Section I

Special Issue

Learning through Play in Engineering Education—Part 2

Guest Editor

Andrés Díaz Lantada—Universidad Politécnica de Madrid, Spain

Ahmad Ibrahim
Andrés Díaz Lantada
Jorge Domínguez Domínguez and Jorge Axel Domínguez López
Erik Delarue, Elisabeth Laga, Leonardo Meeus, Ronnie Belmans and William D’haeseleer
A. García-Beltrán J. L. Ocaña, C. Molpeceres, M. Morales, J. M. González, M. Blasco and D. Iordachescu
Juan J. Marquez, M. Luisa Martínez, Gregorio Romero and Jesus M. Perez
Rosa Arnaldo Valdés Luis Perez Sanz and José Felix Alonso
Jayson W. Richardson, Tamara J. Moore, Gregory C. Sales and Matthew V. Mackritis
Thashika D. Rupasinghe, Mary E. Kurz, Carl Washburn and Anand K. Gramopadhye
Susanne Ihsen, Wolfram Schneider, Frank Wallhoff and Jürgen Blume
Maria Ángeles Andreu-Andrés, and Miguel García-Casas
R. Antón, J. Gastelurrutia, J. C. Ramos, A. Rivas and G. S. Larraona
J. Carpio Cañada, T. J. Mateo Sanguino, S. Alcocer, A. Borrego, A. Isidro, A. Palanco and J. M. Rodríguez
Manuel A. Forero Rueda and Michael D. Gilchrist
Carlos Veganzones, Sergio Martínez, Jaime R. Arribas, María E. Díaz, Dionisio Ramírez, Francisco Blazquez and Carlos Platero

Section II

Contributions in: Engineering Thinking, Scientific Reasoning, Assessment, Cooperative Learning, Active Learning, Interactive Learning, Peer Instructions, Electric Machinery, Computer Programming, Statistics, Thermodynamics, and Refrigeration

Shlomo Waks, Elena Trotskovsky, Nissim Sabag and Orit Hazzan
Maher Al-Arfaj

838–851 Engineering Thinking: The Experts’ Perspective
852–858 Scientific Reasoning Abilities of Undergraduate Science and Engineering Students at King Faisal University
<table>
<thead>
<tr>
<th>Authors</th>
<th>Pages</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. F. Almarshoud</td>
<td>859–866</td>
<td>Developing a Rubric-Based Framework for Measuring the ABET Outcomes Achieved by Students of Electric Machinery Courses</td>
</tr>
<tr>
<td>Miguel Arevalillo-Herráez and José M. Claver</td>
<td>867–874</td>
<td>Assessment Technique to Encourage Cooperative Learning in a Computer Programming Course</td>
</tr>
<tr>
<td>Huei-Chun Huang, Shen-Guan Shih and Wei Cheng Lai</td>
<td>875–884</td>
<td>Cooperative Learning in Engineering Education: a Game Theory-Based Approach</td>
</tr>
<tr>
<td>Andreja Drobnic Vidic</td>
<td>885–896</td>
<td>Impact of Problem-based Statistics Course in Engineering on Students’ Problem-Solving Skills</td>
</tr>
<tr>
<td>Milo D. Koretsky and Bill J. Brooks</td>
<td>897–908</td>
<td>Comparison of Student Responses to Easy and Difficult Thermodynamics Conceptual Questions during Peer Instruction</td>
</tr>
<tr>
<td>R. Cabello, R. Llopis and D. Sánchez and E. Torrella</td>
<td>909–918</td>
<td>REFLAB: An Interactive Tool for Supporting Practical Learning in the Educational Field of Refrigeration</td>
</tr>
<tr>
<td></td>
<td>919</td>
<td>Guide for Authors</td>
</tr>
</tbody>
</table>