Int. J. Engng Ed. Vol. 21, No. 4, pp. 596-605, 2005
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2005 TEMPUS Publications.

Rapid Control Prototyping using
MATLAB/Simulink and a DSP-based

Motor Controller®

DARKO HERCOG and KAREL JEZERNIK

University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova 17,
SI-2000 Maribor, Slovenia. E-mail: darko.hercog@uni-mb.si

A rapid control prototyping (RCP) system, based on commercially available software and custom
in-house developed hardware is presented. An RCP system successfully combines the well-known
simulation program MATLABI/Simulink and the custom DSP-based floating point motor con-
troller. An RCP system provides smooth and fast transition from off-line simulation in Simulink to
real-time operation on the embedded motor controller. On-the-fly parameter tuning and data
visualization are provided in addition to rapid code generation. The presented solution represents a
powerful, versatile and portable RCP system especially suitable for educational processes as well as
motor control research. This article is supplemented by an example of cascade DC motor control.

INTRODUCTION

NOWADAYS, development tools play an impor-
tant role in delivering new products onto the
market. Rapid control prototyping (RCP) is one
of the most important technologies for speeding up
the product development time. RCP provides an
easy transition from the model-based control
design to target implementation. RCP is used in
the design stage to quickly verify designed control
strategy against real-world dynamics. The key
element of the RCP is an automatic code genera-
tion, which eliminates tedious and error-prone
hand coding procedures and thus making it pos-
sible for engineers to focus on control system
design, implementation and evaluation, rather
than on time-consuming low level programming.
Several companies provide RCP software and
hardware solutions. Software tools like VisSim
(Visual Solutions Inc., www.vissim.com), MATRIXx
(National Instruments, www.ni.com), RIDE
(Hyperception Inc., www.hyperception.com) and
MATLAB/Simulink (The MathWorks Inc.,
www.mathworks.com) enable control system
design using a block-diagram programming para-
digm. Among them, MATLAB/Simulink is prob-
ably the best known and widely used simulation
programme. MATLAB is a high-level technical
computing language for algorithm development,
data visualization and data analysis, while Simu-
link is an interactive tool for modelling, simulating
and analyzing dynamic systems. Simulink’s add-on
product Real-Time Workshop (RTW) provides an
automatic ANSI-C or ADA code generation from
the Simulink block diagram. RTW does not target

* Accepted 2 April 2005.

596

specific hardware, therefore, generated code can be
deployed on a variety of different targets including
personal computers, digital signal processors or
even microcontrollers.

The open architecture of MATLAB/Simulink
and RTW motivated us to accommodate this
applicable RCP software to the custom developed
hardware ie. a DSP-based embedded motor
controller (DSP-2 controller). The successful
combination of the commercially available soft-
ware and the custom-developed motor controller,
described in this article, represent a powerful and
versatile RCP system, suitable for motor control
research as well as hands-on experiments.

Several rapid control prototyping solutions have
been proposed using MATLAB/Simulink/RTW
and custom or commercially available hardware,
based on digital signal processors or microcontrol-
lers. Rebeschiess [1] presented a microcontroller-
based real-time control system toolbox for Simu-
link (MIRCOS). MIRCOS enables graphical
programming and real time operation of the stand-
ard 16-bit 80C166 microcontroller using Simulink.
Hong et al. [2], described an implementation of
digital signal processing algorithms using
MATLAB and Texas Instruments TMS320C30
evaluation module (EVM). Lee et al. [3], proposed
a ‘target-identical’ control prototyping platform
for engine control that is based on an MPC555
controller. The ‘target-identical’ RCP term is used
to address RCP hardware that is designed on the
basis of a production electronic control unit.

