Contents

Contributions in: PBL, Military Veterans, Leadership, Motivation, Concept Inventory, Gender, Teamwork, Global Awareness, Conceptual Knowledge, Online Education, At-Risk Students, Social Responsibility, Transdisciplinary Design, Research Training, Student-Centered Leaning, Entrepreneurship, Accreditation, Social Responsibility, Assessment, S-STEM, Flipped Classroom, STEM Projects, Electrical Circuits, Civil Engineering, Digital Systems, Fluid Mechanics Software Engineering, Data Mining, Ground Water Modelling

Ahmad Ibrahim	435	Editorial
Chad Davis, Rabih Younes and Diana Bairaktarova	436–445	Lab in a Box: Redesigning an Electrical Circuits Course by Utilizing Pedagogies of Engagement
Joyce B. Main, Michelle M. Camacho, Catherine Mobley, Catherine E. Brawner, Susan M. Lord and Hilal Kesim	446–457	Technically and Tactically Proficient: How Military Leadership Training and Experiences are Enacted in Engineering Education
Hector Martin and Christelle Sorhaindo	458–472	A Comparison of Intrinsic and Extrinsic Motivational Factors as Predictors of Civil Engineering Students' Academic Success
Ingrid Noguera, Ana-Elena Guerrero- Roldán, M. Elena Rodríguez and David Baneres	473–490	Students' and Instructors' Perspectives regarding E-Assessment: A Case Study in Introductory Digital Systems
Nick A. Stites, Kerrie A. Douglas, David Evenhouse, Edward Berger, Jennifer DeBoer and Jeffrey F. Rhoads	491–509	A Validation and Differential Item Functioning (DIF) Study of an Abbreviated Dynamics Concept Inventory
Marta I. Tarrés-Puertas, Alexis López- Riera, Pere Palà-Schönwälder and Sebastià Vila-Marta	510–518	An Interdisciplinary Approach to Motivate Students to Learn Digital Systems and Computing Engineering
Sadan Kulturel-Konak, Abdullah Konak, Gül E. Kremer and Ivan Esparragoza	519–534	Assessment of Engineering Students' Global Awareness Knowledge, Strategic Processing and Interest
Benjamin D. Lutz, Shane A. Brown and Natasha Perova-Mello	535–547	Exploring Practicing Engineers' Understanding of Fluid Mechanics Concepts
Santi Caballé	548-562	A Computer Science Methodology for Online Education Research
Wenjun Quan, Qing Zhou, Yu Zhong and Ping Wang	563–571	Predicting At-Risk Students using Campus Meal Consumption Records
Greg Rulifson and Angela Bielefeldt	572–584	Learning Social Responsibility: Evolutions of Undergraduate Students' Predicted Engineering Futures
Alyona Sharunova, Mehwish Butt, Michael Kowalski, Paulo P. Lemgruber Jeunon Sousa, Jason P. Carey and Ahmed Jawad Qureshi	585–597	Looking at Transdisciplinary Engineering Design Education through Bloom's Taxonomy
Fredrik Asplund and Martin Edin Grimheden	598–616	Reinforcing Learning in an Engineering Master's Degree Program: The Relevance of Research Training
Soo Eun Chae and Mi Suk Lee	617–622	Student-Centered Learning and Higher-Order Thinking Skills in Engineering Students
João Vieira and João L. M. P. De Lima	623–630	Laboratory Installation for Simulating Groundwater Flow in Saturated Porous Media in Steady-State and Transient Conditions
Cassandra S. E. Woodcock, Prateek Shekhar and Aileen Huang-Saad	631–644	Examining Project Based Entrepreneurship and Engineering Design Course Professional Skills Outcomes
Dilek DüŞtegör	645–657	Analytical Tool for the Modelling and Simulation of Curriculum: Towards Automated Design, Assessment, and Improvement
Linda Steuer-Dankert, Shannon K. Gilmartin, Carol B. Muller, Carolin Dungs, Sheri Sheppard and Carmen Leicht-Scholter	658–673	Expanding Engineering Limits—A Concept for Socially Responsible Education of Engineers
Ning Fang, Laurie Mcneill, Robert Spall and Paul Barr	674–684	Impacts of Industry Seminars and a Student Design Competition in an Engineering Education Scholarship Program
Ann Saterbak, Tracy M. Volz and Matthew A. Wettergreen	685–697	Impact of Flipping a First-Year Course on Students' Ability to Complete Difficult Tasks in the Engineering Design Process
Qin Ni, Lele Zhang, Bo Zhang and Feng-Kuang Chiang	698–709	Interdisciplinary Method for Assessing Students' Ability Based on STEM Projects
	710	Guide for Authors