Int. J. Engng Ed. Vol. 22, No. 5, pp. 1063-1069, 2006
Printed in Great Britain.

0949-149X/91 $3.00+0.00
© 2006 TEMPUS Publications.

Web Assisted Self-assessment in Computer
Programming Learning Using AulaWeb*

A. GARCIA-BELTRAN and R. MARTINEZ

Dpto. de Automatica, Ingenieria Electronica e Informatica Industrial—Universidad Politécnica de Madrid,
C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain. E-mail: angel. garcia@upm.es, raquelm@etsii.upm.es

This work discusses some issues associated with Web assisted self-assessment of the computer
programming skills of first-year undergraduate engineering students. The self-assessment exercises
are meant to encourage and motivate them rather than to assess them. The whole system
interactivity, based on a client-server architecture, is carried out by means of a computer connected
to the Internet with a Web browser. Practical issues of constructing suitable tests and their set up,
implementation and results are described. Finally, the results of a survey of students’ perceptions
and the influence of these on future developments are presented.

Keywords: teaching/learning strategies; programming and programming languages; evaluation
methodologies; interactive learning environments.

INTRODUCTION

THE MAIN PURPOSE of this paper is to describe
the implementation of a Web-based self-assessment
environment. This application has been imple-
mented in a complete e-learning system, named
AulaWeb [1], and has been used as a facility to
encourage first-year (and first-semester) students
of engineering to practice computer programming
techniques. Furthermore, this work presents the
pedagogical methodology and the results drawn
from this experience. The AulaWeb system has
been used as an on-line support for courses by
more than three thousand students at the Escuela
Técnica Superior de Ingenieros Industriales of the
Universidad Politécnica of Madrid for the last five
years. From the 2001/02 academic year onwards,
the environment has been specifically made suit-
able for self-assessing computer programming
skills. The feedback from this use has resulted in
improved systems and methodologies incorporat-
ing new implementations, great experience and
best practices.

Computer programming might only make up
one twelfth of an engineer’s first year program. At
first-year level it is important that students develop
confidence and competence in the basic program-
ming techniques that will be required later in their
engineering studies and/or professional tasks. A
major challenge for teachers is to encourage the
majority of students, whose primary interest is not
computer programming, to engage actively in
learning programming basics. To be successful,
this engagement must begin sufficiently early in
the course and there must be enough motivation to
continue to practice until the end of the semester.

* Accepted 18th January 2006.

1063

In this way, self-assessment is fundamental in
training and education [2-4].

Computer-Based Assessment (CBA) or, more
particularly, Web Assisted Assessment (WAA)
has made this possible through a regular testing
system with large groups of students and few
lecturers. Many authors report on different WAA
systems [5-9] and some universities have imple-
mented some kind of assessment tools [10-14]: it
would be impractical, tedious and slow to imple-
ment this kind of assessment without a computer.
The use of a computer also ensures consistency and
accuracy in the correction process. In addition to
self-assessment, Web systems can support other
formative functionalities. In this case AulaWeb
system also supports the provision of news, work
collecting, lecture notes, Web pages, links, ques-
tionnaires and chats. However, the current work
focuses only on how 695 first-year engineering
students on a traditional programming course
were tested at least eleven times during the seme-
ster using a WAA system with not only formative
but also summative aims [15].

PRACTICE ENCOURAGING WITH WEB
ASSISTED ASSESSMENT

At first year level, assessment strategies are
generally based upon verifying that a sufficient
number of computer programming skills have
been learned. A traditional written examination
is held at the end of the semester. Because of the
time required to practice and develop program-
ming skills, those students who do not start to
engage in the learning process sufficiently early
find themselves doing badly in examinations and
obtaining low marks. In this experience there are
eleven WAA tests during the semester. These are

