Contents


Ahmad Ibrahim 1–2 Editorial
Fenzhi Zhang, Anette Kolmox and Erik de Graaf 3–16 Conceptualizations on Innovation Competency in a Problem- and Project-Based Learning Curriculum: From an Activity Theory Perspective
Kali Prasad Nepal 17–22 Comparative Evaluation of PBL and Traditional Lecture-based Teaching in Undergraduate Engineering Courses: Evidence from Controlled Learning Environment
Aditya Johri, Christopher Williams and James Pembidge 33–44 Creative Collaboration: A Case Study of the Role of Computers in Supporting Representational and Relational Interaction in Student Engineering Design Teams
Sarah Zappe, Kirsten Hochstedt, Elizabeth Kisenwether and Angela Shartrand 45–62 Teaching to Innovate: Beliefs and Perceptions of Instructors Who Teach Entrepreneurship to Engineering Students
Shi-Jer Lou, Chih-Chao Chung, Ru-Chu Shih, Huei-Yin Tsai and Kuo-Hung Tseng 63–76 Design and Verification of an Instructional Model for Blended TRIZ Creative Learning
David M. Bowen 77–84 Technological Innovation and Engineering Education: Beware the Da Vinci Requirement
Hsiu-Ping Yueh 99–106 Engineering Students’ Perceptions of and Reflections on Portfolio Practice in Leadership Development
Elena Troitskovsky, Shlomo Waks, Nissim Sabag and Orit Hazan 107–118 Students’ Misunderstandings and Misconceptions in Engineering Thinking
Shane Brown, David Street, Fred Barker and Larry Flick 119–131 Motivational Factors Influencing In-Class Peer Tutors in Engineering: A Functional Approach
Stuart Palmer 132–138 Modelling Engineering Student Academic Performance Using Academic Analytics
M. Jouaneh, J. Boulmetis and W. Palm, III 139–153 Take-Home Experiments in Engineering Courses: Evaluation Methods and Lessons Learned
Ibrahim Zeid, Jessica Chin, Sagar Kamartli and Claire Duggan 154–169 New Approach to Effective Teaching of STEM Courses in High Schools
Ning Fang, Karen Nielsen and Stephanie Kawamura 170–180 Using Computer Simulations with a Real-World Engineering Example to Improve Student Learning of High School Physics: A Case Study of K-12 Engineering Education
Magdalena Walezak, Jacek Uziak and M. Tunde Oladiran, Claudia Camerati Baeza and Patricia Thibaut Paez 181–192 Industry Expectations of Mechanical Engineering Graduates. A Case Study in Chile
Sandra Ingram, Marcia Friesen and Anita Ens 193–204 Professional Integration of International Engineering Graduates in Canada: Exploring the Role of a Co-operative Education Program
Breno Barros Telles Do Carmo and Renata Lopes Jaguaribe Pontes 205–214 Collaborative Learning Concept Implementation through Web.2.0 Tools: The Case of Industrial Engineering Fundamentals’ Discipline
Daniela Perdukaov and Pavol Fedor 230–238 Virtual Laboratory for the Study of Technological Process Automation
Dogan Ibrahim and Jamal F. Abu Hasna 239–247 Teaching PID Auto-Tuning Using a Low-Cost Control Kit
Giustina Secundo and Giuseppina Passante, Aldo Romano and Pasquale Moliterni 248–262 Developing the Next Generation of Engineers for Intelligent and Sustainable Manufacturing: A Case Study
Mauricio Hincapié, Oscar Salas, Miguel Ramirez, Baltazar Carranza Itesm and Carina Viteri 263–273 Implementation of a Teleoperated Didactic Manufacturing Cell through Internet2 as a Means of Engineering Education

274 Guide for Authors