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An autonomous vehicle driving control system carries a large number of benefits, whether for the
engineering industry or engineering education. The system discussed here provides the measure-
ments obtained from vision—namely, offset from the centerline at some look-ahead distance and
the angle between the road tangent and the orientation of the vehicle at some look-ahead distance—
and these are directly used for control. This paper also presents simulation results regarding
autonomous vehicle dynamics and control, along with methods, techniques and approaches for
developing this system which can be used by engineering educators for automotive, robotics or

image processing courses.

INTRODUCTION

AUTOMATION OF the driving task has been the
subject of much research recently, but to design
and simulate an autonomous vehicle driving
control system is not easy, because it is such a
complex system. Over the last decades, many
engineers and educators had problems in estimat-
ing the results of an autonomous vehicle driving
control system, but, in recent years, computers
have been used to great effect in simulating such
systems. Therefore, the main objective of the
system discussed in this paper is to demonstrate
an autonomous vehicle driving control system to
engineers, students and researchers by means of a
simulated system.

Another objective of this system is to prove that
the steering command for the wvehicle lateral
control can be determined by processing and
analyzing images taken whilst driving a vehicle.
Then, by combining the steering command and
other vehicle dynamics parameters, the vehicle’s
dynamics performance can be determined too.

SYSTEM DESIGN

The system design for an autonomous vehicle is
dependent on a number of tasks that can be
performed by the vehicle. Since the experiment
only uses one video camera as a sensor, this
paper can only present the lane detection task,
along with the dynamics and control of the vehicle.
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Fig. 1 presents the general flow of the system. The
system consists of four subsystems: the sensor
(video camera), image processing, the controller
and the vehicle.

THE SENSOR

The sensor is the key element of an autonomous
vehicle system, because it provides the information
about a driving scenario. The system discussed in
this paper uses a single video camera as a sensor.
To get the input data from the image, the video
image sequences must be captured. The input data
of this system is provided by colour image
sequences taken from a moving vehicle. A single
colour video camera is mounted inside the vehicle
behind the windshield along the central line. This
recordes the images of the environment in front of
the vehicle, including the road, the vehicles on the
road, traffic signs on the roadside and, sometimes,
incidents on the road. The video camera saves the
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Fig. 1. The four subsystems of a vision-based autonomous
vehicle driving control system.
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video images in AVI file format, then the video file
is transferred to the computer. The images are
captured at a rate of up to 30 frames/second, but,
since this system uses MATLAB as the system
development, so the rate of image capture is only
15 frames/second. The image processing subsystem
takes an image from the memory and starts
processing it in order to detect the desired lane.

IMAGE PROCESSING AND ANALYSIS FOR
PREDICTING AND DETECTING THE
VEHICLE LANE

The goal of the image processing is to extract
information about the position of the vehicle with
respect to the road from the video image. Two
major processes are implemented: the pre-process-
ing process and then the lane detection process.
The goal of pre-processing is to remove image
noise and make the images sharper. The goal of
lane detection is to detect the desired lane of the
vehicle in order to obtain the look-ahead distance
and the lane angle. This process is based on the
real-time data of video sequences taken from a
vehicle driving on the road.

Many lane detection algorithms have been
developed over the years, and several detection
systems have been reviewed. The LOIS [1] system
used a deformable template approach to find the
best fit of road model, whether straight or curved.
The research groups at the University Der Bundes-
wehr [2] and Daimler-Benz [3] base their road
detection functionality on a specific road model:
lane markings are modelled as clothoids. This
model has the advantage that knowledge of only
two parameters allows full localization of lane
markings and computation of other parameters,
like the lateral offset within the lane, the lateral
speed with respect to the lane and the steering
angle. The approach in [4] is an evolutionary
approach to lane markings detection, using colla-
borative autonomous agents to identify the lane
markings in road images.

