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This paper introduces a generalized method for simulating dynamic systems in SPICE. The proposedmethod is useful for

students in that the necessary software is free and only an elementary knowledge of SPICE is required. The method uses a

netlist description of the system that comprises little more than a set of state equations. In comparison with many of the

more commonly used tools, such asMATLAB/SIMULINK, the presentedmethod is less involved, allowing the student to

stay focused on the problem rather than the software. Themethod is not limited only to electrical systems: it can be applied

to virtually any dynamic system, making it accessible to students from other backgrounds.
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1. Introduction

The modern engineer enjoys the luxury of a power-

ful and diverse computational toolset to aid in the

problem solving process. Unfortunately for the

engineering student, most of these tools are cost

prohibitive, and theymay also involve a rather steep

learning curve. This paper offers an alternative
approach to analyzing dynamic systems that is

straightforward, and can be implemented using

tools that are available at no cost to the student.

The method uses the powerful numerical solvers

designed for Simulation Programs with Integrated

Circuit Emphasis (SPICE). While the educational

benefits of SPICE for electrical applications are well

documented [1–4], here, a more general approach is
taken that allows nearly any dynamic system to be

simulated in SPICE. Furthermore, the proposed

method is presented in a way that does not require

the user to have a detailed knowledge of electronics,

making it accessible to students from across the

various engineering disciplines.

One of the most attractive benefits of SPICE is

that there are a number of versions that are available
to students free of charge, allowing the student to

use the software at home. Free versions include

LTSpice [11], SIP [13], and a student version of the

widely used PSPICE [12]. Both LTSpice and

PSPICE are used professionally, and are based on

the open source SPICE3 [14] engine, which was

developed at the University of California, Berkeley.

SIP is a web based equivalent written in Perl. There
are some restrictions on the functionality of the

student version of PSPICE; however the classes of

problems presented here are not subject to these

limitations. That is to say, there is effectively no limit

to the size of the problems that can be analyzed.

Another benefit of SPICE is that, while it is quite

powerful for the proposed method, its interface and

functionality are not overwhelmingly complex. This

is because the proposed method bypasses the sche-
matic interface and instead uses a netlist descrip-

tion. The netlist is a text based description of the

circuit that can be written in any basic text editor.

For students, computer aided examples can illus-

trate principles in ways that might otherwise be

unclear. Unfortunately, it is possible for students

to become confused by the simulation process and

fail to appreciate the results, which could defeat the
purpose of the exercise. The method presented in

this paper may be beneficial to students since it is

intended to place more emphasis on the results by

simplifying the simulation process.

In addition to the instructional benefits, the pre-

sented techniques also have practical value. For

certain classes of high-order dynamic systems with

relatively high degrees of stiffness, SPICE often
outperforms many of the most commonly used

tools, including MATLAB and SIMULINK. For

example, SPICE has been successfully used to si-

mulate a 25th order oil pump-jack [5], for which the

SPICE simulation time was over 100 times shorter

than MATLAB. An approach similar to the one

presented here has also been used to model physical

phenomena in semiconductor devices by solving
sets of partial differential equations [9]. Such dy-

namic systems can have orders of as high as several

hundred. This leads to an equivalent electrical net-

work containing several hundred capacitors [9],

which can then be solved using SPICE [10].

In some instances, SPICE has been shown to

produce more accurate results as well. This has

even motivated the interfacing of SPICE with other
simulation tools [19]. For example, in one study,
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SPICE was interfaced with SIMULINK in order to

produce more accurate results when simulating a

magnetic bearing. It was shown that the SIMU-

LINK results alone were unreliable for the particu-

lar system [18].

2. Underlying Concepts

As previously noted, the SPICE solver was designed

to handle systems that have even the highest degrees

of stiffness. In fact, while itmay not appear so on the

surface, at its core, SPICE is essentially a robust

solver for general ODEs. In this paper, a method is

presented that taps this capability, allowing SPICE

to handle virtually any linear or nonlinear dynamic

system. The basic principles behind this technique
are the subject of this section.

