Contents

Section I

Special Issue

Case-Based Learning in Engineering and Applied Science Education

Guest Editors

Faiez Alani – McMaster University, Hamilton, Ontario, Canada Gabriel Acien – University of Almeria, Almeria, Spain

Editorial Ahmad Ibrahim	459
Guest Editorial Faiez Alani and Gabriel Acien	460
Case-based Learning in Artificial Intelligence Course – A Case Study Using Microsoft Azure in University Course Wen-Chih Chang and Moocharoen Charoenwat	461–471
Guiding Global Innovation Teams on their Exploration Journey: Learning from Aspiring Engineering Students Jenny Elfsberg, Christian Johansson Askling, Andreas Larsson Tobias Larsson and Larry Leifer	472–490
Amalgamation of Research-, Case-, Project-, and Video-based Learning in Teaching Engineering and Computing Ethics Riadh Habash	491–498
Comparison Between In-person Versus Virtual Case-based Learning for an Upper Year Course in Engineering Technology Education Faiez Alani and Rehmat Grewal	499–510
A Work-based Project Practice Motivated by Problem-Solving in Software Engineering Ga Xiang, Lei Wang, Xuan Sun and Weiran Tang	511–519
The Effects of Online Project-based Learning with Real Enterprise Data in Two Interdisciplinary Courses Kim Moon-Soo	520–530

Section II

Contributions in: Entrepreneurship, Assessment, Team-Based Learning, STEM, Graphics Interpretations, Student Engagement, Student Outcomes, Modeling, Visual Patterns, Eye-Tracking, Industry 4.0, Self-Efficacy, Competence Development, Career Path, Life-Satisfaction, Race & Gender, Choice of Major

Assessment of Student's Entrepreneurial Self-Efficacy in Entrepreneurship Courses: A Latent Mean Analysis Heydi Dominguez and Prateek Shekhar	531–542
Evaluation of Bias in Peer Assessment in Higher Education Jacklin H. Stonewall, Michael C. Dorneich and Jane Rongerude	543–556
Perceptions of Engineering and Technology High School Teachers and Policymakers towards 21st Century Skills Amona Abu-Younis Ali, Shahaf Rocker Yoel and Yehudit Judy Dori	557–571
How Engineering Students Understand and Interpret Graphics Using Spreadsheets an Empirical Study in Physics Courses Daniel Sánchez Guzmán and Erika Cervantes Juárez	572–582
Analysis of First-Generation Engineering Students Engagement and its Relation to their Academic Performance Abigail Lehto and Ning Fang	583–590
Design and Implementation of a Comprehensive Platform to Assess Students' Outcomes E. M. Shaban, Abdullateef H. Bashiri, Waleed Zakri, Anil Kumar Deepati and Faroogue Ahmad	591–605

A Perspective on Micro-Courses and Building Information Modeling for Enhanced Teaching and Learning Liting Bai and Qi Chai	606–613
Academic Performance and Visual Patterns in Reading Technical and Design Articles among Industrial Design Students Yongchum Mao and Guolin Zhang	614–623
Readiness to Teach Industry 4.0 among University Lecturers in Malaysian Urban Universities Zariv Long-Kwan Chew, Ananda Kumar Palaniappan and Chooi-Seong Lai	624–638
Perceived Benefits of a STEM Intervention Program and Engineering Self-Efficacy: A Multi-Method Investigation Selyna Pérez Beverly, Christina S. Morton and Lisa R. Lattuca	639–655
Reconstruction of a Curriculum Framework in Vocational Colleges for Comprehensive Competence Development Lizhi Tao, Prasert Ruannakarn, Hengliang Cheng, Fei luo, Xuyun Peng and Zhongbao Ma	656–668
Beyond the GPA: Factors Influencing Life Satisfaction of Engineering Undergraduates Dragan Lj. Bjelica, Dejana Pavlović and Luka Petrović	669–677
Examining the Role of Race, Gender, and Major in Engineering Major Selection Through Ecological Systems Theory Perspective Sinan Onal and Ezra Temko	678–701
Guide for Authors	702