The lane detection process used by this system
handles road area segmentation and shadow
removal using colour cues. It then finds the best
linear fit to the left and right lane markers over a
certain look-ahead range using a variant of Hough
Transform. From these measurements, the lateral
position and orientation of the vehicle with respect
to the roadway at a particular look-ahead distance
can be computed and estimated. This detection can
be applied for both painted and unpainted roads.
Fig. 2 presents the four processing steps of the lane
detection algorithm: image segmentation, edge
detection, Hough Transform, and lane tracking.

Regions of interest measurement and features
extraction using colour cue segmentation
Segmentation of the images is crucial for the
analysis of the driving environment. Many tradi-
tional systems have been proposed for recovering
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Fig. 2. Image processing steps of the lane detection algorithm.

parts of the traffic scenes by extracting geometric
features in order to infer and verify the existence of
certain categories of objects. Another relevant
method of segmentation is based on region grow-
ing and clustering. The effectiveness of such a
method crucially depends upon the capability of
measuring similarity, such as in texture and pixel
colour information. The method described in this
paper used a colour cue to measure segmentation.
It is shown as a colour-based visual module
providing relevant information for localization of
the visible road area, independently of the presence
of lane boundary markings and in different light-
ing conditions.

In the road image, the road area had character-
istics such as the following: 1) most of the lower
part of the image was considered as the road area,
and 2) road areas have a quasi-uniform colour,
resulting from the fact that the road area is
generally a grey surface in a more coloured en-
vironment. Although the absolute surface colour
can provide useful cues for this task, the response
of the colour imaging device is mediated by the
colour of the surfaces observed, by the colour of
light illuminating them, and by the setting of the
image acquisition system. To have better control
over variations in pixel values for the same colour,
and to remove the shadows, the RGB colour space
must be converted to the HSV (hue, saturation and
value) colour space.
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Fig. 3. Original image of frame one in the RGB colour space.
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Fig. 4. Intensity (V) image in the HSV colour space.
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Fig. 5a. Road surface as the object/region of interest. Other
objects/background are converted to black (0).
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Fig. 5b. Lane marking extraction based on the colour of pixels
of interest.

After converting the RGB image to an HSV
image, we specified the coordinates of regions of
interest in the image. Fig. 3 presents the original
image and Fig. 4 shows the image after the colour
conversion process. Fig. 5 shows the image by
image segmentation process by computing the
coordinates of regions of interest and determining
the pixel colour of interest.

Extraction and detection of vehicle lane edges
using the Canny edge detector

The purpose of the edge detection process is to
extract the image edges using an edge detection
operator or an edge detector. The operator will
locate the position of pixels where significant pixels
exist. The edges are represented as white and non-
edges will be black. Fig. 6 shows the lane edges of
the image. Edges in images are areas with strong
intensity contrasts. Edge detecting of an image
significantly reduces the amount of data and filters
out useless information while preserving the impor-
tant structural properties of the image. Edge detec-
tion is the most common approach for detecting
meaningful discontinuities in the grey level. Intui-
tively, an edge is a set of connected pixels that lie on
the boundary between two regions.

This system used a Canny edge detector to
locate the position of pixels where significant
edges exist. By applying the Canny edge detector
to a road image, two images that denote the edge
pixels and the orientation of gradient can be
obtained. The Canny edge algorithm is known as
the optimal edge detector. This detector is an
enhancement of the many existing edge detectors.
Several constituents of this detector have improved
current methods of edge detection. The first and
most obvious is the low error rate. It is important
that edges occurring in an image should not be
missed and that there is no response to non-edges.
The second constituent is that the edge points are
well localized. In other words, the distance
between the edge pixels as detected by the detector
and the actual edge is to be minimal. A third is that
there is only one response to a single edge. This
was implemented because the first two constituents
were not substantial enough to eliminate the
possibility of multiple responses to an edge.