The MathWorks Company Inc. released a few
embedded targets for well-known, industry-proven
microcontrollers and DSPs such as Motorola
MPCS555, Infineon C166 and Texas Instruments
C2000 and C6000. From among all the described
solutions, only the C2000 family of TI DSP

Rapid Control Prototyping using MATLAB/Simulink and a DSP-based Motor Controller

contains all the necessary peripheral for AC and
DC motor control. The Embedded Target for TI
C2000 DSP provides the ability for implementing
and validating real-time control and signal
processing designs directly on TMS320F2812 and
TMS320F2407 eZdsp development boards.

Lee [3] addressed three key eclements that
conventional RCP systems should have:

1. A powerful floating-point processor, several
times faster than the target processor.

2. Different types of flexible 1/O.

3. A large memory.

If the RCP system does not satisfy the given
criteria, developers spend more time dealing with
RCP hardware constraints than control algorithm
design. When considering this, and the fact that the
TI C2000 DSP family is based on fixed-point
arithmetic, eZdsp boards seem to be more appro-
priate for ‘target-identical’ RCP than conventional
RCP. Hanselmann [4] from the dSPACE GmbH
(www.dspace.de) presents ‘Total Development
Environment’ (TDE) for rapid control proto-
typing. TDE includes MATLAB, Simulink,
RTW, powerful hardware based on DSPs, and
an additional set of software tools for online data
visualization (COCKPIT, TRACE). Controller
boards like DS1104 and DS1103 are appropriate
for motion control and are fully programmable
from the Simulink environment. Such large-scale
RCP systems are very powerful and suitable for
applications where functionality has precedence
over price, such as in the research area.

There are, however, also many applications
where such state-of-the-art solutions are some-
times unnecessary. In the education process, for
example, less efficient, cost-effective and portable
RCP solutions are welcome. RCP systems for

597

educational purposes must also be as simple to
use as possible. If so, students can focus on control
system design and verification instead of learning
how to handle an RCP system. Such RCP systems
are hard to find on the market, therefore, institu-
tions sometimes decide to develop customized in-
house solutions, like the solution presented in this
article.

MOTIVATIONS

A few years ago it was very hard to find a motor
controller based on a digital signal processor
(DSP), with the desired peripheral, performance
and floating point arithmetic. Therefore, at the
Faculty of Electrical Engineering and Computer
Science (FERI), University of Maribor, a decision
was made to develop a custom DSP-based motor
controller that could be used for research in motor
control. The so-called ‘DSP-2 controller’ (Fig. 1)
[5] was developed. The key components of the
DSP-2 controller are the TT TMS320C32 floating
point processor which is used for control algorithm
execution, and the Xilinx FPGA of the Spartan
family, which implements the pulse width modu-
lator (PWM), and the peripheral interfaces (Fig. 1).
In addition, the DSP-2 controller contains all the
necessary peripheral, for AC and DC motor
control i.e. A/D and D/A converters, 3-phase
pulse width modulator (PWM), an optically
isolated digital I/O, interface for incremental enco-
der, RAM, FLASH ROM and CAN controller
(Fig. 1). Technical details of the DSP-2 controller
are summarized in Table 1. Although the DSP-2
controller was initially developed for the torque,
speed and position control of the AC and DC
motors, it can also be used for general purpose

e L
':;:HU - Hrsarwr sapply |
i "_} | superiscr 1]
SRAM WS |-, s 2
P, o) o T o 32-80 IR
|H
EEFROM A i
= A4 25h k [
ot b -
i A 1 L] KDEET)
S ¥ LT e
! I -
o ; | pam k ot " ~
bl SAED | | : |I-||;r.:'-:q_'-: - :.E
| & } k] - {E
A ; 9 I neEm | hi WM | &
b T s] -1 - -]
= ADETIA | | romtes FeRbn CEAOTIME 1=
: | Eilink i
| - ACHOPORMD |IRCH ENC &
= =] f R atmn R i
|| 2 | et =
1 1
a1 I Bosway | AD o " [g
5 .!&nll.'l;q. i i irartes E
—| 3 | B
Wl [& TR | PR =
b . rf o . L
o101 3 (130 | T ! T |2
Wi I
ChY| [PF| (Y] [CPF] :
O# |+ 3y s B BEma 2V ¢ 01 A% e R A

Fig. 1. DSP-2 controller block diagram.

