Int. J. Engng Ed. Vol. 21, No. 2, pp. 288-296, 2005

Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2004 TEMPUS Publications.

Using XML/Java to Enhance an Online
Learning Architecture for Engineering

Education®

WAI L. CHAN and ZHIHUA QU
University of Central Florida, Orlando, FL 32816, USA. E-mail: qu@mail.ucf-edu

This paper will present the architecture for designing and developing a web-based teaching
enhancement tool for engineering education. This architecture will enhance student learning by
providing an innovative way for them to interact with standard engineering software through the
web. The new architecture will provide a flexible online learning environment that will allow the
students to present, test and evaluate their own ideas. To demonstrate its capabilities, we will
present a Java application platform using this architecture. Moreover, we shall briefly discuss an
XM L-based markup language, Control Block Diagram Markup Language (CBDML), that was
written during the development of this application. The design of the architecture described in this
article has many possible applications, but this paper only presents the core results, more
applications could enrich the architecture and CBDML, thus making possible a wide variety of

production ideas.

INTRODUCTION

IN THE PAST YEAR, several new technologies
have been utilized in a number of university
courses to enhance the course material and
students’ learning experience within traditional
face-to-face classes. This practice has proved to
be very effective for many engineering students.
According to several independent studies, many
engineering freshmen and sophomores have diffi-
culty grasping the basic concepts being taught in
introductory engineering courses. The reason often
is that they cannot visualize the concepts being
taught. Moreover, engineering students may not
be equipped with the necessary skills to produce
creative designs using critical thinking processes
[1]. Those students who cannot understand the
fundamental principles of engineering often fail
in engineering courses and even drop out.

Over the past few years, several nationwide
initiatives have developed multimedia and web-
based educational tools [2-4]. The majority of
such efforts have focused primarily on the graphi-
cal user interface (GUI) for the purposes of static
display/presentation. Several initiatives have
focused on developing web-based simulation
tools, but only targeted to a specific design or
operation [4]. None of these has attempted to
design and develop a complete set of solutions
for online learning.

On the other hand, the existing tools that are
often used in engineering courses are standalone
applications and are usually installed on the

* Accepted 25 March 2004.

288

computers in the laboratory/computer center.
This means that the user needs to be in front of
the computer in order to use them. If the students
are off-campus, they may not have the opportunity
to get practice with the tools. In addition to this,
more and more course work is assigned to be
completed using a computer which has such en-
gineering software installed. This can mean that
the computer laboratory becomes overcrowded.
Furthermore, these tools have mostly been devel-
oped for computational instead of educational use.
Although they can be used for educational
purposes, basic training is usually necessary so
that students are able to fully utilize the tools.
The architecture discussed in this paper is part of
the engineering education enhancement project
that will change the way we teach engineering
courses to freshmen at the University of Central
Florida. Through this project, a team of faculty
members, computer engineering graduate students
and software engineers will develop fully web-
enhanced software packages. These will allow
engineering students to design, build and simulate
engineering problems (such as electrical circuit
problems, control system problems, DSP
problems, etc.) through a GUI inside the web
browser. This will provide an innovative method
for interactive teaching and online design testing.
The online computer simulation of engineering
problems will help students to better understand
abstract engineering principles and concepts, and
will offer multiple opportunities to solve engineer-
ing design problems [5-7]. In addition, since these
packages will be available through the web, it will
not be necessary to install anything on the client
side. The students can simply have access to this

Using XMLlJava to Enhance an Online Learning Architecture for Engineering Education 289

powerful software at home or in the computer
laboratory. The software maintenance and
upgrading are also hassle-free [5-7].

OBJECTIVES

The main goal of this research is to investigate
and design a simple architecture that provides a
flexible learning environment and the option for
engineering students to either work through a set
of problems posted by the instructor or present,
test and evaluate their own ideas through the web.
This architecture should enhance the student’s
ability to understand basic concepts and principles
through examples, scenarios and exercises.

On the client side, the architecture provides a
workbench-like GUI to allow the user to establish
a block diagram (through which specific models
such as differential equations or transfer functions
can be input) through the web browser. The client
should also be able to send a request and diagram
to the host module for further evaluation or
simulation. The architecture should provide a
simple mechanism/workaround to allow users to
import or export diagram information in the
browser environment. The client module should
also be scalable. It can be scaled down to become a
light-weight diagram viewer applet, a diagram
editor applet for creating diagrams within the
browser, or a diagram simulator applet for simula-
tion/demonstration purposes. It should be flexible
enough to handle new attributes in the diagram as
well as to load additional modules on demand. For
example, an output graph viewer can be used.