1064 A. Garcia-Beltran and R. Martinez

used to improve students’ performance, focus the
students’ activities and so drive then to practice
computer programming during the academic
period. To encourage students, the test questions
are similar (in form and level of difficulty) to the
final written examination and the test results make
a contribution to the subject grading. Students will
more easily accept a regular test system if they
know that the results will have some influence on
their final marks. In this case, the WAA element
can increase the final subject mark by one addi-
tional point (out of ten points). Students can take
each test more than once (with other randomly
selected questions from the database following the
template set up by the tutors and always before the
deadline) to improve their score. The mark contri-
bution of each test is the average mark of all these
grading test attempts. Anyway, traditional written
exams are still used for most of the final grading so
these exercises are meant to motivate rather than
to assess. The system aims to get students to
engage positively in this formative approach: the
students are also allowed to try customized and
randomly selected tests with the large database
questions (identical to the real tests) as many
times as they want during the semester. In these
trial tests students gain familiarity with the subject
area, the system environment and the type and
level of difficulty of the questions. The strategy
that students usually employ is that they do these
tests several times until their knowledge level is
sufficient to proceed to the actual grading test.
This pedagogical model, including a large number
of questions, randomly selected tests, instant feed-
back and computer programming assessment,
would be impossible to implement with a tradi-
tional written assessment system and such a large
number of students. Moreover there are other
benefits: reducing the risk of cheating, results
management facilities, tests can be used every
year and students can take their tests at different
times and in different places (spatial and temporal
flexibility), etc.

DESCRIPTION OF THE
ASSESSMENT PROCEDURE

Students must be able to log into the AulaWeb
e-learning system using their username and pass-
word. No serious problems with access have been
reported except the day before the deadline of
some tests because of a little collapse of the Web
server. All the tests were available anywhere (on
campus or at home) by WWW but the large
number of questions in the database limits the
opportunity for plagiarism. Anyway, the small
contribution of the test results to the final mark
(10%) reduces this issue significantly. Student
behavior can be tracked to include details of the
number of attempts made at the various tests, the
time and date the tests are accessed and the time
spent taking each test.

The student can navigate through the self-assess-
ment environment (Fig. 1) using a set of buttons
(bottom left-hand corner) and/or controls (top
center). At any stage students may amend an
answer they have typed in or save the session and
postpone the end of the test. Once the student has
finished the test, the answers are submitted to the
AulaWeb server for marking: the feedback for
students and teachers is automatic and immediate.
However, in both types of test, real and trial,
feedback is given in the form of a numerical
mark out of ten points at the end of the test.

Within this environment the authors of this
paper have inputted a large number (823) of
questions into the database server since 1999.
The users (five tutors and hundreds of students)
have therefore had sufficient time and opportunity
to obtain comprehensive feedback and perform an
exhaustive quality control: discovering any
mistake in the wordings or in the answers and
correcting them if necessary.

The questions have been categorized into eleven
topics or units and five levels of difficulty and they
can incorporate graphics and multimedia. There
are also many question types (single choice, multi-
ple choice, numeric input, text, etc.) implemented
in this tool but, in this course, use has been
preferentially given to questions with TurboPascal
code answers and questions with randomly gener-
ated values (parameters). These question types are
more suitable to the programming skills of the
users (i.e. ‘Complete the following subroutine in
order to return the average value of the numbers in
a file . . .)) and the knowledge (‘Convert the
following binary representation to its equivalent
decimal form: 011010—or the randomly generated
value’) to be discussed in this Computer Science
course. Not only the questions, but also the course
syllabus and its content are progressive and cumu-
lative, although in some topics it can test stand-
alone concepts.

Questions with TurboPascal code answers

A piece of code or program is correct if it can be
proved to meet its specification. Correctness
assessment is empirical and based on checking a
code’s output from inputs. In CBA, student code
outputs are compared automatically with model
outputs [2].

Figure 1 shows a typical question interface that
includes a virtual Borland-type programming
environment, implemented by means of a Java
applet. However, questions are designed to be
not too long as they should be displayed in one
full screen. Students can use the edit window of the
virtual environment to input and edit the answer
code and the menu bar options to compile or
execute the code. The Compiler option compiles
the code in the edit windows. An on-line compiler
has been installed in the server in order to support
this automatic checking for the Pascal code
answers. When compiling is complete, a status
window appears. If a compile-time or syntax

