Int. J. Engng Ed. Vol. 21, No. 1, pp. 178-186, 2005

Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2005 TEMPUS Publications.

Implementing Fuzzy Logic for Machine
Intelligence: A Case Study*

M. D. HURLEY, W. L. XU and GLEN BRIGHT
Institute of Technology and Engineering, College of Sciences, Massey University, Palmesrton North,
New Zealand. E-mail: W.L. Xu@ Massey.ac.nz

Intelligent machines are machines with microcontroller(s), actuators and sensors embedded and of
reprogrammable intelligence. The Mechatronics course at Massey University, New Zealand,
teaches students how to design intelligent machines in an integrated manner. The success of the
teachingllearning would be achieved in a way that the students are able to apply what they have
learnt from various courses to the design of an intelligent machine. To this end, each student is
required to do a design project. This paper presents a sample project that deals with real-time
implementation of fuzzy logic for machine intelligence on microcomputer. The objectives identified

for the project were to modify Rug-Warrior Pro, an autonomous mobile robot platform, to have a

long-ranging capability and to implement obstacle avoidance in an unmapped and changing
environment as the machine intelligence. The hardware interfacing and software drivers of the
sensors are given, and the techniques for coding the membership functions and defuzzification
operation of fuzzy logic are discussed. The machine behaviours are formulated by an If-Then rule
base that mimics human heuristic, and the resultant program offers an excellent alternative to more
common vector-based navigation methods with a fraction of the processing requirements resulting

in a fast-responding, reliable application.

INTRODUCTION

FUZZY LOGIC HAS found many applications in
machine intelligences and behaviours based
controls, and its implementations can be either
on PCs or microcontrollers [1]. The student project
presented in this paper was to develop a fuzzy logic
approach to obstacle avoidance for an educational
mobile robot and to implement it on the embedded
microcomputer. The mobile robot used in the
project is Rug-Warrior Pro, which was developed
by the Massachusetts Institute of Technology
(MIT) for use in robotics courses [2]. It is a small
autonomous robot designed for educators,
researchers, and hobbyists and works in an
unmapped and changing environment. The Rug-
Warrior Pro is a microprocessor-based mobile
robot kit that contains the complete processing,
memory, and sensor circuitry (Brains), as well as
the motors, wheels, chassis and custom body parts
(Brawn).

The Rug-Warrior Pro may be programmed
from either a Mac or an IBM PC using Interactive
C. Interactive C is a compilation environment for
many Motorola 6811-based robots and embedded
systems. The code is downloaded from Interactive
C to the Rug-Warrior Pro via the serial port.
Library routines and self-test code are provided
for all the robot’s standard sensors and actuators,
such as motor routines and printing to the LCD.

* Accepted 20 May 2004.

178

The Rug-Warrior Pro can be controlled directly
from the keyboard by way of Interactive C’s
command line or it is able to operate autono-
mously under the control of its on-board micro-
controller. The ‘brains’ of the Rug-Warrior Pro is
the Motorola MC68HC811E2 microcontroller.
This uses the Motorola MC68HC11 microproces-
sor with extended memory. It contains 256 bytes of
RAM, and 2048 bytes of EEPROM.A time-shar-
ing operating system allows the execution of paral-
lel processes. For example, one process may be
used for motor control, while another independent
process is used for reading and processing informa-
tion from the sensors [2, §].

The machine behaviours are formulated by a set
of If-Then rules that mimic human heuristic and
are coordinated in fuzzy logic. To have a long-
ranging capability for the purpose of obstacle
avoidance, the Rug-Warrior Pro was modified to
include three sets of ultrasonic sensors. The hard-
ware interfacing and software drivers of the
sensors are given, and the techniques for coding
the fuzzy logic operation are discussed in the
paper. The learning outcomes achieved in the
project for the course Mechatronics are sensor
and signal processing, motor drive and control,
microcontroller interfacing and software driver,
machine intelligence and programming, and inte-
gration of mechatronic components. The project
presented as a case study promotes students’ can-
do attitude in implementing what they have
learned in advanced topics including machine
intelligence.