598 D. Hercog and K. Jezernik

Table 1. DSP-2 controller technical details

DSP Texas Instruments TMS320C32; 60 MHz;
FPGA Xilinx XCS40PQ240

SRAM 128Kx32

FLASH 256K x8; 70ns

Analog inputs

4 x 12 bit simultaneous A/D converters:

e conversion and transfer to FPGA registers takes 2.6 us for all A/D channels
e 1 x A/D with a unipolar input range from 0 to 4.095 V

L]

L]
Analog outputs 2
Digital inputs 3 x optically isolated
Digital outputs 1 x optically isolated
PWM 3
Encoder 1
Communication RS232, RS485, CAN

2 x A/D with bipolar input range from -2.048 to 2.047 V
1 x A/D with an input 8/1 multiplexer and bipolar input range
x 12 bit D/A converter with unipolar output 0 to 4.095 V

x synchronous symmetrical PWM with 66 ns time resolution
x incremental encoder. Speed measurement with improved MT method

applications. Currently, DSP-2 controllers are
used in the research of motor control, teaching,
and also a few of them in industry.

At the outset, programming of the DSP-2
controller was only possible in C and assembler
programming languages and, therefore, a lot of
effort was needed to implement control algo-
rithms. Almost all the control algorithms had
been previously simulated and verified in the
MATLAB/Simulink. After successful simulation,
a tedious, time-consuming and error-prone hand
coding procedure was necessary to implement the
designed control algorithm on the DSP-2 control-
ler. On the other hand, the Simulink add-on
product ‘Real-Time Workshop’ generates architec-
ture-independent and optimized C code from the
Simulink block diagram. In order to avoid the
stated problems with text-based programming,
the decision was made to take advantage of
MATLAB, Simulink and RTW, and apply this
well-know RCP software to the DSP-2 controller.
The result of this challenging task would enable
automatic binary code generation from the Simu-
link block diagram and automatic deployment of
the generated code on the DSP-2 controller. If so,
the RCP system would reduce implementation
time of control or signal processing algorithms
on the DSP-2 controller. RCP system would also
be very suitable for educational purposes because a
deep knowledge of DSP programming would be
unnecessary.

In general, Real-Time Workshop [6, 7] generates
two types of C codes: (1) generic C code and (2)
embedded C code or production code. The latter is
much more optimized in performance and space
usage and, consequently, it is more useful for
embedded targets, such as digital signal processors
and microcontrollers. In spite of some restrictions
with the embedded C code (only the discrete
Simulink blocks can be used in the Simulink
model), and some additional work that must be
done to develop the custom embedded target (for
each custom Simulink block a corresponding TLC
file must be written [§8]), a decision was made in
favour of this type of C code generation.

Figure 2 shows the code generation process from
the Simulink model [6]. The Real-Time Workshop

Build procedure converts the Simulink model into
the model description file (model.rtw). In order to
create a target-specific application, Real-Time
Workshop requires a template makefile
(system.tmf) that specifies the appropriate code
generation tools (compiler, assembler, linker) and
options for the build-process. During code genera-
tion, Real-Time Workshop transforms the
template makefile into a target makefile
(model.mk) by performing token expansion, speci-
fic to a given model. Afterwards, the Target
Language Compiler (TLC) [7] generates C code
based on target files from the model description
file. Target files instruct the Target Language
Compiler, how to generate the code for each
Simulink block. At the end, make utility is invoked
into the code generation process. The make utility
automatically determines which pieces of a gener-
ated C code need to be recompiled, and issues
commands to recompile them. Finally, the gener-
ated executable code is downloaded to the target
processor (microcontroller, digital signal proces-
sor, PC or any other processor).