Web assisted self-assessment in computer programming learning using AulaWeb

1065

:'il.'l:l: AL RS - Hicininl bl anet T oploes
Solo Alumnos Programa de autoevaluacion
Feehimrwauacisn
Ejercicio INFOO ped sorery ol o [0 | e
Fregurta 1 de 10
i~ A Enunciada
Completar |3 funcion crazes D98 Qua devaaka & vaklor 42 |3 suma
de log elementos de |a diagonal secundaria (raza sacundana| de una
matriz M die vl ores reales dada como pardmatng e la funcidn
is 'r i lax
FEEGUNTA-1.PRE =
Hctiickaces ige, inlice] &f real
rHwi T [Feal
._.!
r A nnnbilmmecian o chdige |
itu codige | h.
C g s :u:qu 'rvl-u-l.l.'r il de 1)
Prequenta sin oonbestar - Te cesden 50 preguniss por responge | P e i i b |
)z a] 4] 8] 8] 2)u]s]] b | G | estene |
e Curse acaddmicn 200304 skswn: Akeno De Prosba W9 matricula; 90900

Fig. 1. A test example with a TurboPascal code question in the student interface.

error occurs, an error message is shown like in a
real programming environment. The Ejecutar
option executes the input code together with a
checking model code in order to detect run-time
or logical errors. In both cases, the corresponding
error message is shown. For the self-assessment in
logical errors, student code outputs are compared
with randomly generated model outputs. Each
specific mistake may require the display of a
customized error message previously written by
the lecturers. As in other types of questions,
when a student is satisfied with his or her
answer, they can save it with the assessment
session. However, teachers do not have to correct
programming exercises and students do not have
to install a Pascal programming environment
locally in their home computers for training and
practice purposes. Other types of questions have
been used mostly for the first unit (Introduction) of
the subject because of its theoretical and funda-
mental (no programming) contents.

Questions with randomly generated values

This type of question allows the generation of an
effectively infinite set of questions. This is a very
positive circumstance not only for educational

reasons (students can practice as much as they
like) but also for security reasons (reducing risk
of cheating). The drawbacks are that time is
needed to prepare the question and a program
language knowledge is needed to write the code
to develop the question wording with random
factors. In this case, the program language is also
TurboPascal.

TEST SET UP

During the term, teachers inform the students
about the programming of a new exercise template
that is associated with and according to the end of
the unit taught in the face-to-face sessions:

1. Each exercise has a deadline of between two
and four weeks from that date, in order to leave
the students enough time to complete the exer-
cise but to encourage them not to leave the
work until the end of the semester. Although
the lecturer can set a time limit for each assess-
ment session there is none (except the deadline
for each exercise).

1066 A. Garcia-Beltran and R. Martinez

2. Since the rhythm of the subject program teach-
ing in the face-to-face sessions in the traditional
classroom are similar for all the lectures, the
exercise deadline for the corresponding groups
of students differs only by one or two days. The
aim is not to jam up the AulaWeb server.

3. Students can do the exercises using any com-
puter (at home or in the campus) and a stand-
ard Web browser with a Java virtual machine.
The aim is to get the students to program
regularly, so we do not mind if the students
work together on the trial tests or use a real
TurboPascal programming environment to
work through some of the questions. Following
this procedure, the higher-level skills are
assessed at the end of the semester.

4. Each exercise contains ten randomly selected
questions from the corresponding unit database
(except exercise #9, with only six questions)
following the template set up by the teachers.
Each question is taken randomly from a data-
base of up to 100 questions per unit so that the
likelihood of any two tests being the same is
very small. Because of the subject program
contents, questions with TurboPascal code
answers appear in exercises from unit #5 to
unit #11.

5. Once the exercise has been generated, the stu-
dent can browse over the set of questions that
make up the test. Students can print out the text
of the exercise questions before or after answer-
ing them and take the exercise home to think
over the answers, change them, etc. before
finishing the test. They can modify the input
answers and interrupt the exercise session at
any time, saving the test and the answers. Later
they can carry on with the exercise in another
session.

6. Results are shown as an instant feedback once
the exercise has been finished by the student.
These results are saved in the student database
and can be checked on-line at any time by the
student. The corresponding lecturer can also
consult these data to track the progress of an
individual student. Both can print out the feed-
back and take it home to analyze the mistakes.

7. If the student is not satisfied with their exercise
mark, he/she can repeat the corresponding exer-
cise (with other randomly selected questions) as
many times as he or she wants. In this case, the
final exercise grade is the average of all the
completed attempts made by the student.