Implementing Fuzzy Logic for Machine Intelligence 179

Table 1. Sensor interfacing configuration

Sensor Set Enable Pin Output
Left PD2 PE7
Centre PA3 PE6
Right PD3 PES

OBSTACLE SENSORS AND THEIR
INTERFACING AND SOFTWARE DRIVERS

Ultrasonic sensors

For obstacle detection operation, an ultrasonic
ranging system was chosen. The sensor system
used was a Velleman Parking Radar kit available
from Dick Smith Electronics stores. The output of
the sensor kit is either high or low; no ranging data
is provided from the kit [7]. The ultrasonic detec-
tion module works on a very simple principle. It
transmits a 40kHz signal from an ultrasonic
transducer and, with the receiving transducer, the
echo from the transmitter is monitored at a
sampling frequency of 26 Hz. When an echo is
received, the resultant output from the receiver is
then conditioned before being used to drive a piezo
buzzer. The resultant output to the piezo buzzer is
an active low signal on the negative pin (i.e. when
an obstacle is detected, the signal is low). For the
application of obstacle avoidance, the piezo buzzer
was removed and the negative pin was connected
to the Rug-Warrior’s microcontroller.

Three sets of ultrasonic sensors (and so three
Velleman Parking Radar kits) were required, one
to detect objects on the left, one set for the centre
and one set for the right. This meant that three
digital inputs and three digital outputs were
required. The digital inputs were available in the
form of PES, PE6 and PE7 (Port E, lines 5-7).
These lines were used to receive the output (or echo
line) from the sensors [2, 3]. In order to get the
required three digital outputs, the two infrared
emitters and the piezo buzzer were removed from
the microcontroller. This left the digital output
lines PD2, PD3 and PA3 available for the sensor
enable lines.

Bump Switches

The Rug-Warrior Pro comes standard with
three bump switches; one on the front left, one
on the front right and one at the rear. Each bump

switch has three pins, pin 3 being ground, pin 2 is
Ve and pin 1 is the output. When the switch is
open, the output is ground, when closed the output
is V... The bump switches are connected to a 10-
pin connector that is hard-wired on the microcon-
troller board. The analogue output for the bump
switches is received on the PE3 line of the micro-
controller [3]. When one or more of the bump
switches are triggered, a binary value is returned
to the microcontroller (via PE3). The return values
are shown in Table 2.

For this application, only the two front bump
switches were being used; the output line for the
rear bump switch was hard-wired to ground, there-
fore only analogue outputs of 0-3 could be
received from the bump switches.

FUZZY LOGIC FOR OBSTACLE
AVOIDANCE

Why fuzzy logic?

For the obstacle avoidance algorithm, a fuzzy
logic system was chosen. There are two main
reasons why a fuzzy logic system was chosen: the
first is due to the ultrasonic sensors that are used,
and the second is because of processing require-
ments. Ultrasonic sensors in a distance ranging
system such as the one used in this application are
notorious for providing imprecise data, and using
a fuzzy logic system aids in ensuring that this lack
of precision has minimal effects on the overall
functionality of the program. One of the main
considerations for the implementation of this
application was the processing speed of the micro-
controller and thus the reaction time of the robot.
With this in mind, it was necessary to minimise the
number of instructions and calculations required.