On the server side, the server module should, if
necessary, be able to interact with one or more
external applications, e.g. MATLAB, PSPICE,
MATHEMATICA, MATHCAD, etc. It should
be a multi-thread server capable of interacting
with multiple clients at any one time. Furthermore,
it should be able to process output data as well as
handle the errors or exceptions generated by the
external applications. If the system has access to a
relational database, it should also provide a design
depository where clients can post any queries and
save design examples and problems. Finally, the
data transfer format also has an important role in
this architecture. It should be vendor independent
and protocol independent. It should be easily
shared between applications and convert into any
proprietary application format.

To this end, a platform-independent architecture
is proposed and, as an example, a trial web-based
designer/simulation tool utilizing this architecture
has been designed and implemented in the areas of
signals, systems, and control. The undergraduate
engineering curriculum will be greatly improved by
incorporating this innovative and effective educa-
tional tool. Students will be able to use it to
visualize key concepts, develop necessary skills
for problem-solving, conduct self-evaluation, and
monitor their own progress. This tool will make

engineering learning more efficient, interesting and
accessible. According to preliminary trials,
students have shown a lot of interest in the tool
and have benefited from using it to solve challen-
ging engineering problems.

PROPOSED ARCHITECTURE

General information

The proposed architecture can be divided into
two components. The first component is the client/
server program modules, and the second one is the
data transfer standard. Java and Extensible
Markup Language (XML) have been used as the
programming language as the primary data trans-
fer and exchange mechanism [§8]. The reason Java
was selected is because Java is an Internet solution.
Moreover, Java is platform independent and
network library ready. XML is a markup language
which is a subset of the Standard Generalized
Markup Language (SGML) and a superset of the
Hypertext Markup Language (HTML). It has
been designed for ease of implementation and for
interoperability with both SGML and HTML.
XML is an information design methodology that
is designed for use with the web. XML allows the
designers to define their own markup tags and
markup language, which will be used to encapsu-
late the data in the way the designers want. More-
over, XML is an ideal medium for data exchange,
since it can store not only the data but also the
structural information. XML encodes a descrip-
tion of the document’s storage layout and logical
structure and provides a mechanism for imposing
constraints on the storage layout and logical
structure. All the information related to the
diagram can be stored in the XML document.
Compared with storing information in a proprie-
tary format that is difficult to re-use, using XML
will make the server program less dependent on the
external application.

Details of the architecture

Figure 1 shows the basic elements of the archi-
tecture. On the client side, a Java applet is running
inside a web browser. On the server side, a Java
server program module is running in the web
server machine. It contains the two different
XML parsers and data-processing modules. All
diagram information (i.e. all descriptions of math-
ematical models) and graph data point informa-
tion will be transmitted as XML documents.

A typical operation in software works as
follows. First, a Java applet is loaded into the
web browser. After the applet is running, the
user can either draw a diagram from scratch or
load a diagram from the server or through the
import dialog window. The Java applet can be
considered as a standalone tool for a diagram
designer. After the diagram and operation para-
meters (for the purpose of simulation or analysis)
are defined, the user can activate the applet to

290

W. Chan and Z. Qu

Wed hrowser
Java Client Invake
Maslwlis j
XM
Parser Java Bean
- i i Campament
Fy
Remali Error 4
KM AT e el
Metvwork Trdernet
— S35 I+ SEF R4 BRE BEE OOR FRY ERN O UNN
Server
Java Server
Module
KhaL
| Parser

- [rata Processing Module

II". F 4 F 3
Ll llI|I Pragraim
Sore dmia 4 Daln Rusult Erm Carph
MEssne [ata
I]'|:|._|.:r:|1r|
Drepository

Extermal Applications

Fig. 1. Architecture of the web-based simulation.

establish a connection with the server module.
Diagram information will be compiled as an
XML document and this is sent over the network
using any network protocol (e.g. TCP/IP, Java
RMI or CORBA). The user can also save the
diagram as an XML document on the server or
export the document to the web browser.