8. Furthermore, students can, beforehand and
without any influence on the grading, do all
the exercises they want, in order to familiarize
themselves with the system and the difficulty
level of the questions. This procedure can also
be useful ‘to critique and revise the database
questions that subsequently were drawn up for
course exercises’ [14].

TEST RESULTS

In the academic year 2003/2004, nearly 500
engineering students were regularly tested using
the system. Figure 2 shows the date distribution
for the real tests taken during the first semester of
2003/2004. Note that a large number of students
took the tests close to the corresponding deadline.

While students are given instant and individua-
lized feedback on the corresponding tests, lecturers
are provided with the following reports:

1. Global statistics showing the total number of
students, total number of finished exercises,
number of questions (total, right, wrong and

Fulzlication 0 Deadline

o

a

B o

E Christmas

@ | hodidays

1]

L8

= 1l 1

|9 | |

E ok [; 1l o lLd L0l

= 09 10 000 : Date 29,701 2004
-l Sa wlDom

Fig. 2. Date distribution for the exercises done by the students. Publication: date of the exercise template set up. Deadline: date until
the exercise may be done.

Web assisted self-assessment in computer programming learning using AulaWeb 1067

MN* Cédigo Tipa ‘Warlante Fecha Tiempo N*Preg. Blen Mal S/IC NOTA

1 Fooll MO resta TESsEE 21 10yA003 4 10 o 0o 0 =
2 Foo03 Moresta 2TI00TIL E1042003 g 10 g i 0 a9 &
3 o003 ho resta TRMENE 01103003 | 10 a 1 i 8 =
4 0 MO resta IET1LaG 19l 1yad ad 10 G 2 I 6 &
& FoO0s MO resta ASA0I0GG 281172003 249 0 g0 0 0 v
& F00E Mo resta BTINMTE 06122003 a4 10 B 2 B ®
T FO00T i FestA SURENTRE 15120000 39 10 4 1 i 4 ®
2 e MO resta 33112738 O Lia00d 44 10 m o o 0 ®
2] 00 M resta 434E0ET AN 1A004 2 5 E 0 ¢ 0 w
10 Faalo Moresta 4322375 13012004 29 10 a 1 { 9 w
11 011 MO et E0e 0 XN 1a00g ra 10 B | ! B E
mcita rreeclian (sobee 11 sjerccios realiracos) 891

Fig 3. An example of an exercises results report of a student.

not answered), score histogram . . . In this
course, 96% of students finished, at least one
exercise and 8.846 exercises (84.155 questions)
were done by all the students.

2. The list of exercises including identifier, title
(corresponding unit), number of questions,
publication date, deadline, number of students,
number of attempts, average number of
attempts per student, and average mark. With
these data tutors can calculate the falling rate in
the self-assessment system: 90% of students
finished the first exercise and 64% of them
finished the last exercise.

3. Alist of individual attempts at each exercise by a
particular student with details of test identifier,
date and time, time to complete the test, mark
and link to questions and answers (Fig. 3).

4. Performance of each question delivered in
terms of the number of appearances and level
of difficulty. In this course some programming
skills seem to be more difficult for students, for
instance, recursive subroutines and operations
with data structures (files and lists).

EVALUATION

At the end of the semester, students were given a
Web-based questionnaire encouraging them to

comment voluntarily and anonymously on their
experience of WAA. First they were asked to
answer nine questions with responses on a five-
position scale, graded from 1 (Strongly disagree) to
5 (Strongly agree). A total of 139 replies were
received. The responses are summarized in Table 1.

Students were also asked about the usefulness
and other important aspects of AulaWeb. They
gave high ratings to easiness (4.59) and usefulness
(4.37) of the system. It is clear that the self-
assessment system has helped students to assimilate
the course topics gradually and has also encour-
aged them to work harder. The overwhelming
conclusion from this feedback is that this type of
testing is generally viewed positively by students.

On this questionnaire students also had the
chance to put forward written comments in order
to explain or develop their scored responses. The
written comments are closely correlated with
previous responses. In particular, ease of use,
flexibility and instant feedback were seen as one
of its major benefits. Typical comments were:

Flexibility to take the test when and where you like.

Regular assessment has encouraged me to practice
throughout the term.