Many obstacle avoidance techniques that do not
use a fuzzy logic system work by dividing the area
surrounding the robot into a grid pattern and then
calculating the probability of an obstacle being
present in each square of the grid based on the
sensor data. These methods require a vast number
of calculations and so significantly increase the
response time of the robot. Fuzzy logic requires
much fewer calculations and so is more suited for
this application. For this application of fuzzy logic
for machine intelligence, there were three basic
steps to developing the program:

Table 2. Returned values for bump switches

Rear (Bit 2) Left (Bit 1) Right (Bit 0) Returned Value Analogue Value
0 0 0 000 0
0 0 1 001 1
0 1 0 010 2
0 1 1 011 3
1 0 0 100 4
1 0 1 101 5
1 1 0 110 6
1 1 1 111 7

180

® converting the obstacle detection algorithm to
get distance-ranging data;

e developing a fuzzy logic algorithm based on the
ranging data; and

® combining the ranging system with the fuzzy
logic algorithm and the bump switches to get
an overall obstacle avoidance program.

Distance ranging

The distance ranging algorithm is very simple
and is conducted separately for each set of sensors.
The enable bit is set to allow the signal to be set by
the transmitter. For the left set of sensors, this is
PD3, and Port D is located at address 0x1008 and
0b00001000 indicated bit 3 at that address [4]. That
is, bit_set (0x1008, 0b00001000).

The internal clock on the microcontroller is then
checked and the transmit time is stored as a
variable. For the left set, it is /left_start. The
internal clock, also called the E-clock, is located
at address Ox100E. Thus, left_start=peckword
(Ox100E).

The output or echo bit is then checked. If an
echo has been received, the E-clock is again
checked and the signal’s time-of-flight is calcu-
lated. This time-of-flight is simply the time the
echo is received minus the transmit time. The
result is the number of machine cycles that have
elapsed. Once the time-of-flight has been calcu-
lated, this is then converted into a distance by
taking into account the speed of sound and the
clock frequency. However, as the time-of-flight (or
ToF) is the time taken for the signal to travel to the

St Frmalile Bar

I
¥

Crer Transmic Time

M. D. Hurley et al.

object and return again, this time-of-flight must be
halved.

ToF = Number of Clock Cycles x Clock Period

= No. of cycles x 0.5 us

Distance = (ToF | 2) x Speed of Sound
=(ToF [2) x 342 mls

Both these calculations can be combined, giving
the result as: Distance = ToF x 0.0000855, where
the distance is in metres.

If no echo is detected, the result is that the
distance is set to the maximum, which for this
application is one metre.

PE7 =peek (0x1004) & 0b10000000;
if (PE7==0)
{ left_time = peekword (0x100E)
- left_start;
left_dist = (float) left_time * 0.0000855;
¥

else
left_dist =1.0;

Once the object distance has been calculated, the
enable bit for the transmit signal is cleared, turning
off the transmit signal. The operation is then
returned to the main program returning the obsta-
cle distance. That is:

bit_clear (0x1008, 0600001000);
return (left_dist);

Membership functions

For a fuzzy logic operation, two main parts are
required. The first is the membership functions

{rer Pl Time

!

[Calcalate Time-of-Flighi

!

|
L=

| Calcufare Disrance w Cjeo

-

Ser Disrence o Maximaim]

Fig. 1. Distance ranging algorithm.

Implementing Fuzzy Logic for Machine Intelligence 181

Foilidp WEhas

estance Mambarahig Functiong

Far

Ciwarce

s i

Fig. 2. Distance membership functions.

and, the other part that a fuzzy logic operation
requires is the rule base, which defines the required
outputs for any given combination of inputs [5, 6].
The membership functions are used for converting
the discreet data from the inputs, in this case the
ranging data, into a fuzzy value between zero and
one, or converting the fuzzy output values into
discrete values for output. For this application
there were three sets of membership functions
required, one for the inputs (distance) and two for
the outputs (i.e., translational and rotational speed).

The ranging data (inputs) use the distance

membership functions. They are used to convert
the ranging data into near and far components. For
distances less than 0.25m (25cm), near=1 and
far=0. For distances greater than 0.75m (75cm),
near=0 and far=1. For distances greater than
0.25m and less than 0.75 m, the result is a combina-
tion of near and far [6].

In order to convert the ranging data into fuzzy
values, these membership functions need to be
converted into calculations that can be implemen-
ted using Interactive C. Below is the code that is
used to do this.