The Canny’s basis for good detection is its low
probability of not marking real edge points and of
falsely marking non-edge points. This is achieved
by using the following equation:

SNR = | ﬁVw G(*x)f(X)dx}

noy/ " S (x)dx

f is the filter, G is the edge signal, and the
denominator is the root-mean-squared (RMS)
response to noise n (x) only. Canny’s good locali-
zation criterion is also close to the centre of the
true edge. Below is the equation used to measure
the localization, using the RMS distance of the
marked edge from the centre of the true edge.
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_ ’ fG(—x)f(x)dx‘

noy/ [7, /7 (x)dx

Features isolation and approximation of the vehicle
lane using Hough Transform

Hough Transform was used to combine edges
into lines, where a sequence of edge pixels in a line
indicates that a real edge exists. By using the edge
data of the road image, Hough Transform will
detect the lane boundary on the image. This is
because this technique detects shapes from image
edges, and assumes that primitive edge detection
has already been performed on an image.

This technique is most useful when detecting
boundaries whose shape can be described in an
analytical or tabular form. The key function of this
system is to map a line detection problem into a
simple peak detection problem in the space of the
parameters of the line. Although there may be
curves in the road geometry, a straight line will
still be a good approximation of a lane, especially
within the constraints of a reasonable range for
vehicle safety, because the curve is normally long
and smooth.

Hough Transform is a technique that can be
used to isolate features of a particular shape within
an image. It can be divided into two types: classical
and generalized. Because it requires the desired
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features to be specified in some parametric form,
the classical Hough Transform is most commonly
used for detection of regular curves, such as lines,
circles, ellipses, etc. A generalized Hough Trans-
form can be employed in applications where a
simple analytic description of a feature is not
possible.

Hough Transform works by letting each feature
point (x, y) vote in (m, b) space for each possible
line passing through it. These votes are totalled in
an accumulator. If, for instance, a particular (m, b)
has one vote, this means that there is a feature
point through which this line passes. If it has two
votes, it means that two feature points lie on that
line. If a position (m, b) in the accumulator has n
votes, this means that n feature points lie on that
line. The algorithm for the Hough Transform can
be expressed as follows:

1. Find all of the desired feature points in the
image.
2. For each feature point:

— For each possibility 7 in the accumulator that
passes through the feature point, increment
that position in the accumulator.

3. Find local maximum in the accumulator.
4. If desired, map each maximum in the accumu-
lator back to the image space.

After the coordinates of the lane line in the
accumulator space have been identified, we
remapped the line coordinates of the lane to the
image space, so that the lane can be highlighted.
Fig. 7 shows the results of Hough Transform and
Table 1 shows the coordinate of the lines.
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Fig. 6. Edges of lane marking and some unwanted edges.
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Lane tracking

A distinction can be made between the problems
of lane detection and tracking. Lane detection
involves determining the location of the lane
boundaries in a single image without strong prior
knowledge regarding the lane position. On the
other hand, lane tracking involves determining
the location of the lane boundaries in a sequence
of consecutive images, using information about the
lane location from previous images in the sequence
to constrain the probable lane detection in the
current image. Some systems use different algo-
rithms for lane detection and tracking, but this
system uses the same algorithms for lane detection
and tracking, which will save on processing time.

Since we can obtain up to 30 frames per second,
the difference between images in the sequence will
be very small. Therefore, we do not need to process
each entire image in terms of lane tracking. From
the previous lane position, we can have a pretty
good idea of lane position in the current frame.
Therefore, in the Hough transformation, the angle
(6) can be restricted by the estimated range from
previous frames. This will improve the computa-
tional speed and the accuracy of detection. In each
second, the first several image frames will be
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processed by the lane detection algorithm, and
this will provide a good estimate of lane tracking
for the next frames. The lane tracking scheme
described above will process the rest of the
images in a few seconds.

VEHICLE MODELLING

Designing a vehicle controller such as a lateral
controller requires a model of the vehicle’s beha-
vior. There have been two approaches to this
modeling: dynamics and kinematics. In this
system we used a dynamic model approach,
because it gives a highly accurate portrayal of the
vehicle’s behavior and because the controllers
designed with this approach are sufficiently
robust with those dynamics. The dynamics of the
vehicle for system simulation is a three-dimen-
sional vehicle (car) with six degrees of freedom (6
DOF). The degrees of freedom is the number of
movements of the vehicle. The vehicle has 6 DOF
because it can have 3 translational (x, y, z) and 3
rotational (pitch, yaw, roll) DOF. Besides the
degrees of freedom, several other factors—such
as the vehicle’s weight, center of gravity, cornering
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Fig. 7a. The Hough Transform accumulator estimates the line coordinates of the lane.
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Fig. 7b. Original image with detected lane.