In the server module, diagram information will
be reconstructed from the XML document by
passing it through an XML parser. If it is a
‘save’ request, the submitted XML document is
stored in the diagram depository. If it is ‘simula-
tion/analysis’ request, it will be further processed
to generate the calling procedures or files which
will be used by the external application. After that,
the server module will request the external applica-
tion to execute the desired calculation or simula-
tion on behalf of the client applet.

After the analysis or simulation is completed,
the server module will scan through the output
data to check for errors and see if exceptions occur.
If errors are found in the output or exceptions arise
during execution, the server module will try to
tackle the errors or will quit the program gracefully
and send an error message back to the client
applet. Otherwise, the output data will be
processed and then written into a different kind

of XML document by the second XML parser.
Finally, the document will be sent back to the
originating client applet. The output data will be
presented in the applet in a predetermined format.
If the output data are points of a graph plot, the
client applet will invoke the graph-plotting Java
Bean to display the result. If it is a ‘load’ request, it
will ask the diagram depository for the requested
XML document and send it back to the client.

AN IMPLEMENTATION OF THE
PROPOSED ARCHITECTURE

System overview

We have designed and implemented an applica-
tion platform using the proposed architecture in
Java. This will be a browser/server-based applica-
tion. In this application, there are two main
program modules: the client GUI and the server
program. The client GUI will run in a Java-
enabled web browser. This will allow the user to
dynamically construct a system block diagram on
the client GUI and then send the information to
the server side for the simulation. The server
program will run in the web server machine. It
will attend to the requests from the client GUIs

Using XML/Java to Enhance an Online Learning Architecture for Engineering Education 291

L omnact 1o
SETVET &L

Canienl
VAT
black

g ras

{ Band
simnulagion
resuli or

(IR EETER]

(Je—

CL.:'

Samulation

result
Hrowser

Cliemt

sl
CHROM
it G311 documenst
CanmeciEm

/"'_;— Manaper

()

] i — .
Pass regues Fxeowmic

& CRIOMI r -1l s

& /’/— —\\\l |
Simulation |_." MRIATLAR
Planiger

- /% —l

Pas=

simulation

resuli or

Read sanulstion

_"i\ resiill
TThER R Parse
back CETAI I.”f—_hhh\\'..
| CHIOML Y

docameni

BEFVET |\I\"-' "-‘*':‘/:III

Fig. 2. The simulation process of the Java application.

and then interface with the external engineering
and simulation tool, MATLAB [9] (chosen as a
testing environment), which runs the actual simu-
lation or conducts analysis. Then the simulation/
analysis output, probably data points (for plotting
graphs), will be sent back to the client for display
in the graph-plotting module. The markup
language designed for this application (used as
data transfer) is called Control Block Diagram
Markup Language (CBDML).

Figure 2 shows the simulation process. The web
user mainly interacts with the control system block
diagram or the diagram’s parameters in the client
GUI. When the user initializes the simulation, the
GUI will establish a TCP/IP socket connection
with the server and generate the CBDML docu-
ment according to the block diagram. Then it will
send the document to the server program through
the socket. On the server side, connection manager
accepts the request from the client GUI. The server
program will extract the diagram information
from the CBDML document and translate it into
m-files through the CBDML processor. The simu-
lation manager then executes the simulation, using
recently created m-files, in MATLAB. After the
simulation is completed, the server will check for
errors and read the simulation result. Finally, it
will send the result back to the client GUI for
displaying the result.

The client GUI

The client GUI is a diagram designer, and it
provides an easy-to-use interface to the user. It is a
major part of the web-based block diagram simu-
lation program. When the user opens the web page
containing the GUI applet, it is downloaded from
the server to the user’s web browser. When the user
is drawing a control system block diagram, the
designer keeps track of the components inside the
design environment and maintains the diagram
information in binary format in the local
memory. Once the block diagram is completed,

the user can initialize the simulation from the GUI.
The block diagram information will be translated
into CBDML and transferred to the server over
the network.

The server program

The server program is a simulation broker and
provides services to the client GUI. The server
program is run from the web server and receives
requests. Its main function is to accept requests
from the client GUI, process the CBDML docu-
ment, prepare data and pass them to the external
application (MATLAB), as well as retrieve the
result from the simulation result on the external
application (if the simulation/analysis is executed
successfully). It consists of a connection manager,
a CBDML processor and a simulation/analysis
manager (see Fig. 2).