Translational Speed Mem bership Functions

Maediem Fazt

Bipawi

Fig. 3. Translational speed membership functions.

182 M. D. Hurley et al.

float NEAR (float dist_near)

{
if (dist_near <=0.25)
return (1.0);
else if (dist_near >= 0.75)
return (0.0);
else
return ((—2.0 * dist_near) +1.5);
i

float FAR (float dist_far)

if (dist_far <=0.25)
return (0.0);
else if (dist_far >=0.75)
return (1.0);
else
return ((2.0 * dist_far)—0.5);

There are two required outputs for the fuzzy
logic system, the translational speed and the rota-
tional speed. These two outputs are the values that
are used for the robot’s drive function. The trans-
lational speed is divided into three parts: slow,
medium and fast, as shown in Fig. 3, with the
maximum speed being 50 for this application. This
is reflected as a percentage of the robot’s maximum
speed. The top speed is not used in this application,
because slowing the robot down gives a better
response as it allows more time for the robot to
react as the environment changes. For the output
variable, a fuzzy value for each parameter (i.e.
slow, medium and fast) is received. These fuzzy
values are combined to give the required output.

In order to convert the fuzzy values into a
discrete speed, only one simple calculation is

required. The fuzzy value for each parameter is
multiplied by the speed at the maximum point of
the membership function (refer to Fig. 3), then the
three are added together. That is, the fuzzy value
for slow is multiplied by 0.0, the medium fuzzy by
25.0 and the fast fuzzy value by 50.0. By adding
these values together, the required speed can be
found.

float DEFUZZIFY _SPEED (void)

{
float speed;
speed = (max_SLOW * 0.0)
+ (max_MED * 25.0)
+ (max_FAST * 50.0);
return (speed);
H

Calculating the rotational speed output follows
the same principle as the translational speed;
however, the rotational speed has five parts: turn
right big (TRB), turn right small (TRS), turn zero
(TZ), turn left small (TLS), and turn left big
(TLB). The outputs for rotational speed can be
in the range of —50 to 50, where —50 is TLB and 50
is TRB (refer to Fig. 4).

Converting the rotational speed calculations to
code for Interactive C uses the following function:

float DEFUZZIFY_SA (void)

{

float SA;

SA = (max_TLB*-

50.0) + (max_TLS*25.0) + (max_TZ*0.0)
+ (max_TRS*25.0) + (max_TRB*50.0);

return (SA);

Eimry Wad i

Rotational Speed Membership Funclions

Fig. 4. Rotational speed membership functions.

Implementing Fuzzy Logic for Machine Intelligence 183

Table 3. Rule base for robotic behaviours

Rule Left Centre Right Speed Rotation
A Near Near Near Slow TRB

B Near Near Far Medium TRS

C Near Far Near Slow TZ

D Near Far Far Fast TRS

E Far Near Near Medium TLS

F Far Near Far Slow TRB
G Far Far Near Fast TLS

H Far Far Far Fast TZ

Fuzzy rule base

For a fuzzy logic system, the rule base defines
the required outputs for any given combination of
inputs. The variables for each input or output are
defined by the membership functions. For the
distance inputs, they are either near or far; for
translation speed output, they are slow, medium or
fast and for the rotational speed output they are
turn right big (TRB) turn right small (TRS), turn
zero (TZ), turn left small (TLS) or turn left big
(TLB) [6]. For example, if an object is near to the
left, centre and right sensors, then rule A applies
(refer to Table 3). This would make the translation
speed slow and the rotation turn right big (or
TRB). In converting the rule base, the rules are
expressed as a simple If-Then rule; for example, in
the case of rule A, this is converted into an If-Then
rule as:

IF (left = Near) & (centre = Near)
& (right = Near) THEN (speed=slow)
& (rotation=TRB)