DSP-2 LIBRARY FOR SIMULINK

Figure 3 presents the result of the set task, the
so-called ‘DSP-2 Library for Simulink’. This
library integrates MATLAB/Simulink and RTW
with the DSP-2 Controller. The DSP-2 Library for
Simulink is a Simulink add-on library that
provides blocks specific to the DSP-2 controller.
The library is composed of a few subsystems, the
most important being the DSP-2 device driver
blockset (Fig. 4). This subsystem contains input
and output blocks (DSP-2 blocks), specific to the
DSP-2 controller that enables programming of the
DSP-2 controller using the Simulink. The DSP-2
device driver blockset (Fig. 4) includes blocks for
all available I/O ports of the DSP-2 controller;
including blocks for analog I/O, digital 1/O, 3-
phase pulse width modulation (PWM), incremen-
tal encoder, memory read/write, serial and CAN
communication, and few transformation blocks.

DSP-2 blocks have been created using the
system functions (S-functions) [9]. S-functions are

Rapid Control Prototyping using MATLAB/Simulink and a DSP-based Motor Controller

Tookoxes

O5F-2 Blocks

'l_Eirnulmh JJ

Blockeais

BMATLAR] Simulink -
rrscchel il
system. it - Tirna: WA |
{art -:Is-pE.:n'll'l_" Real-Tima Warkshop Bueld
mode|. e
TLE system file (ert_dspZ.tch
TLC bock Tikes
TLC fumefion librany — Targel Language Compiar
TLC DSP-Z black files
G code files
L
C Compier Make misdel.mk
e
{T1 egtanis) [gemake)

l execulab code

Target processor
(OSP-2 controfler)

Fig. 2. Real-Time Workshop code generation process.

powerful mechanism for creating custom Simulink
blocks. Each of the developed DSP-2 blocks has its
own mask window where parameters can be set,
specific to each individual block. The user’s
manual [10] explains the meanings of each DSP-2
block in greater detail.

In order to accommodate the Real-Time Work-
shop code generation process (Fig. 2) to the DSP-2
controller, a system target file (ert_dsp2.tlc),
template make file (ert_dsp2.tmf) and target files
(TLC files) for all DSP-2 blocks had to be devel-
oped (Fig. 2). The DSP-2 controller is based on TI
DSP, therefore, TI code generation tools (compi-

=1

il brary; dspiib

Fia Bk view Help
DSP-2 Library for
Simulink
] B Haw
B0cas Ep st Wodel

Facadty ol Elpaliiadl Envgipanitag
and Campuisr Txiance
SiTeriareing 17

J000 M ariken

Bl ooty b

IHETITUTE OF ROBLOEIL

Fig. 3. DSP-2 Library for Simulink.

ler, assembler and linker) for the C3x4x family of
the digital signal processors are invoked by the
make utility during executable code generation
(Fig. 2).

DSP-2 blocks are meaningless during simulation
execution. The main reason for this kind of opera-
tion is that Simulink is incapable of accessing the
DSP-2 controller peripheral (DSP-2 controller and
the PC are connected via the RS-232 serial connec-
tion) while performing simulation. The essential
applicability of DSP-2 blocks comes to be
expressed in a code generation process. When an
executable code is generated from the Simulink
model and deployed on the DSP-2 controller, the
DSP processor placed on the DSP-2 controller
actually performs reading from and writing to
the DSP-2 controller peripherals, depending on
the DSP-2 blocks used in the Simulink model.