CBDML

Control Block Diagram Markup Language
(CBDML) is an application of Extensible
Markup Language (XML) 1.0, which defines a
format for encoding control system block
diagrams together with additional markup to
describe how that information may be organized,
displayed, edited and used. The following is an
overview of the way the proposed CBDML is
organized.

The goal of this markup language is to create a
new universal data format to describe a control
system block diagram. It will be utilized in the
above application as a data protocol and a descrip-
tive language. On the one hand, the data file
written using this markup language will be sent
back to the server for simulation/analysis
purposes. On the other hand, the same file can
be saved and be put on the web page. Moreover, it
is vendor and application independent. However,
its output should be easily shared and used by the
different engineering applications.

The Control Block Diagram Markup Language

292 W. Chan and Z. Qu

is written in the syntax of XML and is based on the
data structures of the control system block
diagram from several commercial applications.
CBDML is a text version of the control system
data structure. It supports the markup of control
system blocks and block diagrams in the same way
that HTML supports the markup of textual infor-
mation. In CBDML, the content is composed of
sections describing different aspects of the control
system diagram.

CBDML documents can be divided into three
major sections. The first section is the diagram
information. In this section, the author informa-
tion (e.g. name and comment) and diagram infor-
mation (e.g. title, type, version, date created, and

keyword) are described. The second section is the
system component specification section. It
describes all components in the control system
block diagram. There are five basic components.
They are the source component, block component,
connector component, sink component, and
connection/wire component, which corresponds
to a component available in the client GUIL. For
the first four components, all the information
about each will be stored in a pair of the compo-
nent tags. In most cases, the connection compo-
nent is not relevant to mathematical computation
but it is stored for completeness and for recon-
structing the diagram. The third section is a
simulation configuration section. It describes the

<diagraim.infe-
wreraien™ | I version

<diagram.infe-
“aiiagram, block=

Tiezalimn=" |0 2"

frovg 1112 Treg
amp S amp

enmpsRenlsnurey

compenenihlock

IECTa- ...

comspaaenlblock

ClspE L Can e nr

o mimr="T 11k 5000

compaanl.sink

<diagraim.bloek=

1=

min_glep”

</liagram. canbrol-
lack [Vagram:

Flack Y ngram sixe="8HI SHI" gvpa="55">

Tk Testing Bk Dingras-iik
mulhir=Wal Chen matlio

COTLTRE T REyonck="Tee oomimneni”
The is & sl comiment= S0 Mol

opaapaaenl s ouree tpe=Tsin” ks s "ol sipe=ED W

T RO TR THE-~ S LT B T PR TR T IS
“roieee_Lype=Sine Wave</soune_Lppes

=fren raedpe=l=Tieg g
<o _mkagesl-ramp e

“ppmpenent.hlock Hme="1" inpo="al " caipE="y1" se="L "
iel="hil" wl. frewme="0a0 " il fo="t] 2] ™ pmne=" | i} K’
Iz gni = "3211 21417
compenenl. e Al A-<Coompeoe i nomes
fmorin= iy

<ppmtpeaenl. ok line="1" mnjud
sipie="x | w2* id="hi" ul.rom="b0"® i io="i1 <l
Slae=" 1N &7 ket o
componeni, me = Block Tcomponent name

"SI 2HIM >

NECTR

<pmmpeaenl.conneeior id="1" il from="20 h1 B " alig="h¥
shipe="0dp 040" | gimogr=" | 6dp 2007
coanpenen]. e Uamneciors o mpane il s

<pompeaenlaink id="il" &l Eom="B1 " aise="30 &1"
b o T e = S-S Gl e S L T s =
honz_rangesTi=honiz_range

CYET]_Fnge I NS TOigE

wil® si@e="113 37 kocation="5%4 14>
<pempeaenl.ornneetinn id="w " swe="81 1" lncalmn="4 19 411"

compeaenl. canneetion id
“eemmpeaenl.connielion id="wl" giee="3 " loealn="1T8 13977

=diagram.contred bype="rk 5" san="01" sop="2 0" max_swep="0111"

amulation_typesRusge-Kuma M simulaion_iype

el il jiig= 2"

Script 1. CBDML document example.

Using XML/Java to Enhance an Online Learning Architecture for Engineering Education 293

'j_'“‘h-.