Table 1.

Line coordinates of the lane

Line X y z
Linel 300.2403 185.9707 0.5711
Line2 199.0000 125.0087 199.4778

stiffness, wheel slippage, and others—were taken
into account in dynamic modeling.

Since this is a simulation-based system, the
vehicle dynamics are strictly governed by the
theoretical differential equations and the para-
meters used in those equations. The resulting
controllers are, in general, solved in terms of
these parameters. Fig. 8§ shows the notations or
parameters and physical system of a four-wheel
vehicle. We consider the car to be a rigid mass,
with a coordinate system centered on the center of
mass of the car.

The meaning of each term is as follows:

a Distance from centre of gravity (CG) to
front axle

b Distance from centre of gravity (CG) to
rear axle

d Distance from car centerline to each wheel

X, Y Earth-fixed coordinates

U Vehicle’s longitudinal velocity

A% Vehicle’s lateral velocity

Some parameters for the four-wheel vehicle used in
our experiments were:

G = 32.2 m/sec*sec  Gravity

w = 1590.0 kg Weight of car in
kilograms

m = w/G Mass of car

a=122m Front axle to CG

b=163m Rear axle to CG

Caf = 3646.1 kg/rad Cornering stiffness for
front axle

Car = 4557.6 kg/rad Cornering stiffness for
rear axle

The vehicle parameters and the outputs from the
image processing process were used for the vehicle
controller. Then we computed the vehicle
dynamics performance. Therefore, the system
simulation shows the vehicle’s dynamics in the
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Fig. 9. The forces acting on the tires are normal, Fy, lateral
forces, F. and brake forces, Fy,.

longitudinal (acceleration and braking modes) and
handling (lateral, yaw and roll modes) elements.
‘Handling’ evaluates the dynamics of the vehicle
(car) in response to the driver’s steering input.
‘Longitudinal’ evaluates the acceleration and brak-
ing responses of the vehicle. Other important
factors in determining vehicle dynamics are tire
model and vehicle forces.

Tire model
In this system, the tire model is based on the
mathematical equations of a magic tire formula.

Fy:FyO(av%Fz) (3)
a, = o+ Sy, Where Sy, is horizontal shift  (4)

The coefficients in the formula are calculated from
parameters measured on a physical tire, which
makes the model realistic. The magic tire model
is an empirical model developed by Pacejka and
colleagues at Delft University that has been veri-
fied experimentally to be fairly accurate. It makes
it possible to determine lateral as well as long-
itudinal forces (brakes) and the aligning moment.
Lateral force is a function of the variables slip
angle («), the normal force acting on the tire, Fz,
and the camber angle (). On the other hand, the
brake force, or longitudinal force, is the opposite
of lateral force.

A common way of modeling tires is to neglect
the influence of horizontal and vertical shift.

Consequently, all the parameters used for calculat-
ing the shift are set to zero. A tire model that
includes vertical and or horizontal shift experi-
ences a static lateral force. Ignoring the shifts will
thus make the static force disappear. Since it is not
possible to vary the camber angle in the simulation
model, it is also natural to ignore the influence of
that variable. Removal of the camber parameter
simplifies the formula even more. The lateral force
ends up being a function of «. The slip angle was
calculated by means of the steering angle §; and the
local velocity and rotation vector.

a; = b;arctan (M) Where I for 1 and 2 (5)

vxl

a; = —6; arctan (ﬂ) Where i for 3 and 4 (6)

th

Vehicle forces

The force equations are derived in the local coor-
dinate system and the force acting on the model is
thus projected onto this coordinate system. Fig. 9
shows the forces on the front and rear tires.

