Contents

Section I

Special Issue Current Development in Interactive Pedagogies in Teaching and Learning Energy-Related Engineering Subjects

Guest Editors

Diana Bairaktarova and Thomas Diller

Virginia Polytechnic Institute and State University, USA

Editorial Ahmad Ibrahim	1
Guest Editorial Current Developments in Interactive Pedagogies in Teaching and Learning of Energy-related Engineering Subjects Diana Bairaktarova and Thomas Diller	2–4
Evaluation of the Effectiveness of Individual Hands-on Workshops in Heat Transfer Classes to Specific Student Learning Outcomes Thomas Diller and Diana Bairaktarova	5–15
Effects of Game-Based Learning on Engagement and Academic Performance for Undergraduate Science and Engineering Students Saqib R. Jivani, Mouna Chetehouna, Sanaa Hafeez and Mohamed H. Adjali	16–22
GeoGebra Tool: Development of Applications for Electrical Machines and Drives Teaching Support Miroslav Bjekić, Marko Rosić and Marko Šućurović	23–37
The Efficacy of GeoGebra Tool in Enhancing Electrical Machines and Drives Instruction Marko Rosić, Miroslav Bjekić and Dragana Bjekić	38-42
A New Practical Approach for a Basic Electrical Instrumentation Lab to Enhance Student Engagement and Performance Ainhoa Rezola, Andoni Beriain, Héctor Solar and Noemí Pérez	43–53
Exploring the Impact of Virtual Office Hours on Engineering Students' Learning: A Case Study in Higher Education Maeve Bakic, Krishna Pakala and Devshikha Bose	54–68
Inverted Pendulum Projects in Controls Education: A Five-Year Journey Ryan W. Krauss	69–74
Analysis on the appropriate Pedagogy approaches applicable for 'Engineering Thermodynamics' Course Rayapati Subbarao	75–82

Section II

Contributions in: K-12 Engineering, Learning Outcomes, Student Engagement, Gamification, Distance Learning, Flipped Classroom, STEM, Virtual Office Hours, PBL, Pedagogy Approaches, Motivation, Technical Reports, Interpersonal Skills, Creativity, Attendance and Performance, Curriculum Demands, Retention, Teamwork, Simulations, Thermodynamics, Power Engineering, Instrumentations, Chemical Engineering, Civil Engineering, Industrial Engineering

Effects of High School Engineering Course Participation on Persistence Attitudes and Engineering Self-Efficacy	83–96
Kristin Sandberg, Jean Mohammadi-Aragh, Jenna Johnson, Shane Brauer and Deborah Eakin	
Engineering Students' Varying Motivation and Self-concept in Mathematics Evgeniva Burtseva, Marcus Sundhäll, Timo Tossavainen and Peter Wall	97–107
Validation of a Senior-Level Chemical Engineering Laboratory Course Technical Report Rubric that Aligns with Industry Expectations	108–115
Annhania C. Wattatain Davidas I. Haskan Jonnifan D. Proven	

Stephanie G. Wettstein, Douglas J. Hacker, Jennifer R. Brown

Perceptions of the Importance of Interpersonal Skills by Engineers, Students, and Faculty Morgan Green, Alta Knizley and Lesley Strawderman	116–125
Teaching Creativity in Engineering Schools: A review of the Literature Yasemin Tekmen-Araci	126–143
Group Quizzing to Improve Attendance and Performance in a Civil Engineering Classroom – A Case Study Congrui Jin and Tareq Daher	144–153
Learning to Cope in Undergraduate Chemical Engineering: A Comparative Study of Second Year Students Across Three Countries Nicole P. Pitterson, Jan McArthur, Ashish Agrawal, Alaa Abdalla and Jennifer M. Case	154–165
Coming and Going: What Draws Students to Industrial Engineering and What Pushes Them Away Sara C. Vick, Brian K. Smith and Lesley Strawderman	166–178
The Reflective Modeling Practitioner: Promoting Self-regulation and Self-confidence in Computational Modeling and Simulation Practices Joreen Arigye, Joseph A. Lyon, Alejandra J. Magana and Elsje Pienaar	179–195
"Not a Therapist": Why Engineering Faculty and Staff Do/n't Engage in Supporting Student Mental Health and Wellbeing Jeanne Sanders, Eileen Johnson, Joseph Mirabelli, Andrea Kunze, Sara Vohra, and Karin Jensen	196–213
Guide for Authors	214