LPL TR 1 Corwecicd

| mekp | ok
et |
| Ir] e

v 3 e

Bk 4 .

Fig. 3. Control system block diagram example.

configuration of a simulation, such as the simula-
tion algorithm type, simulation period, and initial
values.

CBDML example

Script 1 describes the block diagram shown in
Fig. 3. In the diagram, there are two block
components and one connector component. For
block A, the input is from the connector and the
output is to block B. However, the same output
also feeds back to the connector. For block B, the
input is from block A and the output to another
component. Also, the same output feeds back to
the connector. The connector has three inputs
(from source, block A and block B) and one
output (to block A).

The first line of the CBDML document defines
the type and size of the block diagram workspace
as state space (SS) and as 800 x 600. The next
eight lines of the CBDML document are a section
on diagram information. This defines the non-
technical attributes of a diagram, such as title,
author, version, keyword and author’s comment.

The next 30 lines comprise the diagram specifi-
cation section. This section can be further divided
into six sub-sections. The first sub-section is the
specification of the source component. It specifies
the attributes of a source component, such as the
name, type, size and location of the component, as
well as the frequency (10Hz) and amplitude (5
units) of the source. The second and third sub-
sections specify the block components (there are
two block components in Fig. 3). The name, type,
size and location of the component, local variables,
connection information (e.g. connection from con-
nector c0 to block b0) and the block’s numerical

: [_]I_r'_"\-}" 1
:_:i -

Fig. 4. A cart with an inverted pendulum.

A 01 0 0 0
— X1

00 2mg 2

X2 | 2M +m X2 2M 4+ m
=lo o 0 I 0
2g(M + m) -1

X3 0 0 BT o |« S

’ (M + m)h ! M + m)h

LX4 J

Model 1. A cart equipped with an inverted pendulum.

functions are described. In this case, the function
would be expressed as MATLAB functions.

The fourth sub-section gives the specifications of
the connector component. It defines the name,
type, size and location of the component, and
includes local variable and connection informa-
tion. Currently, the connector component is
assigned to the ‘multiple input add junction’
block. The fifth sub-section gives the specifications
of the sink component, including the name and
type, size and location of the component, connec-
tion information and display parameters. The sixth
sub-section specifies the connection/wire compo-
nents. It describes the orientation, length and
location of the component. The remaining four
lines comprise a section on the diagram simulation
configuration. This defines the configuration para-
meters of the simulation, such as the type (rk3) and
name (Runge-Kutta 3) of the simulation, the
simulation period (0.0-2.0 seconds) and sampling
rates (maximum step: 0.01, minimum step: 0.001).

Besides using the Java applet, the CBDML
document can be rendered into text format using
Extensible Style Language (XSL). XSL is a
markup language used to specify the graphical
elements, such as color, font size, and positioning
of text in the XML document. It also permits
procedures such as reordering of information and
document queries. Using XSL, the diagram infor-
mation can be extracted from the CBDML docu-
ment and displayed in any given format, such as a
table or a list. For example, users may want to
show just the internal functions in the diagram.
Instead of using a CBDML viewer, which necessi-
tates downloading the Java applet, the user can
create an XSL file to define the ordering, queries,
formatting and layout of the diagram information.
Simulation/analysis example

We will now consider a typical control system
problem: a cart with an inverted pendulum hinged
on top of it, as shown in Fig. 4. For simplicity, the
cart and the pendulum are assumed to move in
only one plane, and friction, the mass of the stick,
and gusts of wind are ignored. The goal is to
maintain the pendulum in the vertical position.
For instance, if the inverted pendulum is falling in
the direction shown, the cart is moved to the right
and exerts a force, through the hinge, to push the
pendulum back to the vertical position.

Using Newton’s law of pendulum and Laplace
transformation, the above system can be repre-
sented as a system of state-variable equations (see

294 W. Chan and Z. Qu

Sourge 1

Sqrnce 0

Hiock 3

—
Hiks:k 1} | | Blick 1 Seape
Blwk 2

i

Fig. 5. Block diagram of the cart with an inverted pendulum.

Model 1). In this example, only linear analysis and
simulation results are presented. The proposed
architecture and CBDML handle linear and
nonlinear models exactly the same (except that,
for nonlinear systems, the transfer function option
should not be used). The same system can be
expressed as a block diagram, shown in Fig. 5.
There are two source components, four block
components, two connector components and a
sink component. Table 1 shows all the internal
functions of the components in the block diagram
as state space and transfer function.

