Contents

Contributions in: Project Based Learning, Service Learning, Leadership, Self-Efficacy, Employability Skills, Gender, Graduate Studies, Flipped Learning, International Experiences, Evaluation, Active Learning, Team Performance, First Year Students, Study and Research Paths, Innovation, Student Dropout, Selection of Engineering Discipline, African Americans, Resilience, Design-Based Learning, Systems Thinking, Civil Engineering, Electronic Technology, Programming, Strength of Materials, Thermodynamics, Math and Physics, Computer Science

Ahmad Ibrahim	299	Editorial
Isam Alyaseri	300–310	Problem-Based Service Learning to Improve Solid Waste Management in Iraq
Meg Handley, Jeff Plumblee, Brett Tallman, Brian Novoselich, Seth Sullivan, Tim Kennedy, Lori Houghtalen and May-Ling Tan	311–324	Engineering Leadership Across Disciplines: A Systematic Literature Review
Jimoh Bakare, Ariyo Samson Oluwatimilehin, Samson Ikenna Nwaodo, Obe Pauline Ijeoma, Amenger Maashin and Akpokiniovo Duke Ejaita	325–340	Assessing the Differential Effectiveness of Computer Tutorial and Simulation Techniques on Students' Achievement and Self Efficacy Belief in Vocational Electronic Technology Courses
Ali Rizwan, Hemaid Alsulami, Atif Shahzad, Nabilah Elnahas, Shahad Almalki, Rahaf Alshehri, Malak Alamoudi and Hind Alshoaibi	341–350	Perception Gap of Employability Skills between Employers' and Female Engineering Graduates in Saudi Arabia
Hui Liu and Yu-Qi Lin	351–361	Factors Influencing Pharmaceutical Engineering Undergraduates to Pursue Graduate Studies
Wen-Lan Hsieh, Adriana Signorini, Po-Ya Abel Chuang and Wei-Fan Chen	362–375	Investigating Students' Experiences and Perceptions of a Flipped and Adaptive Online Engineering Thermodynamics Class
Ammar Y. Alqahtani	376–387	Employment Expectations of New Engineering Graduates and the Demands of Labor Market: A Case Study
Yaxin Huang, Jiabin Zhu and Bing Chen	388–396	Investigating the Impact of Engagement in Prior International Learning Experiences on Engineering Students' Learning Outcomes
Zoran Stojadinović, Marija Božić and Ana Nadaždi	397–408	Development and Implementation of Evaluation Framework for Quality Enhancement of Outcome-Based Curriculum
Krištof Debeljak, Slavko Kocijancic and Boris Aberšek	409–419	Comparison of the Efficiency of Textual and Iconic Programming Environments for Teaching Programmable Logic Controllers
Caroline Crockett, Cynthia J. Finelli, Matt Demonbrun, Kevin A. Nguyen, Sneha Tharayil, Prateek Shekhar and Robyn S. Rosenberg	420–432	Common Characteristics of High-quality Papers Studying Student Response to Active Learning
Runar Unnthorsson and Gudmundur V. Oddsson	433–445	Evaluating Team Performance in a Student Led Multidisciplinary Project Course with the PAINTER Method
Elena Bartolomé, Ignasi Florensa and Marianna Bosch	446–460	Teaching Strength of Materials through "Study and Research Paths": Invariants and Differences
Guido Charosky and Ramon Bragós	461–470	Investigating Students' Self-Perception of Innovation Competences in Challenge-Based and Product Development Courses
Sandra M ^a C. Pinheiro, Karla Oliveira- Esquerre, Márcio A. F. Martins and Roseline Oliveira	471–481	Student Performance in First-Year Math and Physics Courses as Predictor of Student Dropout in Engineering Programs
Mohammad Alsager Alzayed and Scarlett R. Miller	482–496	Factors Influencing Undergraduates' Selection of an Engineering Discipline: A Case Study
Teirra K. Holloman, Jeremi London, Walter C. Lee, Crystal M. Pee, Chaneé Hawkins Ash and Bevlee Watford	497–511	Underrepresented and Overlooked: Insights from a Systematic Literature Review about Black Graduate Students in Engineering and Computer Science
Yasutaka Ueda, Itaru Kourakata, Nozomu Tsuboi and Takamasa Suzuki	512–527	Multicultural and Multi-disciplinary Project-based Learning with Industry Focus: Fostering Globally Competent Engineers
Stephen O. Ekolu	528–536	Model for Predicting Summative Performance from Formative Assessment Results of Engineering Students

Nathaniel J. Hunsu, Adurangba V. Oje, Peter H. Carnell and Nicola W. Sochacka	537–549	Examining Factorial Validity Evidence for the Academic Resilience Scale in an Engineering Learning Context
Jac K. L. Leung, Samuel K. W. Chu, Ting Chuen Pong and Paul D. Lavigne	550–563	The Impact of Blended Design-Based Learning for Multidisciplinary Cornerstone Design on Students' Motivation in Engineering
Aharon Gero and Itschak Shlomo	564–572	Promoting Systems Thinking in Two-Year Technology Students: An Interdisciplinary Course on Medical Ultrasound Systems
	573	Guide for Authors