Fuzzy logic operation

For calculating the fuzzy values for the outputs,
it is necessary to combine the input fuzzy values
with the rule base. The fuzzy value for each rule
output is the smallest fuzzy value from the rule
inputs. For example, take rule A:

IF (left= Near) & (centre= Near)
& (right = Near) THEN (speed = slow)
& (rotation=TRB)

To find the fuzzy values for the output, it is
necessary to find the smallest input value. Taking
the near component for the three inputs (left,
centre and right), a calculation is done to find
the minimum value. The Interactive C code is as
follows:

float MIN (float minl, float min2, float min3)

float min_val;

min_val =minl;

if (min2 < min_val)
min_val = min2;

if (min3 < min_val)
min_val = min3;

return (min_val);

In this case, the outputs are SLOW and TRB.

The fuzzy value for the output is the smallest of the
input values, so SLOW and TRB equal the result
from the minimum calculation. By conducting this
for each rule, fuzzy values for all the output
parameters can be derived. Looking at the rule
base (Table 3), it is obvious that there is going to
be more than one value for each parameter. In this
application there are either two or three values for
each. This means it is necessary to decide what the
final output is going to be. Using a maximum
calculation does this according to the fuzzy infer-
ence [5]. The final value is the maximum value
from the values calculated above. For example,
rules A, C and F will all give a value for the output
SLOW; the final value for this output is the largest
of these three values. This is given in the Inter-
active C code procedure below:

float MAX (float maxl, float max2, float max3)
{
float max_val;
max_val =maxl;
if (max2 > max_val)
max_val = max2;
if (max3 > max_val)
max_val = max3,
return (max_val);

Once this operation is complete, fuzzy values
will have been found for each of the output
parameters, which are subsequently defuzzified to
get discrete values that may be used to drive the
robot.

Overall machine intelligence

The overall functionality of the program is a
combination of the bump switches, the ultrasonic
distance ranging and the fuzzy logic operation. To
begin, the status of the bump switches are checked.
If one is closed, the robot will reverse and turn
away from the object by 90; if both are closed, the
robot will reverse and turn 180. When neither of
the bump switches is closed (the normal case), the
program receives ranging data from the sensors
then uses this to conduct the fuzzy logic opera-
tions. The outputs from the fuzzy logic operation
are a translational speed and a rotational speed,
and these are used to drive the robot using default
the library function: drive (trans_vel, rot_vel).
Figure 5 shows the flowchart of the fuzzy logic
obstacle avoidance algorithm, and Fig. 6 shows the

184 M. D. Hurley et al.

.T.

Reverse & Tom oy
o

F 3

Feverse & Twrn 150"]_'

Beppehs iy

O Ol

Beaiih OME

Cier Ranging Dam

.

[he Fuexy Logic
{ Yprmaricans

.

Cakeulae :':’-I"H'\'C'I.I anl
R it

v

Dirve Wheels ‘

:

Fig. 5. Algorithm for fuzzy logic obstacle avoidance.

Fig. 6. The running robot with embedded fuzzy logic intelligence.

Implementing Fuzzy Logic for Machine Intelligence 185

Fig. 7. Operation limitation on external corners.

final robot and its negotiation of objects on a
platform.

PROBLEMS AND LIMITATIONS

There are three main limitations for the overall
operation of this application. These are due to the
sensors used. The first is external corner deflection
(Fig. 7), which occurs when the robot approaches
an external corner. Instead of the transmitted
signal reflecting back towards the receiver, it is
deflected away, making it appear to the robot that
no obstacle is present. For this application, the use
of the bump switches is the only way that this
problem may be overcome. When the robot makes
contact with the obstacle, one or both of the bump
switches will be triggered, causing the robot to
reverse and turn away from the obstacle.

The second limitation of this application is
caused when the robot approaches internal corners
(Fig. 8). The transmitted signal reflects around the
inside of the corner before returning to the recei-
ver, which causes the signal to travel further and so
causes ranging errors. Using a fuzzy logic system,
these errors are minimised to a point where, for
this application, they have little or no noticeable
effect. However, for larger applications, they must
be taken into account.