In this system, the vehicle experiences normal
forces, lateral forces and brake forces. The sum of
the projected forces, Fxi, Fyi, Fzi (i for number of
tires), in the local coordinate system leads to the
following equations:

Fy; = —F_;sin(6;) cos(8) — Fy; sin(6) (7)

Fyi = F,cos(6;) cos(¢) + Fyisin(¢) (8)
F.; = Fy) cos(6) cos(8) — (—F, sin(6;))
sin(6) — F,;cos(é;) sin(6) 9)

Since the vehicle is moving, the use of Newton’s
second law of motion gives the following equations:

> Fy=Fu+Fa+ Fa+ Fy=mi, (10)
> Fy=Fy +Fa+ F+ Fy=mi, (11)

ZFZZF21+F22+FZ3+FZ4:W”}Z (12)

VEHICLE CONTROLLER

The controller methodology can be divided topi-
cally in many different ways: by method control
input (two-wheel steering (2WS), 4WS, direct yaw
control (DYC)), by controller design method (opti-
mal, neural network, input scaling), or by a control-
ler implementation structure (feed-forward,
feedback, or combinations). Several aspects of
designing a control system for a vehicle have been
examined extensively in the past, both in the physics
literature [5], as well as in control theory studies. The
problem of control in a dynamic setting, using
measurement ahead of the vehicle, has been
explored by Ozguner et al. [6], who proposed a
constant control law proportional to the offset
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from the centerline at a look-ahead distance. Acker-
man et al. [7] proposed a linear and non-linear
controller design for robust steering. Taylor et al.
[8] considered the problem of controlling a motor
vehicle based on the information obtained from
conventional cameras mounted on board the vehi-
cle. Ma et al. [9] looked at the problem of guiding a
nonholonomic robot along a path based on visual
input.

In the system discussed here, we used a feedback
2WS controller. As mentioned before, the vehicle
controller requires a model of the vehicle’s beha-
vior, either a dynamics or kinematics model.
Therefore, in this system the controller is based
on the mathematical model of four-wheel vehicle
dynamics. There are several controllers in an
autonomous vehicle. This system focused on a
longitudinal controller and a lateral controller.

Feedback 2W'S

A feedback controller has several advantages
over purely feed-forward control. Perhaps the
most important advantage is that a feedback
controller maintains stable vehicle characteristics
during changes in driving conditions. There are
several types of feedback controller, such as
proportional feedback and state feedback. In this
system, we used proportional feedback.

With proportional feedback, it is possible to
force the vehicle, via feedback, to have neutral
steering characteristics. Since the model para-
meters are known, the model predicts neutral
steering characteristics with feedback:

8(5)=C. U. 9 (13)

with
C=m/2.L.(a/Cu — b/Cyr) (14)

where U is the velocity of the vehicle, v is the yaw
rate of the vehicle, m is the mass of the vehicle, Cis
the cornering stiffness of the front and rear tires,
and a and b are the distance from the centre of
gravity to the front and rear axles, respectively.

Proportional feedback makes it easy to imple-
ment a controller and analyze the characteristics of
the system. The rate of change of the yaw angle (v)
is measured in many Volvo cars and this makes it
possible to analyze the control system. The propor-
tional feedback controller is designed by taking the
output signal ¢ from the control subject, multi-
plying it with a suitable constant and using it as an
input signal for the steering wheel angle, ¢. Differ-
ent values of the constant give the system different
characteristics.

Lateral control

A lateral controller or steering controller is the
main controller in this system. This is because the
input of this controller is based on the output of
the lane detection process. The lateral controller is
designed to follow the desired path, but it does not
determine what the desired path is. A higher-level
planner is responsible for that task. The planner may

take into account data from other sensors, to avoid
collisions or arrive at its ultimate destination. The
lateral controller does not know or need to know
such high-level information. It only needs to know
the car’s location with respect to the desired path.

