

Contents

Section I

Special Issue

How disability is addressed in Engineering Education

Guest Editors

Miguel Ángel Conde

GRIAL Research Group, Departamento de Informática y Automática, Escuela Politécnica Superior de Zamora, Universidad de Salamanca, Spain

Jesús Ángel Román Gallego

Grupo de Investigación CIMET, Departamento de Informática y Automática, Escuela Politécnica Superior de Zamora, Universidad de Salamanca, Spain

Editorial <i>Ahmad Ibrahim</i>	1
Guest Editorial How Disability is Addressed in Engineering Education <i>Miguel Á. Conde and Jesús-Ángel-Román-Gallego</i>	2–4
Overview of Disability in the University: Real-Life Experiences <i>Roberto Barchino, Raquel R. Gragera, Ángel Asenjo and Lourdes Jiménez</i>	5–15
Is Neurodiversity Addressed as a [Hidden] Dis/ability in Engineering Education? A Literature Review <i>Azadeh Bolhari and Angela R. Bielefeldt</i>	16–31
Writing About Disability: An Investigation Into Disability Language Usage In Engineering Education Literature <i>Rachel Figard and Sage Maul</i>	32–46
How to Foster Self-regulation Abilities in Engineering Students with Learning Disability <i>Irma-Yadira Gámez-Suazo, María-Luisa Pérez-Delgado and Jesús-Ángel Román-Gallego</i>	47–56
A Systematic Literature Review on the Benefits of Robotics and Active Learning Methodologies for Promoting STEAM Education among Students with Intellectual and Developmental Disabilities <i>Miguel Á. Conde, Francisco J. Rodríguez-Sedano, Francisco J. García-Peña, Laiany Saganuma, José Gonçalves, Ilkka Jormanainen and Samuel Yigzaw</i>	57–70
Inclusive Engineering Education: Strategies for Supporting Autism Spectrum Disorder Students <i>Rocío García-Pascual and Francisco J. Rodríguez-Sedano</i>	71–83

Section II

Contributions in: Capstone Courses, Makerspace, Internet of Things, Flipped Classroom, PBL, Engineering Ethics, Engineering Design, Self-Efficacy, Entrepreneurship, Motivation, Community of Inquiry, Students Perceptions, AI, Robotics Curriculum, Quantitative Scale, Digital Competencies, Mentoring Styles

Structuring Engineering Capstone Courses: Addressing Challenges and Implementing Solutions <i>Ertan Ozturk</i>	84–96
Using Augmented Reality to Train Undergraduate Engineering Students on Makerspace Tools <i>Caroline Greiner, Anastasia Schauer, Drew Rosh-Gorsky, Roxanne A. Moore and Katherine Fu</i>	97–111
High School Curriculum Model Integrating Technology and Practice <i>Cheng-Chuan Lu, Shi-Jer Lou, Yung-Chang Lin and Chih-Chao Chung</i>	112–131

Engineering Students' Perceptions of a Flipped English-Medium Instruction Course: Insights from a Taiwanese University <i>You-Cian Lin, Chun-I Wu and Gwo-Jen Hwang</i>	132–151
Scaffolding Project-Based Learning: Effects on Metacognitive Development Among Malaysian Electrical Engineering Students <i>Jinye Jia, Nurzal Effiyana Ghazali, Eileen L.M. Su, Nabilah Zaini, Mitra Mohd Addi and Mingyu Wu</i>	152–159
Perceptions of Undergraduate Engineering Students of Two Approaches to Teaching Engineering Ethics: A Case Study <i>Wesley Lawson and Gideon Smith</i>	160–169
Developing Secondary Pre-Service Science Teachers' Self-Efficacy for Teaching Engineering <i>John Chukwunonso Ojeogwu and Frackson Mumba</i>	170–182
Engineering Students' Entrepreneurial Intentions: Can Entrepreneurship Education Drive the Shift? <i>Guillermina Tormo-Carbó, Elies Seguí-Mas and Ester Guijarro</i>	183–197
Perceptions and Realities of Students' Motivation to Choose Engineering Pathways <i>Aniceto B. Naval and Ronalyn T. Langam</i>	198–206
Perceptions of Classroom "Surroundings" after COVID-19: Application of the Community of Inquiry Theoretical Framework <i>Renee M. Clark, Matthew Moss, Ozge Uyanik, Autar Kaw and Rasim Guldiken</i>	207–217
Engineering Students' Perceptions of Artificial Intelligence: A Case Study from Saudi Arabia <i>Abdelhamid Ajbar and Emad Ali</i>	218–228
The Integration of Cloud Computing and IoT Technologies with a Robotics Curriculum <i>Meiramgul Mukhambetova</i>	229–238
Investigating the Challenges of Adapting Quantitative Scales into an Engineering Education Context <i>Courtney Faber, Adam Carberry and Allison Godwin</i>	239–258
Promoting Application of IoT and DigComp 2.2 to Competence-Based Learning in Precision Agriculture <i>Carlos Gilarranz-Casado, Alejandro Leo-Ramírez, Alberto Cruz-Ruiz and José Álvarez</i>	259–267
The Impact of Supervisors' Mentoring Styles on Engineering Graduate Students' Academic Achievement and Anxiety Levels <i>Gangyi Ren, Ye Zuo and Jun Wang</i>	268–279
Guide for Authors (2026)	280