Code generation and deployment processes are
fully automatic and transparent to the user. After
executable code download, an algorithm is execut-
ing in an interrupt service routine (ISR), where the
period of ISR depends on the Fixed Step para-
meter used in the Simulink model. Lower priority
tasks are performed outside the ISR, such as
communication between the DSP-2 controller
and PC. In addition to automatic code generation,
the DSP Terminal [11] running on the host PC
provides data visualization and parameter tuning.
The DSP Terminal (Fig. 5) is a stand-alone
programme used for binary code download, data
visualization, online parameter tuning, and data
logging. A unique feature of this programme is an
automatic front-end creation capability. The
appearance of the DSP Terminal front-end

600 D. Hercog and K. Jezernik

Fs Bl Ve Foisd Help
DSP-2
device driver blockset
| e)
&l 0 } &0 EP"'. ’:__
W
= =
E -+ A o e
| Decaecn o] =
(-2 T ooz 1T - "F
T Tamgs H sk
|DEP-1 CAH o CAN
{ Dl 1]1] ek
1]
'; VE‘P'! |- B pepa a i
HTN}TTL'E
el B B
I
’ﬁ;"" u:g““ Tl D5F-2
1] T PWH
- PPl 7wty
]

Fig. 4. DSP-2 device driver blockset.

depends on the DSP-2 global signals defined in the
Simulink model. Those signals are exchangeable
between the DSP-2 controller and the host PC and
have to be defined using special blocks provided in
the DSP-2 device driver blockset.

When the binary code starts executing on the
DSP-2 controller, the DSP Terminal retrieves the
DSP-2 global signals definitions from the applica-
tion running on the embedded controller. For each
of the DSP-2 global signals, a numerical control or

5P Teomdmal V1.5 2001 FERI [CWATLAR DS wenrkdH namdkaSistemnvidem demant_preg_dsp? A rl'l"E,
Paue Good |SaveloFiel Puia| Tigom e =|0 [F Ll Peonges I =]
il [D - [Cwfk [o7ead e e [P0

o ml [EZ177d - [ls [O0Ess & | i) F.T -

C_inef [HoEgs - K] : | fomnz s

Rl [nDEE ed [Uk [TaE v -

[[MESIZ3 radts [Us 500 v

'I-. .F'n.rnrmlur Inspector 4

A Bealdy

i] & .
//_\-H"-\-\,___ Ep _jﬂ_____l
y = Ew o :

Sy -2 = FG_A 2
! Ti AN 227
1.1 T 7
A { o S
£ ¥
L
"
-3
i} LE

Test ipaus [F-!umlml Dﬂi:ln-u]
gt |

[Amentblommiond oy prErrmOPwET=tRck=722

Fig. 5. DSP Terminal with the Parameter Inspector window.

Rapid Control Prototyping using MATLAB/Simulink and a DSP-based Motor Controller 601

numerical indicator is automatically created on the
DSP Terminal’s front-end. After Terminal GUI
creation, the communication link between the
terminal front-end controls and the DSP-2 global
input signals are automatically established, as well
as the connection between the terminal front-end
indicators and the DSP-2 output global signals.
Whenever the front-end controls are changed, the
DSP Terminal automatically downloads them to
the DSP-2 controller. Vice versa, the DSP-2 global
output signals, retrieved from the DSP-2 control-
ler, are displayed in the terminal front-end indica-
tors. In addition to the described textual mode, the
DSP Terminal provides scope capabilities. In the
scope mode, a small portion of code running on
the DSP-2 controller handles data acquisition and
storing management. The selected DSP-2 global
signals are, firstly, captured and then stored in the
temporary controller memory. After that, the
captured data is transferred to the PC and graphi-
cally presented in a single graph placed at the
bottom side of the Terminal (Fig. 5). The DSP
Terminal front-end enables selecting signals to be
captured, number of samples, decimation and
trigger settings that include defining the trigger
signal, trigger level, slope, and the number of
pre-samples (Fig. 5).

In addition to data visualization, DSP Terminal
provides online parameter tuning. The selected
parameters of the Simulink blocks appear in the
Parameter Inspector window of the DSP Terminal

B Wi s, vt gl aih. iy el op Mok pd!_widentdopd_wides, hival - Micreadt Inirrsei e boner

(Fig. 5). These parameters are changeable on the
fly, thus, fine parameter tuning of the designed
controller can be achieved.