The lateral controller determines the steering
angle based on the desired lane of the road. This
steering angle maintains the vehicle in the desired
position on the road. With this type of vehicle
control, the driver would be able to remove his
hands from the steering wheel and let the vehicle
steer itself. Here, the idea is that the vehicle is set to
follow some desired path. Sensors on the vehicle
detect the location of the desired path. The error
between the desired path and the vehicle is calcu-
lated and a microcomputer acting as the controller
determines how to control the steering wheel to
follow the desired path.

A model that allows the lateral forces and the
yawing of the vehicle to be described must be used
for theoretical studies on cornering, transient steer-
ing maneuvers as well as directional stability when
driving straight ahead. Body motion in interaction
with the wheel suspension must be included. The
non-linear behavior of the tires, the effects of the
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Fig. 10. Vehicle longitudinal dynamics.

B Trboiie by pe 1] Bt e by B e TIE

il

Fig. 11. Graphical user interface of the system.



An Autonomous Vehicle Driving Control System

drive and the steering system lead to very complex
models, with the help of which an attempt can be
made to simulate the vehicle’s handling over a
period. However, a few of the basic considerations
can be shown using a linearized model.

The first step to understanding cornering is to
analyze turning behavior at a low speed. At low
speed, the tires need not develop lateral forces.
They roll with no slip angle, and the vehicle must
be able to negotiate a turn. However, at high speed
the tires develop lateral forces, so the lateral
acceleration is presented. In a lateral controller,
the lateral force, denoted by Fc, is called the
cornering force when the camber angle is zero.
At a given tire load, the cornering force grows with
the slip angle. At a low slip angle (5 degrees and
less), the relationship is close to linear.

F. = Cyha (15)
Steady state cornering equations are derived from
the application of Newton’s second law. For a
vehicle traveling forward with a speed of V, the
sum of the forces in the lateral direction is:

N Fe=Fy+Fo=MV?)2 (16)

A Figure Ho.
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Also, for the vehicle to be in moment equilibrium
about the centre of gravity, the sum of the
moments from the front and rear lateral forces
must be zero.

Fyb—Fo,c=0 (17)
Fy = F,c/b (18)
substituting back
MV?/R=F.,(c/b+1)=Fu,(b+c)/b
=F,L/b=FyL/c (19)

With the required lateral forces known, the slip
angles at the front and rear wheels are established.

F.. = Mb/L(V?/R) (20)

W= W.c/L (21)

W, = Mgh/L (22)

ar = W,V?/(Cur gR) (23)
and

o, = W, V*/(CorgR) (24)
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Longitudinal control

A longitudinal controller does not depend on the
look-ahead distance and the angle between the
road tangent and the orientation of the vehicle at
some look-ahead distance, which are obtained
from the lane detection process. This controller
just depends on the longitudinal dynamics of the
vehicle. The behavior of the vehicle when driving
straight ahead or at very small lateral acceleration
values is defined as the longitudinal dynamics.
From the longitudinal dynamics, an evaluation of
acceleration, braking and top speed can be calcu-
lated. Fig. 10 shows vehicle longitudinal dynamics.
From Fig. 10, we can formulate Newton’s law by
using the following equations:

ma, = U, + Ur — W, — G -sinv, (25)

0=P +Pr+ W.—G-cosuy (26)
Jfo +J,Q, =P, - (h—e) — Pr(ly —ep)

—(Ur+U)-h+ MW, (27)

From these equations, with equal rolling resistance
coefficients for all wheels, an equation for the
longitudinal motion can be calculated.
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SIMULATION RESULTS

This system was implemented using MATLAB
6.5. The initial experiments used real-time data from
an image sequence taken on the Selangor highway.
For the experiment, we used six different video
scenes recorded on the highway. Fig. 11 shows the
graphical user interface (GUI) of this system.

The vehicle dynamics and controller were imple-
mented in this system. Since the processing of this
system was based on a video sensor, we assumed
that, in the first frame of the video, the vehicle is
driving at a certain velocity and, in the last frame,
the vehicle is braking, and so the velocity changes.
Therefore, we calculated the brake force, velocity,
and acceleration of the vehicle and the system then
shows the graphs.