I would hardly work this subject without AulaWeb
assessment.

Table 1. Summary of the questionnaire answers

Question Total 1 2 3 4 5 Average

I had already used a Web browser before the start of 139 8 7 7 18 99 4.39
the course.

I had used a programming language before the start 139 89 19 7 12 12 1.83
of the course.

The system is easy to learn and use. 139 0 1 3 46 89 4.59

The system organization is clear. 139 0 2 24 61 52 4.16

Self-assessment is very useful. 139 0 4 13 48 74 4.37

WAA has encouraged me to work throughout the 139 3 7 19 57 53 4.06
term.

WAA results should have more weight in the final 139 3 7 21 21 87 4.28
mark.

Other courses should use this WAA. 139 0 8 13 31 87 4.39

I enjoyed using this tool. 139 1 5 11 63 59 4.22

1068 A. Garcia-Beltran and R. Martinez

[The system] helps you to understand and study the
course.

[The system] lets me test my knowledge level.

[The system] obliges me to be up to date with my
course work.

I think that other subjects should have already intro-
duced this system.

Drawbacks: many students had problems with their
Internet connection, particularly the day before the
tests deadline and also using some internet provi-
ders connections with TurboPascal code questions:

Server sometimes collapses.
I cannot find solved exercises in the system.
Download speed of the Webpages and the resources.

I could not answer code questions properly from my
home because of my Internet provider.

Overall comments were positive, so much so that
the majority would be pleased if a similar system
were used in other subjects:

I think that other subjects should implement this
regular test system.

Academic staff acceptance has been overwhel-
mingly positive, showing that not only is the
system very easy to manage but it also has a very
intuitive interface and gives very useful feedback to
the students.

It is very difficult for the tutors to evaluate the
improvement of the students’ performance in a
quantitative way. It is not possible to compare
two groups of students under the same academic
circumstances but with only one group using the
self-assessment (who can discriminate against one
group of students?). Tutors can only compare the
average marks and other indicators between
groups of different academic years (the self-assess-
ment system was not available in 1999-2000). In
this way the average mark has been increased from
4.15 (1999-2000) to 4.87 (2003-04) and the
students’ failure rate has been reduced from 70%
(1999-2000) to 55% (2003-04). Furthermore,
tutors have verified that the number of students
that ask questions about programming skills
during the academic period has notoriously
increased.

CONCLUSIONS AND FUTURE WORKS

This paper has described the implementation of
a self-assessment system for first-year engineering
computer programming. The implementation in
the AulaWeb system appears to offer some bene-
fits, which are now summarized. This system has
been subject to large-scale testing since October
1999 and has enhanced the learning pedagogical
process. At least in this course, Web assisted self-
assessment is better than traditional written assess-
ment, especially when teachers and students can
take advantage of code questions with a certain
creative component and with the chance of devel-
oping questions with randomly generated wording.
Furthermore, with such a large number of students
the assessment would be impractical without the
system: the automatic assessment reduces the
lecturer burden of marking. This advantage
saved the time of the academic staff , which can
be redirected to other aspects of teaching.

Student feedback has been very positive and
student responses indicate that they have worked
harder, with more motivation and more consis-
tently than they might have done without such a
regular test system. Self-assessment instant feed-
back helps students to build their confidence in
developing programming skills. The strongest
complaints were about problems with some Inter-
net traffic jams and some internet providers
connections and the questions with code answers.

In the future, AulaWeb system should become a
regular assistant of this first-level programming
course and in other computer/programming
courses at the ETSII-UPM. In the case of ques-
tions with code answers the focus must move from
correctness to optimality assessment: how good is
the code semantic style and how well, accurately
and quickly does it do what it is supposed to do?

Acknowledgements—This work is partially funded by the Divi-
sion de Informatica Industrial of the Universidad Politécnica de
Madrid. The authors would like to acknowledge the implemen-
tation support of A. Alonso, J. M. Arranz, P. Avendaiio, M.
Aza, J. A. Criado, F. de Ory, C. Engels, M. Fernandez, P.
Garcia, J. Granado, T. Hernandez, 1. Iglesias, J. A. Jaén, A. R.
Lopez, J. A. Martin, F. Mascato, D. Molina, L. M. Pabén, J. C.
Pérez, A. Rodelgo, S. Tapia, A. Valero, E. Villalar and C.
Zoido.