For each component in the block diagram, the
user will specify the attributes, such as type,
frequency and amplitude for the sources, as well
as time, input, output, internal state variables (or
the transfer functions) for the blocks. Under

current implementation, all the functions should
be written the same way as those in the MATLAB
environment.

After the applet is loaded, the user first sets the
diagram to either state space (default) or transfer
function block diagram. The user then can start to
draw the block diagram in the GUI workspace (see
Fig. 6). Users can create a component by clicking
one of the component buttons on the toolbar and
then dragging it to the required location. After
that, the user needs to specify the values of the
attributes of each component by double clicking
on the component. A component window will pop
up and in this the user can specify the component
name, attribute values and the mathematical
formula of the component. After specifying all
the components, the user clicks on the simulation

Table 1. Functions in the block diagram

Transfer Functions

State Space Function

Source 0 r=0
Source 1 d=0.01 sin wt
Connector 0 U =r—w; —wp
Connector 1 u =u +d
-0.2
Block 0 G(S) = m
9.18 — %

Block 1 G(s) = 2

—83s — 1090

s+6

r=0

d=0.01sinwt

u =r—w; —w

u=u +d

X1 = Xp, X2 = 10.78x; +uy, y3 = —0.2x4

X1 =Xz, X2 = U4, Ug = y3y4 = 9.182x; —uy

X| = Xa, X3 = —65x; — 1050%; + y4,
W] = 1200(){4 — 1090x; + 83X2)

x; = —19.7595x; +y3, wo = —885.53(y3 — 13.7595x,)

[L JL L L I AL I] Tookbar

T el

L mpcieflis

H

—p |

Frequency:
A it

Branis Bar

Twgss :

K Cancel

-0l | Workspape

‘?«_\‘M

—

Croamponent Windons

Fig. 6. The layout of the client GUI.

Using XML/Java to Enhance an Online Learning Architecture for Engineering Education 295

button on the toolbar. The simulation window will
pop up and here the user sets the parameters of the
simulation (such as start time, stop time, and the
simulation algorithm being used), then the user
hits the ‘Start Simulation’ button to start the
simulation. The client GUI will establish a connec-
tion with the server, generate the CBDML docu-
ment and send it over the network.

On the server side, the server program accepts
the connection and receives the CBDML docu-
ment. It parses and translates the document to m-
files through the CBDML processor. The server
program then executes the m-files in MATLAB.
After the simulation ends, it checks the result and
this (or the error message) will be sent back and
shown in the text area in the simulation window.

Using this application, the students can draw a
simple control system block diagram and run the
block diagram simulation through a web interface.
The actual simulation occurs in the server. More-
over, they can evaluate the different conditions of
the same system by changing the values of the
attributes or parameters and observing the change
in the simulation result. Furthermore, they can
also add/remove the component into/from the
control system block diagram and evaluate the
effect on the system. The same idea can be
extended to such areas as circuit analysis, signal
analysis, communication, etc.

IMPLEMENTATION ENHANCEMENT

The key advantage of this architecture is the
high flexibility on the network, data and back-end
implementations. For network implementation,
the designer can choose among standard TCP/IP
socket communication, HTTP communication
through Java-Servlet, CORBA (Common Object
Request Broker Architecture) or Java-RMI
(Remote Method Invocation). For the data imple-
mentation, the implementation designers can
design their own XML-based markup language
or re-use existing XML implementation as a part
of the new XML implementation. For example,
Mathematical Markup Language (MathML) can
be used to represent the mathematical formulas/
functions (e.g. in the block component) and
Scalable Vector Graphic (SVG)/Vector Markup
Language (VML) can be used to represent compo-
nent graphics within the designer-defined block
diagram markup language, such as CBDML. For
back-end implementation, within MATLARB itself,
there are a dozen add-in MATLAB toolboxes,

such as a signal processing toolbox, control
system toolbox, numeric analysis toolbox or
ODE suite. Each toolbox provides unique func-
tionality to the MATLAB workspace environ-
ment. By implementing this architecture, the
software product can interface with MATLAB
directly. Hence, it can communicate with any
MATLAB toolboxes available in the workspace.
This feature makes most of the functionality of the
MATLAB available in the web environment. On
top of that, Java can run the applications
(PSPICE, MATLAB, MATHEMATICA, etc.)
from the command line through its run-time
object. Java also can load other local application
libraries and interface with these methods directly.
The software suite can be implemented to com-
municate and run any application available in the
web server machine.

