be selected as the lingua franca
for course work. It seems that everyone has an
opinion or a realistic need to learn one environ-
ment over another. The selection of one environ-
ment over another has significant impact on the
tools available for use by the instructor, the
knowledge that the instructor has to bring into
the classroom, and the equipment that must be
maintained. In our case, over the years we have
migrated from UNIX platforms to Windows, and
to dual-boot machines that run both Windows and
Linux. Most of the students are familiar with both
operating systems, since different instructors favor
one OS over the other. They appreciate the flex-
ibility offered by the dual-boot machines available
in our labs.

Continuous development of course projects

Faculty, students, and industry have universally
recognized the need for hands-on experience.
Without practical training, students and industry
complain that the material will be too theoretical
and that graduates would have trouble applying
the theory to real-world projects. This has led us to
incorporate projects into the majority of courses
taught in the program, while maintaining a
balance between the theoretical and practical
aspects of the courses. The projects are adminis-
tered at the beginning of the semester and have a
couple of milestones spread along the semester.
The instructors check the documents and/or soft-
ware applications delivered at each milestone and
provide feedback to the students. For some
projects, the problem to be solved is proposed by
the instructor; for others, students can propose
their own project theme. The members of the
project teams are either established by the
students, when they are not new to the program,
or, when no preferences are expressed, the instruc-
tor makes the choices. The teams have the author-
ity to choose their leaders and the role of each
member.

The introduction of projects into a Software
Engineering course encompasses its own set of
difficulties. While a simple program for shuffling
cards may suffice to teach students about algo-
rithms and data structures in a programming
course, software engineering has to deal with
much larger problems in order to demonstrate
the value and need for an engineering process.
The result is that projects have to be big, but not
so big that they cannot be performed within the
confines of the course. Because the project has to

be big, it has to be structured such that the
students can incrementally develop it as the
course unfolds.

As the course content, technology and available
tools change, the course projects need to change
too. We have found that the size issue can some-
times be addressed by partially completing the
project before presenting it to the students. This
might require the development of a set of require-
ments before introducing a larger project into a
software design course, providing some economic
or financial analyses before introducing project
into a software project management course, or
developing requirements and code before intro-
ducing a project into a testing course. In any
case, such a strategy requires that the instructor
spend significant time doing the background work
and documenting the results of that work so that
the students can make good use of it as they
proceed with the next steps. In this way, the
students are encouraged to concentrate on tasks
for a specific project that are unique to the course
in which the project is being used.

DIFFICULTIES OF ATTRACTING AND
RETAINING FACULTY

Software engineers, even in the current difficult
economic times, are a highly sought-after
commodity. It is extremely difficult for any soft-
ware engineering program to both attract and
retain their faculty. We have noticed that the
stability of the faculty makes a program more
attractive to prospective students.

It is very difficult to attract appropriate faculty.
In particular, faculty members usually have to be
acquired from computer science backgrounds and/
or industrial practice. The problem with faculty
from computer science backgrounds is that their
backgrounds are in computer science rather than
software engineering. The problem with acquiring
faculty from industry is that they often do not have
documented credentials and a documented trace of
their scholarly work.

With the need to continuously update course
content and curricula in order to keep up or
advance the state of the field, the load on a faculty
member in software engineering tends to be signifi-
cantly greater than in some other academic areas.
Given that it is very difficult to hire faculty with
the appropriate academic and industrial back-
grounds, many of the hires are often non-tenure
track.

The only real solution for the administration is
to provide competitive salaries and support
consulting or research activities. This enables
faculty to make up any shortfalls in salary and
keep abreast of the industry needs and practices.
With respect to this issue, MU offers faculty one
day a week to spend on research or consulting
activities.

Necessary Metamorphoses of a Software Engineering Program 273

DIVERSITY OF THE STUDENT BODY

In the 16-year history of the software engineer-
ing program at MU, we have observed increasing
diversity within the student population. This diver-
sity spans several dimensions: educational back-
ground, employment status, educational goals and
native language. The successful program must
address all these dimensions of diversity.

Educational backgrounds

Consistent with the origins of the program,
many students in the graduate program have
undergraduate degrees in computer science.
These students have strong programming skills
but very seldom have the engineering discipline
that emphasizes understanding the problem to be
solved, or the process to be followed. These
students tend immediately to start coding once
they receive a problem to be solved. Instructors
have been asked on more than one occasion why it
was necessary to design a program when they
could write one faster.