The proposed method is based on a state space

approach that requiresminimal effort from the user.

As will be shown, the state space formulation of a

dynamic system in SPICE is not only intuitive, it is

easy to implement. Furthermore, because it is a state

space method, the only operation required is inte-

gration. This greatly reduces the complexity of the
necessary circuitry since, as it will be shown, inte-

gration can be performed using only a three element

circuit. Therefore, very little knowledge of circuit

analysis is needed to understand the basic princi-

ples. While a detailed knowledge of SPICE is not

necessary, there are a number of SPICE references

available if needed [6–7].

The integrator (Fig. 1(a) ) is the fundamental
building block of the state variable model. While

most versions of SPICE do not support this opera-

tion directly, it can be indirectly implemented using

the circuit in Fig. 1(b). The same operation could be

achieved using an inductor based circuit; however

for simplicity, only the capacitive version is dis-

cussed here.

In general form, the voltage across a capacitor is
expressed as

vðtÞ ¼ vðt0Þ þ
1

C

Z t

0

ið�Þd�: ð1Þ

Therefore, for the circuit in Fig. 1(b), this results in

vout ¼ vðt0Þ þ
Z t

t0

vinð�Þd�: ð2Þ

While only the capacitor and current source are

required for integration, SPICE will not allow this

configuration since the output is considered to be

floating. Fortunately, there is a simple way to work

around this. By placing a resistor in parallel with the
capacitor, the problem is eliminated. The added

resistor is shown in grey in Fig. 1(b). Of course,

the resulting integrator is no longer ideal, however,

for very large resistor values, say R � 100TG
, the
resulting loss is negligible.

The integrator circuit in Fig. 1(b) is implemented

in SPICE using the following syntax,

1: C1 0 1 1
2: R1 0 1 100GIG
3: G1 0 1 VALUE = {V(in)}

Later, when this circuit is used for constructing

state-variable models, each integrator will be asso-

ciatedwith a unique state variable. Thus the element

names and node numbers will match their corre-

sponding state variables.
From here, the remaining details are perhaps best

explained through example.

3. Second order dynamic systems

Let us begin with the simulation of a free falling
mass. Suppose a plane traveling at altitude h with

velocity v releases a payload volume vol andmassm.
What will be the time and distance traveled at

impact?

The trajectory of the payload is characterized by

its acceleration a and velocity v in both the vertical

and horizontal directions. That is,

ax ¼
kv2x
�

; and

ay ¼ g�
kv2y

�
ð3Þ

where � is the density of the payload and k is the

coefficient of friction. Solving (3) is equivalent to

solving a pair of second order systems, one for the x
direction and one involving the y direction.
Next, an equivalent state space representation of

the systems must be found. Since each system is

second order, four state variables are required,

which correspond to the displacement in m and
velocity in m/s for both dimensions.

Thus the following substitutions are made:

v1 ¼ x, v2 ¼ vx, v2 ¼ yand v4 ¼ vy.Now the systems

are rewritten in terms of the assigned variables,
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Fig. 1. (a) Ideal integrator block; (b) SPICE equivalent.



_v1 ¼ �v2

_v2 ¼
kv22
�

_v3 ¼ �v4

_v4 ¼ g� kv24
�

: ð4Þ

With the systems in state variable form, the task of

generating the listing shown in Fig. 2 is straight-

forward. The process can be handled in a few simple

steps:

1. (Line 2) Define any necessary constants using

the .PARAM command.

2. (Lines 4–7) Assign a 1F capacitor for each state
variable to be integrated. For this particular

system, there are four state variables, which

require four capacitors.

3. (Lines 9–13) If necessary, add 100 G
 resistors

in parallel with each capacitor in order to avoid

floating node errors.

4. (Lines 14–18) Implement each state equation in

Equation (4) using a separate dependant cur-
rent source.