CONCLUSION

This article describes a web-based simulation/
analysis architecture for engineering education.
The objective was to investigate and design a
simple architecture that provides a flexible web-
enhanced learning environment and the possibility
for engineering students to master fundamental
knowledge. This architecture allows engineering
students to present, test, and implement their
own ideas or simulate engineering problems (such
as electrical circuit problems, control system
problems, DSP problems, etc.) through a GUI in
the web browser environment. So far, the archi-
tecture and the platform for MATLAB have been
designed and implemented. A comprehensive
online simulation/analysis environment compati-
ble with different kinds of model descriptions
and typical target platforms will be available for
students to use in and outside the classroom. This
tool has been installed and configured in a depart-
mental web server and students enrolled in control
system courses will be able to take advantage of it.
Reactions from the students have been very posi-
tive. Also of some importance is that the proposed
platform can be used in other interactive and
innovative teaching and learning settings. This
means that more teaching tools can be integrated
into more courses in electrical and computer en-
gineering. Because of the high flexibility of this
architecture, a new implementation (based on this
architecture) could be developed for other engin-
eering curriculums, such as civil engineering, aero-
space engineering, and mechanical engineering.

REFERENCES

1. J. B. Schodorf, M. A. Yoder, J. H. McClellan and R. W. Schafer, Using multimedia to teach the
theory of digital multimedia signals, IEEE Transactions on Education, 39(3) (1996), pp. 336-341.
2. C. Graham and T. Trick, Java applet enhanced learning in a freshman ECE course, Journal of

Engineering Education, 87(4) (1998), pp. 391-397.

3. D. Wallace and S. Weiner, How might classroon time be used given WWW-based lectures?, Journal
of Engineering Education, 87(3) (1998), pp. 237-248.

296

W. Chan and Z. Qu

4. T. Webster and K. Dee, Supplemental instruction integrated into an introductory engineering
course, Journal of Engineering Education, 87(4) (1998), pp. 377-384.

5. W. L. Chan, Z. Qu and 1. Batarseh, Web-based simulation architecture for engineering education
using Java/XML, ASEE SES Annual Meeting, Virginia Tech., TA3-2, April 2000.

6. 1. Batarseh, Q. Zhang, R. Eaglin, Z. Qu and P. Wahid, Multimedia enhancement of the electrical
engineering core course, 2000 ASEE Annual Conference, session no. 3232, St. Louis, MO, June
2000.

7. W. Chan, The development of a web-based designer for simulating a dynamic system by remotely
accessing MATLAB using Java and XML, M.Sc. thesis, Dept. of Electrical and Computer
Engineering, University of Central Florida, Summer 1999.

8. D. Megginson, Structuring XML Documents, Prentice-Hall, Englewood Cliffs, NJ (1998).

9. A. Cavallo, R. Setola and F. Vasca, Using MATLAB SIMULINK and control system toolbox,
Prentice-Hall PTR, Englewood Cliffs, NJ (1996).

Wai L. Chan works as a software engineer and team leader in Course Development & Web
Services, University of Central Florida. He also is a Sun Certified Programmer for the
Java™ 2 platform, Oracle Certified Java™ Developer, and IBM Certified Developer for
XML. He is currently involved in the redesign of the university’s main website, in the
university portal and several web-based development projects for distributed learning in
UCEF.

Zhihua Qu received his Ph.D. in electrical engineering from the Georgia Institute of
Technology in 1990. Since then, he has been with the School of Electrical and Computer
Science at the University of Central Florida. He is currently Director of Electrical
Engineering and a professor. His main research interests are nonlinear control techniques,
robotics, and power systems. He has published 99 refereed journal papers and 160
conference articles in these areas and is the author of two books, Robust Control of
Nonlinear Uncertain Systems (Wiley Interscience) and Robust Tracking Control of Robotic
Manipulators (IEEE Press). He is presently serving as an Associate Editor for Automatica
and for the International Journal of Robotics and Automation. He is a senior member of the
IEEE.