REFERENCES

. Garcia-Beltran and R. Martinez, Challenges of a blended e-learning system in traditional

engineering faculties, Proc. 2nd International Conference on Multimedia and Information &
Communication Technologies in Education, Badajoz, Spain, December 3-6th, Vol. III, (2003)
pp- 1960-1963.

. S. P. Foubister, G. J. Michaelson N. and Tomes, Automatic assessment of elementary Standards

ML programs using Ceilidh, Journal of Computer Assisted Learning, 13, 1997, pp. 99-108.

. A. Venables and L. Haywood, Programming students NEED instant feedback!, 5¢th Australasian

Computing Education Conference (ACE2003), Adelaide, Australia, Conferences in Research and
Practice in Information Technology, Vol. 20. T. Greening and R. Lister, Eds, (2003).

. A. C. Croft, M. Danson, B. R. Dawson and J. P. Ward, Experiences of using computer assisted

assessment in engineering mathematics, Computers & Education 37, 2001, pp. 53-66.

. J. C. Burguillo, J. V. Benlloch, J. M. Santos, D. A. Rodriguez and F. Buendia, X-Quest: an open

tool to support evaluation in distance learning, Proc. ED-MEDIA 2001 World Conference on

Web assisted self-assessment in computer programming learning using AulaWeb 1069

Educational Multimedia, Hypermedia & Telecommunications, Tampere (Finlandia), (2001)
pp. 220-221.

6. N. Catenacci and L. Sommaruga, The evaluation of the Hyper Apuntes interactive learning
environment, Computers & Education 32, 1999, pp. 35-49.

7. E. Foxley, C. Higgins, A. Tsintsifas and P. Symeonidis, The Ceilidh CourseMaster system—An
introduction, 4th Java in the Curriculum Conference, South Bank University UK, (2000).

8. A. Prieto, P. Clemente, J. Gonzalez, R. Rodriguez and E. Sosa, Student progress evaluation web
tool, Advances in Technology-Based Education: Toward a Knowledge-Based Society, Proc. of 2nd
International Conference on Multimedia and Information & Communication Technologies in
Education, Badajoz, Vol. 111, (2003) pp. 1819-1822

9. F. Rizvanov and R. Lizotte, A bridge to success: active learning model for the effective hybrid
courseware development, Proc. of Fourth International North America Web Conference, Freder-
icton, New Brunswick, (1998) pp. 181-184.

10. N. Serbedzija, A. Kaiser and I. Hawryszkiewycz, E-Quest: A simple solution for e-questionnaires,
Proc. of the IADIS International Conference e-Society 2004, Avila, Spain, (2004) pp. 425-432.

11. D. Smith and G. Hardaker, e-learning innovation through the implementation of an Internet
supported learning environment, Educational Technology & Society, 3(3), 2000, pp. 422-431.

12. S. Lewis and G. Mulley, Experiences gained from producing a compiler to guide first year
programming students, 5th Annual Conference on Teaching of Computing, Dublin, (1997),
pp. 129-131.

13. E. V. Wilson, ExamNet asynchronous learning network: Augmenting face-to-face courses with
student-developed exam questions, Computers and Education, 42, 2004, pp. 87-107.

14. M. Thelwall, Computer-based assessment: A versatile educational tool, Computers and Education,
34, 2000, pp. 37-49.

15. R. Martinez and A. Garcia-Beltran, AulaWeb: a WWW-based course-support system with
self-assessment and student tracking, Proc. of World Conference on Educational Multimedia,
Hypermedia and Telecommunications, ED-MEDIA 2001, Tampere-Finland, (2001).

More information is available via the Internet at URL: http://www.dii.etsii.upm.es/aulaWeb

Dr. Ange] Garcia-Beltran is Assistant Professor, Dpto. de Automatica, Ingenieria Electro-
nica e Informatica Industrial, ETS de Ingenieros Industriales, Universidad Politécnica de
Madrid.

Dr. Raquel Martinez is Assistant Professor, Dpto. de Automatica, Ingenieria Electronica e
Informatica Industrial, ETS de Ingenieros Industriales, Universidad Politécnica de Madrid.