5. (Line 20) Specify any non-zero initial condi-

tions using the .IC command. Here, an initial

state v ¼ 0 is assumed, meaning no initial velo-

city or displacement.

6. (Line 21) Define the parameters for simulation

using the .TRAN command.

The syntax for the .TRAN command is

.TRAN {print step value}{final
time}{initial print time}{step
ceiling value}

Theprint step value determines howoften points are
stored for plotting. The final time determines the

length of the simulation. The initial print time

denotes the first value to be stored and the step

ceiling value determines the maximum allowable

time step for integration.

Because the syntax for the integrating elements is

independent of all but the order of the system, they

can be viewed as a sort of standardized header, as
indicated by the shaded box inFig. 2. Therefore, this

portion of the listing is omitted in the remaining

examples due to its trivial nature.

Assuming

m ¼ 100 kg; v0 ¼ 100
m

s
; vol ¼ 0:1 m3;

� ¼ m

vol
¼ 1000

kg

m2
; h ¼ 300m and k ¼ 3:24
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Fig. 2. Listing for the projectile trajectory problem.

Fig. 3. Simulation of the projectile trajectory. The state variables



the simulation of this system produces the results

shown inFig. 3.Here, the trajectory of the projectile

is represented in two parts, with v1 and v3 plotted

separately vs. time. Note that in the SPICE plot in

Fig. 3, the state variables v1 and v3 are represented

by the voltages V(1) and V(3) respectively. It is
apparent from the plot that v3 reaches 0 at approxi-

mately 9.6 s, at which time v1 is roughly equal to

422 m.

4. Higher order systems

Now, consider the system of coupled mechanical

oscillators in Fig. 4. Skipping the details of the

derivation, the resulting state equations are found
to be

&("v" '#1&=&"v"#2,
@"v" '#2&=&– k#1 "v" #1/m#1 – k#2 ("v" #1 – "v" #3)/
m#1 – b#1 "v" #2/m#1 – b#2 ("v" #2 – "v" #4)/m#1,
@"v" '#3&=&"v" #4, (5)

where v1, v2 and v5 are the mass positions in meters,

and v2, v4 and v6 are the respective velocities in m/s.
From here, the netlist is composed in the same

manner as in the previous example. The completed

listing is shown in Fig. 6. Here, the input stimulus u

is implemented using the DC voltage source on line

28. Note that in SPICE a statement can be made to

span multiple lines by placing a ‘+’ symbol in front

of each subsequent line. This is especially useful

when dealing with long lists of parameters or equa-
tions like the ones shown here. Note also that the

syntax for the integrating capacitors and resistors

has been omitted as was explained in the previous

example.

For this simulation, parameter values of u = 5 N,

m1 = 1 kg,m2 = 500 kg,m3 = 1000 kg, k1 = k2 = k3 = 5

and b1 = b2 = b3 = 40 are chosen, with initial

conditions v=0 .The resulting response is presented
in . Though the relatively large size ofm1 results in a

correspondingly large time constant, after around

350 s the system appears to settle at v1 = 1, v2 = 2, v3
= 3.

In order to verify the results for this problem, the

system was also simulated in MATLAB using the

recommended ODE45 solver [15]. The MATLAB

results are plotted in Fig. 7. It is evident upon
inspection that both methods produce matching

results. Although it produces the same result, the

MATLAB simulation is more complicated to set up

since it requires two separate files to be written. In

addition to themain script that initiates the solver, a

separate file must be written that defines the system.

SPICE, in contrast, handles everything in a single

netlist.
It should also be noted that the time required to

simulate the system in MATLAB using the ODE45

solver is 7.5 seconds, whereas in SPICE, the same

simulation requires only 0.116 seconds. While this

maynot impose amajor inconvenience to the user, it
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Fig. 4. System of three coupled oscillators.

Fig. 5. Listing for the coupled oscillator problem.



still represents a 6400% difference in simulation

time. A more extreme example is discussed in the

next section, for which the MATLAB simulation

time becomes a significant issue.

