Contents

Section I Special Issue Good Practices for Emergency Situations and Remote Regions – Part 2

Guest Editors

Andrés Díaz Lantada – Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Spain José Luis Martín Núñez – Instituto de Ciencias de la Educación, Universidad Politécnica de Madrid, Spain

Editorial Ahmad Ibrahim	285
Guest Editorial Andrés Díaz Lantada and José Luis Martín Núñez	286–287
Responsive Educational Transformations During Emergency Situations: Collaborative Autoethnography Applied to the Engineering Classroom Lisa B. Bosman, Ebisa Wollega and Usman Naeem	288–298
Distance Learning: Should We Go Interactive At Any Cost? Ivan Pinćjer, Ivana Tomić, Savka Adamović and Nada Miketić	299–309
Can In-Home Laboratories Foster Learning, Self-Efficacy, and Motivation During the COVID-19 Pandemic? – A Case Study in Two Engineering Programs Jonathan Álvarez Ariza	310-321
Teaching Computer Science and Computer Engineering During COVID-19 Lockdown at the Pakistani Universities Muhammad Khalid Shaikh, Tahseen A. Jilani and Kamran Ahsan	322–334
Impact of COVID-19 on the Teaching and Learning of a Graphic Engineering Course Rosó Baltà-Salvador, Noelia Olmedo-Torre, Luis Eduardo Mujica and Marta Peña	335–349
Exploring the Impact of the COVID-19 Pandemic on the Lives of Engineering Students at San José State University, USA Patricia Ryaby Backer and Maria Chierichetti	350–364
Undergraduate Student Opinions on Emergency Remote Teaching during COVID-19 Pandemic. A Case Study Gádor Indra Hidalgo, Fermín Sánchez-Carracedo and Daniel Romero-Portillo	365–375
The Transition from In-class to Online Lectures During a Pandemic: Understanding the Student Experience Leanne A. Grieves, James Mckendry, Nasim Muhammad and Seshasai Srinivasan	376–392
Challenges and Opportunities for Higher Engineering Education During the COVID-19 Pandemic Aziz Shekh-Abed and Nael Barakat	393–407
Online Learning Perceptions amid COVID-19 Pandemic: The Engineering Undergraduates' Perspective Meltem Eryilmaz, Guler Kalem, Hurevren Kilic, Guzin Tirkes, Damla Topalli, Cigdem Turhan, Burcu Alakus and Ali Yazici	408–420
Evaluating Technological Acceptance of Virtual Learning Environments (VLE) in an Emergency Remote Situation Luis Magdiel Oliva-Córdova, Antonio Garcia-Cabot, Sonia Alejandra Recinos-Fernández, Maylin Suleny Bojórquez-Roque and Héctor R. Amado-Salvatierra	421–436
Hybrid PBL Teaching Practice under COVID-19 Impact – A Case Study Shi-Jer Lou, Chuang-Yeh Huang, Yuh-Ming Cheng and Chih-Chao Chung	437–451

Section II

Contributions in: Mechatronics, Multidisciplinary Design, Supply Chain, Industry 4.0, Student Research, Database Management, Teacher Experiences, STEM, Teachers Perceptions, Design Thinking, Empathy, Engineering Identity, PBL, Case-Based Learning, Biotechnology, 3D Printing Course, Creativity

Applying Graphical Representation Method in Teaching Mechatronics Problems in Industrial Automation to Undergraduates – A Case Study	452–465
Julio Garrido, David Santos, Diego Silva and Enrique Riveiro	
Current Trends in Supply Chain Training Programs in the Context of Industry 4.0 Technologies Lei Xie, Malini Natarajarathinam, Michael D. Johnson and Shaoping Qiu	466-481
Literature Searching/Compiling/Understanding for Support of Student Research/Projects: A Dedicated Course Approach Thomas K. Gaylord and Bette M. Finn	482–490
Primary and Middle School Teacher Experiences of Integrated STEM Education in China: Challenges and Opportunities Qianru Lyu, Feng-Kuang Chiang and James Davis	491–504
Elementary Teachers' Perceptions of Engineering Education: A Survey Study in Taiwan Pao-Nan Chou and Wei-Fan Chen	505–511
Creating Space for Empathy: Perspectives on Challenges of Teaching Design Thinking to Future Engineers Diana Bairaktarova and Donald Plumlee	512–524
Students' Views on Sources of Engineering Identity Development in a Collaborative PBL Environment Juebei Chen, Xiangyun Du and Anette Kolmos	525–542
Effect of Case-Based Learning (CBL) on Student Performance in Engineering Biotechnology Education Faiez Alani, Fei Geng, Mae Toribio and Rehmat Grewal	543–548
Development and Assessment of a 3D Printing Course for Technical High School Students Yun-Hsuan Chu, Chih-Chao Chung, Ru-Chu Shih and Shi-Jer Lou	549–563
Investigating How Early-Career Engineering Faculty Perceive the Role Creativity Should Play in Engineering Education Hao He, Johannes Strobel, Suzanne Burgoyne, Joshua Saboorizadeh, Heather K. Hunt and Ferris Michael Pfeiffer	564–580
Guide for Authors	581