The final major limitation with this application
results from the sensor kits that have been used. As
they were designed for providing either an on or
off result, they are unsuited for being switched on

Fig. 8. Operation limitation on internal corners.

and off quickly. This means that there is a signifi-
cant delay between the time they are enabled and
the time that they begin to transmit a signal. For
this reason, the enable lines in the program are not
cleared once the echo has been received. For future
applications, it is recommended that these sensors
be replaced with others that are designed for a
ranging application such as the Polaroid 3500
series of ultrasonic sensors.

CONCLUSION

The use of fuzzy logic in association with the
ultrasonic sensors for intelligent obstacle avoid-
ance has been implemented successfully and works
with a good level of reliability. The Rug-Warrior
Pro proved to be an excellent platform for the
implementation of this project. With a few modi-
fications, it was able to handle the requirements
with ease, which also gives the potential for future
modifications and development. The platform
does, however, appear to possess a few issues
with some of the expansion ports and also there
is occasional unexplained freezing of the micro-
controller. The power consumption of the entire
package is one point of a possible problem; it will
run effectively as it is but, with increased function-
ality, power drain may need to be considered. One
solution may be to provide a long-life battery pack
or perhaps a separate power supply for the ultra-
sonic sensors.

REFERENCES

1. 1. Baturone et al., Microelectronic Design of Fuzzy Logic Based Systems, CRC Press, Boca Raton
(2000).

2. J. L. Jones, A. M. Flynn and B. A. Seiger, Mobile Robots: Inspiration to Implementation (2nd
edition), A. K. Peters, Massachusetts (1999).

3. J. L. Jones, Rug-Warrior Pro Assembly Guide, A. K. Peters, Massachusetts.

4. A. Wright, R. Sargent and C. Witty, Interactive C Users Guide (0.9 ed.), Newton Research Labs
(1997).

5. L. X. Wang, 4 Course in Fuzzy Systems and Control, Prentice-Hall International, New Jersey (1997).

6. W.L.Xu, S. K. Tso and Y. H. Fung, Fuzzy reactive control of a mobile robot incorporating a real/
virtual target switching strategy, Robotics and Automation Systems, 23 (1998), pp. 171-186.

7. Velleman Components NV, Velleman Parking Radar Manual (http://www.velleman-kit.com/).

8. Motorola, M68HCIIE Family Data Sheet (http://www.motorola.com/semiconductors/).

M. D. Hurley received a B.E. in Mechatronics with honours from Massey University, New
Zealand, in May 2004. He now serves as an automation engineer in the New Zealand army.

186

M. D. Hurley et al.

W. L. Xu received a Ph.D. in Mechatronics and Robotics from Beijing University of
Aeronautics and Astronautics, China, in 1988. He is a Senior Lecturer in Mechatronics at
the Institute of Technology and Engineering, Massey University, Palmerston North, New
Zealand. Prior to joining Massey in 1999, he worked at the City University of Hong Kong,
the University of Stuttgart, Germany, and Southeast University, China. His current
research interests include intelligent Mechatronics, advanced robotics and intelligent
control. He is a senior member of IEEE and serves as Associate Editor for IEEE
Transactions on Industrial Electronics and Regional Editor for the International Journal
of Intelligent Systems Technologies and Applications.

Glen Bright graduated from the University of Natal, South Africa, with a Ph.D. in
Mechatronics and Robotics in 1993. He currently leads the Mechatronics and Robotics
Research Group (MR2G), which has active members in New Zealand, South Africa and
North America. He is an active member of IEEE, ISPE, IASTED and a newly appointed
CIRP member. His research interests include Internet Manufacturing, reconfigurable
machines for Agile Manufacturing, Automated Guided Vehicle technologies and wireless
communication for materials handling and automated machines.