5. Stiff systems

One area inwhich SPICE outperformsMATLAB is

the simulation of stiff dynamic systems. This is

because of the relatively high degrees of stiffness

commonly encountered in the electronic systems for

which it was designed. This ability can be extended

tomore general systems using the proposedmethod.
Here, it is used to simulate a stiff system from the

field of chemical kinematics [16]. The problem

involves determining the chemical concentrations

of four reactants in a long chemical reaction. The

form of the system is given by:

_v1 ¼ �Av1 � Bv1v2

_v2 ¼ Av1 �MCv2v2

_v3 ¼ Av1 � Bv1v2 �MCv2v3 þ Cv4

_v4 ¼ Bv1v2 � Cv4 ð6Þ

where A = 7.89610–10, B = 1.16 107, C = 1.136
103 andM = 106. The equivalent netlist is shown in

Fig. 8.

Because the reaction is slow, the system is simu-

lated for t= 0 to 107 s. The SPICE simulation for this

system required 2 minutes and 12 seconds to com-

plete. The simulation results are shown in Fig. 9. In

contrast, the same system, when simulated in MA-
TLAB using the ODE45 solver, would require more

than 5 years to complete. This is estimated by

measuring the time required forMATLAB to simu-

late the system over a 100 s period and then extra-

polating to 107 s Not only is this simulation time

unacceptable, but using the default maximum step

size causes the algorithm to become unstable, which

produces inaccurate results. In order to eliminate
this instability, the maximum step size must be

adjusted by trial and error using the ‘odeset’ func-

tion.Of course this effort is futile anyway, since even

with a properly selected maximum step, the neces-

sary simulation time remains prohibitively long.

In the interest of fairness, it should be noted that

the system can be successfully simulated in MA-

TLABusing one of itsmore sophisticated solvers. In
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Fig. 6. Simulation of three damped coupled oscillators. The
displacements v1, v3, and v5, measured in meters, are represented
by the voltages V(1), V(3) and V(5) respectively.

Fig. 7.MATLAB verification for the coupled oscillator problem.

Fig. 8. SPICE listing for the chemical kinematics problem.



fact, using the ODE15s solver [15], it is possible to

produce results that are nearly identical to SPICE.

ODE15s is a variable order solver that can be

configured to use the same backward differentiation

formula, also known as Gear’s method, which is

used by SPICE [6]. To do this, however, the student
must first recognize that the simulation may be

unstable and that the time step has become inordi-

nately small. He must then also recognize that the

issue is related to the stiffness of the system, and be

familiar enough with the MATLAB solvers to

switch to ODE15s. For this particular problem the

ODE15s solver is also unstable when using the

default settings, as shown in Fig. 10(a). Therefore,
the student must know that they must reduce the

maximum order of the differentiation formula in

order to stabilize the algorithm. Finally, in order to

improve the accuracy of the solution, the student

would need to turn on the backward differentiation

formulas mentioned above. Once these changes

have been made, the net result is the same 2nd order

Gear method that SPICE uses by default. This is

verified by the solution shown in Fig. 10(b), which
matches the SPICE simulation from Fig. 9.

6. Simulation of chaotic systems

Now we turn our attention to an example from the

field of chaos theory, known as the Lorenz attractor

[8]. While this system is deceivingly simple in ap-

pearance, in reality, its behavior is surprisingly
complex. The term chaos, when applied to dynamic

systems, implies an abnormally high level of sensi-

tivity to initial conditions. For these systems, even

minimal changes in the initial state can result in

wildly different trajectories. Of all such systems, the

Lorenz attractor is perhaps the most widely docu-

mented, and has become an icon of sorts in the field.

Its popularity is due in large part to its simplicity, as
well as the aesthetic nature of its solution. In this

example SPICE is used to demonstrate its unique

behavior [8].