We also have a large population of students that
are coming into the graduate program from
other engineering and non-engineering disciplines.
These students usually are much more accepting of
engineering processes but have relatively weak
programming skills and minimal knowledge
about how computers function. To accommodate
them, we have had to incorporate a set of prepara-
tory courses to provide the programming skills and
computer knowledge necessary to succeed in the
program.

We are expecting a new group of students to
begin entering into the graduate program in two
years. These students will have undergraduate
degrees in software engineering and will already
have a good understanding of engineering prac-
tices balanced with programming skills. At this
point, we anticipate that our program will have
to address increasingly more advanced software
engineering topics that may be beyond the
knowledge of the other two groups of students.

Employment status

The employment status of students has signifi-
cant impact on the program. It affects how long
students are in the program, the effort that they
put into assignments, their willingness to accept
course material, and when classes are offered. It
should be noted that (with a few exceptions)
students entering into the program full-time
usually find work at the end of their first year
and become part-time students. The majority of
our student population attends school part-time
while being employed full-time in the software
industry, so most of our classes are offered in the
early evening to accommodate them.

The fact that the average student is employed
full-time and attends classes part-time means that
they may be in the program for as long as eight
years. In fact, the population of students is much

more stable than the curriculum. Some students
have graduated on curriculums that have
been replaced twice since they enrolled in the
program.

Employment in the software industry has signif-
icant impact on the willingness of some students to
accept the concepts taught in the classroom. These
students have already acquired work habits that
are not consistent with best practices. Students
often state that they do not perform a particular
engineering practice at work and that they do not
see a need for it. Of course, many of these same
students talk about how their projects at work tend
to be chaotic. Other students report the difficulties
they have encountered in trying to practice in their
conservative organizations what they have learned
in class. Either case tends to undermine the
instructor in presenting new material in the class-
room. Here is one of the situations where the
instructor’s industrial experience plays an impor-
tant role in both selecting the material to be taught
and in responding to student concerns regarding
the usefulness of the topics learned in the real
world.

Employed students also tend to focus on what
they immediately need to succeed in today’s work-
place. There is often an insistence on learning a
product (such as Oracle or Sybase) rather than the
concepts (i.e. database principles). This emphasis
on skill rather than knowledge runs counter to the
main goal of the program, which is to produce
software engineers who can lead their organ-
izations into the future. We have incorporated
some of these products into our classrooms, but
the main aim of the courses remains to teach the
engineering principles of the field, which can be
applied to a large number of products.

Students who are not employed in the industry
have problems prioritizing the material being
taught or placing it in the context of delivering a
product. If they are required to know C++, they
assume that all employers develop code in C++.
They are often surprised when they get a job and
discover that they will have to learn a new
programming language. Students are occasionally
concerned that courses cover many different
methods and approaches to achieve a given goal
rather than emphasizing one method. They have to
be taught to understand that the knowledge and
skill they acquire in school will have to blend into
whatever organization they join and that they need
to engage in a lifelong learning process that is
inevitable in this dynamic field.

Educational goals

It would be nice if all students entered the
program with the desire and goal of becoming a
software engineer and delivering a specific kind of
product. However, the educational goals of the
students range from wanting to know all about
software and engineering to the other extreme,
where they only want to get the credentials that
will allow them to earn a higher salary. Our

274 D. Rosca et al.

student body appears to be driven by a small
number of educational goals. These are:

® to get the business and process knowledge that
will allow them to manage software projects and
people;

® to acquire the skills and knowledge that will
allow them to be more productive in their
chosen career;

® to start a career in which they can have a
significant income; or

® to get a job in the software field that does not
involve a lot of coding.

The major impact of these goals concerns the
subject areas that interest the student. We have
had to tailor our curriculum to respond to these
different goals. We find a significant fraction of the
students are very interested in the process, project
management, and organizational management
courses. Others find that the courses on require-
ments and software testing give them an entry
point into a part of the software business that
does not appear to require major coding efforts.
Finally, the courses that emphasize specific types
of software systems (real-time, information, and
embedded systems) attract those students that are
interested in gaining the particular knowledge and
skills that will allow them to master their chosen
field of work.