RAPID CONTROL PROTOTYPING IN AN
EDUCATIONAL PROCESS

Initially, the DSP-2 controller was mainly used
for researching motor control. Thanks to RCP
software support it has also become appropriate
for educational purposes. The DSP-2 learning
module (Fig. 7) has been developed from a desire
to offer students a powerful and universal learning
system. The learning module is composed of the
DSP-2 controller and an additional board, where
the power supply and expansion connector take
place, for important DSP-2 I/O signals. The DSP-2
learning module is versatile, light and small,
handy, and an easy to use learning system. In
combination with a laptop computer it represents
a mobile rapid control prototyping system appro-
priate for hands-on experiments or in-class demon-
strations. The developed learning module is plant
flexible because a variety of in-house developed
plants or plants from different manufactures can
be connected to the module through an expansion
connector. Several DSP-2 learning modules have
been developed so far, the majority of them are
used at the Faculty of Electrical Engineering and
Computer Science, University of Maribor, whilst

FUATILAE ‘Similink (R TW

(9 &

L maila
ol e e LA [y S—
Enm T Tl Wirawra boca ¥ ===
P el e (TR | P e e ray
DEP-2
S v i i i % M
s —
0 wirw
i sprsrn b e i]
1 psclesthe g
 DEF Tormingl Pdagodis ullln [HE-2
il e

Fig. 6. Multimedia material of the DSP-2 Library for Simulink.

602 D. Hercog and K. Jezernik

the remainders are employed at other universities
around the world.

This mobile RCP system has been used for over
two years on two different control courses. In an
introductory control course students become
familiar with the basic control design concepts
and intuitive Simulink block-diagram program-
ming. During the course, students work on control
stability, bode plot, root locus and state space
controller design [12]. In a second control course
named ‘Servo Systems’ students are introduced to
the basic concepts of DC and AC servo systems.

In both courses students start experimental
work by building mathematical models of the
real plant. After mathematical model derivation,
they work on theoretical control algorithm design
and perform closed-loop simulation in Simulink.
When the simulation results satisfy the given
criteria, students must also verify the designed
controller, on the real system. In such a way
students become aware of the strengths and limita-
tions of the simulation tools by comparing the
simulation results with those obtained from the
real system. Students also become acquainted with
the nonlinearities in the system, like saturation,
which appear in the real world and are usually
unconsidered in simulations. Using the RCP
system, they can focus on control system design,
simulation, implementation and evaluation of the
designed controller, and not on those tasks that are
not a requisite of the control course (like low level
controller programming). It was noticed, that
students learn faster and show more interest in
control development design when they can imme-
diately observe the results of their work.

Nowadays, multimedia plays an important role
in delivering topics to the end user. Sometimes,
using multimedia, difficult to explain content can
be casily presented in a very informative and

illustrative way. Following these new learning
trends, screen capture movies (Fig. 6) with a total
length of approximately 45 min’s have been
created in order to give students an easy transition
from simulation in Simulink to the real-time
operation on the DSP-2 controller. The basic
principles of operation are explained, together
with the contents of the majority of Simulink
DSP-2 blocks. Movies are equipped with sound
in the Slovene language and are accessible on the
DSP-2 web page [13]. They are in Flash format,
therefore, only a standard web browser with a
Flash plug-in player is needed for viewing them.
After examination of the movies, students gain
enough information to successfully start using the
described RCP system.

MOTOR CONTROL EXPERIMENT

This subsection presents the realization of the
DC motor cascade control by using the described
RCP system. The presented experiment is one of
many that a student carries out during the Servo
System control course. The experimental system
(Fig. 7) is composed of the DSP-2 learning module,
H Bridge for the DC motor (attached to the DSP-2
learning module expansion connector), and a
commercially available DC motor equipped with
an incremental encoder.