As always, the system must first be expressed in

state variable form. Here, we have a relatively

simple third order nonlinear system described by

the following equations, commonly known as the

Lorenz equations:

_v1 ¼ �ðv2 � v1Þ
_v2 ¼ v1ð�� v3Þ � v2

_v3 ¼ v1v2 � �v3 ð7Þ

The parameters �, �, and � are known respectively
as the Prandtl number, the Rayleigh number, and

the physical proportion. The classical examples of

this system use values of � ¼ 10, � ¼ 10, and � ¼ 8
3.

Also, because there is no external stimulus, the

systemmust be excited using a set of nonzero initial

conditions. The resulting netlist is shown in Fig. 11.

Since the goal is to observe and verify the system’s

chaotic nature, the results are simulated and com-
pared using two separate initial conditions: v0= [–8,

8, 27] and v0 = [–7.99, 8, 27]. The results for both

initial conditions are shown in Fig. 12. Notice how

quickly the two trajectories deviate. For the first six

seconds, the two solutions appear quite similar.

However, by the eight second mark, they bear al-

most no resemblance. This illustrates the sensitive

dependence on initial conditions mentioned pre-
viously. A phase portrait for the first solution is

shown in Fig. 13. Notice also how the state trajec-

tory seems to oscillate randomly between two sepa-

rate basins of attraction.
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Fig. 9. SPICE results for the chemical kinematics problem.

Fig. 10. MATLAB results for the chemical kinematics problem
using (a) the default settings and (b) the 2nd order GearMethod.



7. Discussion

The proposed method is not intended as a replace-

ment for the more commonly used tools such as

MATLAB and Simulink; however, as illustrated in

the preceding examples, the SPICE method has

somenotable advantages thatmightmake it a useful
supplement for students.

First, the software is available for free, which

means the students can use it on their own compu-

ters. This may be useful to students who would like

to work at home or when on-campus labs are

crowded. This also allows the student to pursue

topics further on their own time.

Another advantage of SPICE is stability. Unlike

MATLAB, where the stability of a simulation can
be highly dependent on the choice of the solver,

SPICE uses the robust 2nd order Gear method by

default, which is known to be astable [17]. This

eliminates the need for any advanced knowledge

of numerical methods by the user. This would

certainly be useful for students whomay be encoun-

tering dynamic systems for the first time. This

advantage was illustrated in the chemical kine-
matics example.

In many cases, SPICE may also have the advan-

tage of shorter computation time, as illustrated in

both the coupled oscillator example and the chemi-

cal kinematics example. This is because, in addition

to being highly stable, the SPICE solver was de-

signed to handle very stiff systems.When applied to

stiff systems, many common integration schemes
can be extremely inefficient due to the reduction of

the time step. This is also the case with the ODE45

solver, which is the standard solver used in MA-

TLAB. Although these systems can be successfully

simulated in MATLAB using one of the more

sophisticated solvers, this too requires a somewhat

advanced level of knowledge and intuition from the

user, as illustrated in Section 5.

8. Conclusion

It has been shown that the algorithms employed by

SPICE for handling differential equations describ-

ing electronic circuits are also useful for solving

more general classes of systems. Owing to the

relatively high degrees of stiffness encountered in

many electronic systems, these algorithms are espe-
cially powerful and effective over a very wide range

of systems. Using the presented method, nearly any

dynamic system that can be described as a set of

state equations can be simulated in SPICE. Further-
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Fig. 11. SPICE netlist for the Lorenz attractor.

Fig. 12. Transient response of the Lorenz attractor.

Fig. 13. State trajectory of the Lorenz attractor.



more, while other software packages such as MA-

TLAB may require additional knowledge from the

user in selecting the best solver for a given problem,

the versatility of the SPICE solver does not require

the user to bother with the details of the underlying

algorithm. This offers an obvious benefit for stu-
dents whomay bemore interested in themeaning of

the results than in the numerical methods by which

they are generated and, practically speaking, a

detailed knowledge of numerical methods may be

beyond the scope of many undergraduate engineer-

ing programs.
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