Communications skills

There is significant diversity among our students
in terms of their communication skills. However,
communication skills are critical in software
engineering. The average software engineering
student will probably produce more documents
and make more public presentations than the
average English major. Communications have to
be precise, unambiguous, complete, logically
sound and well structured. Oral presentations
have to convey complex information under time
constraints. Students have to learn to gauge how
much information is to be conveyed. This requires
that they judge what their audience can be
expected to know and what must be presented.
Although typical undergraduate general education
programs attempt to teach these skills, most
students who enter our graduate program require
additional coaching and training in this area.

International students are often at a disadvan-
tage, due to the fact that English is their second
language. This affects their writing ability, where a
weakness in vocabulary often prevents them from
expressing themselves clearly and succinctly. It
also undermines their confidence in public speak-
ing, due to concerns about their command of the
language and fears that others will not understand
them because of their accents.

International students are not the only ones
with problems in communication. Many of the
students, particularly those with computer science
backgrounds, are not used to writing technical
documents. While they may be good at writing

code, they often have difficulty expressing them-
selves succinctly in a written document.

The most direct approach to dealing with signif-
icant changes in the student population has been to
adapt the curriculum and individual courses to
meet the changing needs of our students.
Employed students are encouraged to express
their perspectives on the material, so that their
experiences can be shared with students that have
not yet entered the field. In some classes, program-
ming assignments can be written in Java or C++,
depending on the students’ choice.

Another change has been the incorporation of
more term papers into course work so that
students get greater experience in writing. Papers
are graded on technical content, structure, adher-
ence to topic, and on the use of language. Correc-
tions are suggested and students have a chance to
resubmit corrected work. With respect to verbal
communications, students are required to make
oral presentations of their term projects. In this
way, until they reach the capstone project, students
will have had the opportunity to exercise their
communications skills several times.

GUIDANCE ON STARTING AND
MANAGING PROGRAMS

Based on the experiences described above in
starting and managing Monmouth University’s
software engineering program, we would offer
the following advice to academic departments
that are considering a similar program:

1. Conduct research to determine the most current
curriculum recommendations of the IEEE,
ACM and other sources.

2. Find out, by participating in national groups
and committees that develop those recommen-
dations, what future changes are likely to take
place.

3. Enlist the academic institution’s industrial advi-
sory boards to determine how the general
recommendations need to be tailored to suit
the needs of local industry.

4. Form a task force with professors from both SE
and CS departments to make sure the two
departments will not conflict with each other.
Also, invite an external reviewer who can offer
concrete guidance, based on personal experi-
ences in building such a program at another
university.

5. Recruit full-time faculty who are competent to
teach the required variety of courses and who
have industrial experience in applying software
engineering techniques in real-work environ-
ments. Do not expect this to be an easy task.
You may need to manage the program initially
with significant help from part-time faculty.

6. Expect that the curriculum will need to change
over time to accommodate both changes in the
discipline as well as changes in the needs of
local employers.

Necessary Metamorphoses of a Software Engineering Program 275

FUTURE DIRECTIONS

Having looked at the past, it is now appropriate
to look to the future for our program. In parti-
cular, we recognize a need for another set of
changes. The introduction of an undergraduate
software engineering program will have profound
consequences on the graduate program, forcing
severe changes in its curriculum. The redesigned
curricula should allow the new graduates of the
Bachelor’s degree in software engineering to have
the opportunity to extend their knowledge and
skills to new frontiers.

With this in mind, we plan to modify our
graduate program, such that the students with a
Bachelor’s degree in SE will be required to take
seven elective SE courses and a 6-credit thesis. This
would make our SE graduate program similar in
structure to Master’s programs in electrical engin-
eering, mechanical engineering, etc., throughout
the United States.

Another issue, which is beyond the scope of this
paper though, is the influence that the licensing of
software engineers will have on the design of the
curriculum. However, the directions and discus-
sions that are taking place with regard to licensing
have to be followed so that appropriate changes
can be implemented in the curriculum.

CONCLUSIONS

This paper has presented the main problems and
lessons learned from one of the oldest programs in
software engineering in the United States. The
evolution of the graduate curriculum over its 16
years of existence has been described as an example
for other colleges and universities considering
implementing a software engineering degree. We
expect this evolution to continue in the future, as

the SE field is a constant moving target, and as we
will graduate the first class of Bachelors in SE.

We have argued that continuous updating of the
course content has a special meaning in software
engineering, due to the dynamics of the field. In
this respect, we have shown the impact of the
advances in the field on the textbooks used and
the need for continuous reevaluation of the
chosen programming language, operating system,
or software tools used in class.