Figure 8 presents the Simulink model of the DC
motor cascade control. This model contains a
mathematical model of the DC motor (DC motor
SIM model subsystem), current, speed and position
control loops, and the position reference genera-
tor. The DC motor SIM model subsystem (Fig. 9),
which is realized by using Simulink continuous
blocks, has two inputs i.e. armature voltage (Ua)
and load torque (TL), and three outputs i.e. motor

Fig. 7. DSP-2 learning module with the H Bridge and DC motor.

Rapid Control Prototyping using MATLAB/Simulink and a DSP-based Motor Controller 603

Fis [Y Smcioon Fored Took Fel

b FHES | bW o o gl RME W

@iql _C_E.... g U 1y IL - NN [

Fallub B puaiten Fi] Pl i nl
mimmnrs smwislin mrimin L LLL T maidsl

—

-

O] = H-[l-c

Iy = Lai=Fa L. gl] -
= .:; = inmineai pan T i o2l LI g arurd i pag nlnguries

Codmamk oo

Faei FRIT cxfuwi
7
el

Fig. 9. Simulink DC motor SIM model subsystem.

B v

W e
-

I5r3
T e

N
il s T nEp.z TV
Frimbin ol Wl &T 8 -_._}——I*

i 1 g~
J .TT B [
r— i —
g ™ — [
ol . i

i ir | wl ploteez T
Pl ks lwimy i I

Al

TCER T E— R
i Us i
i I, P i i |
| fip-T . bal-3 T
i pa :.—3 e 1
iz

——_—
:_ peafen pEp-§ TT
2 -.._@ _E X
TL Tarsisskss | ™ 2
s -
DEP-I S PDOER-Z TT
AR g y E_fEt

Ealor L PRIT Tt
T s aeny Fier
FraIfifHe

Fig. 10. Simulink DC motor DSP-2 Interface subsystem.

604

armature current (ia), speed (w) and the position
(fi) of the motor shaft. During the course, students
build the described simulation models and define
controller parameters by using different control
development methods. At each stage of the
described cascade control (current, speed and posi-
tion control loop), students simulate the designed
controller in Simulink. After a successful step and
disturbance response analysis, students also verify
the designed controller on the real system (Fig. 7).
In order to achieve this, only the DC motor SIM
model subsystem (Fig. 9) needs to be replaced by
the DC motor DSP-2 Interface subsystem (Fig. 10).
This subsystem, which is pre-built, has the same
input/output arrangements as the DC motor SIM
model subsystem used during simulation. The DC
motor DSP-2 Interface subsystem is realized by
using DSP-2 blocks (these blocks are shaded in
Fig. 10), and the Simulink built-in blocks. The
subsystem (Fig. 10) contains an algorithm for
armature current measurement, current offset
compensation, the speed and position of the
motor shaft calculation, speed measurement
filter, PWM signal generation, and DC link
voltage measurement.

After subsystem replacement and code genera-
tion, the resulting binary code is downloaded to
the DSP-2 learning module. In each ISR, the DSP
controller executes the developed control algo-
rithm (Fig. 8 and Fig. 10), while outside ISR
communication is carried out between the DSP
and host PC. In the described experiment, the ISR
period was set at 200 us and the control algorithm
execution took approximately 80 us. The experi-
mental results for the DC motor closed loop
position response are shown in Fig. 5. On-the-fly
fine tuning of position response can be achieved by
changing the controller’s parameters, which
appear in the Parameter Inspector window off
DSP Terminal programme (Fig. 5).

D. Hercog and K. Jezernik

CONCLUSION

A novel rapid control prototyping system, based
on commercially available software and custom
developed hardware has been presented. The
RCP system is powerful, flexible, easy to use
and, thus, suitable for an educational process, as
well as motor control research. In contrast to
traditional RCP systems that are based on per-
sonal computers and data acquisition boards, this
RCP system is based on an embedded target, and
thus, consecutively, only a standard PC with no
additional hardware is necessary for control
experiments realization.