The results in Figs. 12, 13 and 14 were based on
the video scene shown in Fig. 3. We processed 30
frames of the scene. By setting the vehicle speed in
km/h and the braking time in seconds, we calcu-
lated the vehicle dynamics. In this case, we set the
vehicle speed at 60 km/h and the braking time as
1.25 seconds. Using the graphs, we identified the
time that the vehicle was moving as 4 seconds.

From the simulation, we identified that the
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Fig. 13. Velocity and longitudinal acceleration, lateral acceleration, yaw angle, and sideslip angle.
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Fig. 14. Brake forces, normal forces and lateral forces.

steering angle for the vehicle was 88 degrees and
the roll angle after 1.25 seconds was diminishing.
This is because at 1.25 seconds the vehicle has the
brake force until it stops moving. The vehicle
trajectory in this situation reached 60 meters.

We calculated from the velocity graphs that the
velocity when the vehicle is starting is 26 m/sec and
that it is getting slower because of the vehicle’s
brake forces. When the velocity is slower, the
longitudinal acceleration decreases. In the lateral
acceleration graph, it shows that the acceleration
in the braking situation is much lower than in the
normal situation.

As mentioned earlier, the vehicle experiences
normal forces, lateral forces and brake forces.
Since we set the braking time as 1.25 seconds, so
the vehicle experienced brake forces starting 1.25
seconds before it stopped. From the brake forces
graph we identified that the rear tires experienced
heavier brake forces than the front tires. This is
because the vehicle modeled in this system used a
front-wheel braking system, so most of the brake
forces for the front tires came from the braking
system component and not totally from the tire-to-
road interface forces. On the other hand, the rear

tires experienced brake forces from the tire-to-road
interface forces, which provides a tire-to-road
coefficient of friction.

From the normal force graph, we identified that
the front tires experienced heavier normal forces
than the rear tires. This is because the vehicle engine
is at the front, making the normal load at the front
of the vehicle heavier than at the rear. For the lateral
forces, the front tires experienced heavier lateral
forces than the rear tires, because we used a front-
wheel-drive system for the vehicle. Theoretically, in
front-wheel-drive vehicles, the front tires will
experience more lateral forces than the rear tires.
Besides that, as mentioned above, the brake forces
or longitudinal forces are the opposite of lateral
forces. Therefore, by comparing the brake force
graph and the lateral force graph we identified
that these forces are opposite each other.

In educational terms, the results from this experi-
ment are very useful, as this simulation can be used
to determine the vehicle’s control performance by
setting and entering vehicle parameters such as
weight, speed, and braking time. In this simulation
system, the vehicle weight can only be changed in the
MATLAB source code. However, the vehicle speed,
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braking time, and number of frames to process can
be changed whilst running the simulation. Engin-
eering educators can also use their video files of a
vehicle driving to determine the vehicle lateral
control. The simulation result can be assessed by
comparing the simulation answer with manual
mathematical calculations, because this simulation
was based on mathematical equations.

CONCLUSION

In this paper, we presented an autonomous
vehicle driving system based on video sequences
recorded from a vehicle driving along a highway.
The focus of this paper was to develop a simula-
tion system of an autonomous vehicle driving
control, so that engineering educators or engineers
can use it. This system was based on look-ahead
distance and the lane angle, which we obtained

through a lane detection process, because these
two factors were used with the vehicle dynamics to
create a precise control algorithm. In lane detec-
tion algorithms, colour cues were used to conduct
image segmentation. Then an edge detection
method was used to highlight the lane edges.
After that, Hough Transform was used to identify
the lanes and determine the look-ahead distance
and the lane angles. This method has been tested
on video data, and the experimental results have
demonstrated a fast and robust system. The results
of this simulation showed that a dynamic model
approach gave a highly accurate portrayal of the
vehicle’s behavior and that the controllers designed
for this approach are robust to those dynamics. So,
by using this system, the teaching of autonomous
vehicle driving systems becomes faster and more
efficient, because it provides information regarding
road and vehicle behavior.
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