The paper has presented the difficulties we have
experienced in attracting and retaining faculty over
the years, due to the need for new faculty to have
both a record of scholarly accomplishments and
industrial experience. The emphasis here is on the
conjunction of these two requirements, which
sets great restrictions on the pool of available
candidates.

We have shown how various issues related to
the diversity of the student body influence the
curriculum and course content. As such, the
educational backgrounds, employment status,
educational goals, and communication skills of
the student body are challenges any software
engineering program has to solve.

Based on our experience in dealing with these
problems, we have offered some guidelines for
those interested in starting a similar program.

As a measure of the success of our continuous
efforts to improve, we have seen the program
enrollment increasing steadily, and doubling in
the last three years. Apparently our strategy to
continually update the program appears to be
working, as mentioned by one of our alumni,
Kevin McKee (VP Information Services, Health
Network America, Eatontown, NJ):

The education I received while getting my Master’s
degree in Software Engineering at Monmouth Univer-
sity has been invaluable. Not a day goes by when I do
not use something that I learned in the program.

REFERENCES

1. P. Naur and B. Randall (eds.), Software Engineering: A Report on a Conference Sponsored by the

NATO Science Committee, NATO (1968).

2. G. Powell, J. Diaz-Perrera and D. Turner, Achieving synergy in collaborative education, /EEE

Software, Nov/Dec (1997) pp. 58-65.

3. P. Dart, L. Johnston, C. Schmidt and L. Sonenberg, Developing an accredited SE program, /EEE

Software, Nov/Dec (1997) pp. 66-70.

4. M. Ardis and G. Ford, SEI report on graduate software engineering education, Proceedings of the
Software Engineering Education Conference, Springer-Verlag (1989).
5. Guide to the Software Engineering Body of Knowledge, Stone Man Version, SWEBOK, Feb. 2000

(http://www.swebok.org/).

6. W. Humphrey, A Discipline of Software Engineering, Addison-Wesley, 1997.

. D. Rosca, C. Li, K. Moore, M. Stephan and S. Weiner, PSP-EAT: Enhancing a personal software
process course, Proceedings of FIE'01, p. T2D18.

. D. Rosca, An active/collaborative approach in teaching requirements engineering, Proceedings of

FIE’00, pp. T2C9-12.
. J. McDonald, Teaching software project management in industrial and academic environments,
Proceedings of CSEE&T (2000) pp. 151-160.

Daniela Rosca is Assistant Professor in the Software Engineering Department at
Monmouth University. She received her Ph.D. degree in Computer Science from Old

276

D. Rosca et al.

Dominion University. Prior to obtaining her doctoral degree, she worked for the Institute
for Computer Technologies as a Senior Scientist. She was responsible for developing
artificial intelligence applications. Her research interests are positioned at the intersection
of software engineering and artificial intelligence. Dr Rosca’s main areas of specialization
are business rules, a special type of software requirements, and software process. Her
research in terms of educational methods has focused on active and cooperative learning,
multidisciplinary teaming, and software tools for enhancing the learning process.

William Tepfenhart is the author of several textbooks on object orientation. He is currently
an Associate Professor in the Software Engineering Department at Monmouth University
investigating the potential of software solutions to enhance the effectiveness of collabora-
tion in engineering endeavors. Prior to his entry to the academic world, he was employed as
a developer and technologist at AT&T Laboratories, where he worked on applications
associated with the long-distance network, establishment of engineering practices at a
corporate level, and working with advanced object-oriented technologies. He had pre-
viously worked as a Senior Scientist at Knowledge Systems Concepts, investigating the use
of artificial intelligence systems for the USAF. Prior to that, he was an Associate Research
Scientist at LTV, where he worked on applications for manufacturing devices composed of
advanced materials.

James McDonald, Associate Professor and Chair of the Department of Software Engin-
eering at Monmouth University, holds a Bachelor’s degree in Electrical Engineering from
New Jersey Institute of Technology, an M.S.E.E. from Massachusetts Institute of
Technology and a Ph.D. from New York University. Dr McDonald has an industrial
background in both software development and digital hardware design. He is a senior
member of the IEEE and a member of the IEEE Computer Society, the Association for
Computing Machinery, the American Society for Engineering Education and the Project
Management Institute.