Over two years, the RCP system has been
successfully used in the educational process.
Control courses are now integrated with demon-
strations and hands-on experiments, with the
purpose of minimizing the traditional gap
between theory and practice. Experience has
revealed that students quickly become familiar
with the RCP system and Simulink intuitive
model-based programming. Students can now
concentrate on control system design, simulation
and experimental control verification, rather than
on low level programming. By comparing simula-
tion results with those obtained from experi-
ments, students also gain experience with non-
ideal and nonlinear features present in a real
world systems.

A LabVIEW virtual instrument (VI) for the
DSP-2 controller is under development. In
addition to DSP Terminal features, the
LabVIEW VI will enable custom GUI develop-
ment, online analysis and also, by Remote
Panels technology the possibility for ‘remote’
operations. A DSP-2 add-on robotic board,
which is currently at the test phase, will
extend usage of the described RCP system to
the robotic area.

REFERENCES

. S. Rebeschiess, MIRCOS—microcontroller-based real time control system toolbox for use with
Matlab/Simulink, Proc. IEEE Int. Symp. Computer Aided Control System Design, August 1999,
pp. 267-272.

. K. H. Hong, W. S. Gan, Y. K. Chong, K. K. Chew, C. M. Lee and T. Y. Koh, An integrated
environment for rapid prototyping of DSP algorithms using and Texas Instruments’ TMS320C30,
Microprocessors and Microsystems, 24(7) November 2000, pp. 349-363.

. Lee Wootaik, Shin Minsuk, Sunwoo Myoungho, Target-identical rapid control prototyping
platform for model-based engine control, Proc. IMECH E Part D, J. Automobile Engineering,
218(7) July 2004, pp. 755-765.

. H. Hanselmann, Automotive control: from concept to experiment to product, Proc. IEEE Int.
Symp. Computer-Aided Control System Design, Dearborn, MI, September 1996, pp. 129-134.

. Carkovi¢ Milan, DSP-2 User’s Manual, version t3, March 2001, Institute of Robotics, FERI
Maribor.

. The MathWorks, Inc., Real-Time Workshop User’s Guide (rtw_ug.pdf), version 5, July 2002.

. The MathWorks, Inc., Real Time Workshop Embedded Coder User’s Guide (ecoder_ug.pdf), version
3, July 2002.

. The MathWorks, Inc., Target Language Compiler Reference Guide (tlc_ref.pdf), version 1.2,
January 1999.

. The MathWorks, Inc., Writing S-Functions (sfunctions.pdf), version 3, July 2002.

. Darko Hercog, DSP-2 Library for Simulink User’s Manual, May 2004, Institute of Robotics, FERI
Maribor.

. Evgen Urlep, DSP Terminal User’s Manual, May 2004, Institute of Robotics, FERI Maribor.

Rapid Control Prototyping using MATLAB/Simulink and a DSP-based Motor Controller 605

12. Suzana Uran, Darko Hercog and Karel Jezernik, Experimental control learning based on DSP-2
learning module, Proc. IEEE-ICIT, 2004, December, Yasmine-Hammamet, Tunisia.
13. DSP-2 web page: www.ro.feri.uni-mb.si/projekti/dsp2.

Darko Hercog received his B.Sc. in 2001 from the Faculty of Electrical Engineering and
Computer Science, University of Maribor, Slovenia. He is currently a Ph.D. candidate in
electrical engineering. His research interests include real-time systems, digital control
implementation, rapid control prototyping, remote control and virtual instrumentation.

Karel Jezernik received his B.Sc. (1968), M.Sc. (1974) and Dr.Eng. (1976) degrees in
electrical engineering from the University of Ljubljana. In 1976 he joined the University of
Maribor and in 1985 he became a Full Professor and Head of the Institute of Robotics. His
research and teaching interests include automatic control, robotics, power electronics and
electrical drives. Current projects in these areas are high precision tracking control in
machine tools, DD robots and robust torque control in EVs. He consults on industrial
servo control systems and other control and computer applications. Prof. Jezernik is an
active member of the IEEE IES.

