
Teaching Introductory Parallel Computing Course with

Hands-On Experience*

NATALIJA STOJANOVIC and EMINAMILOVANOVIC
Faculty of Electronic Engineering, University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia.

E-mail: natalija.stojanovic@elfak.ni.ac.rs

This paper presents an innovative course designed to teach parallel computing to undergraduate students with significant

hands-on experience. This course represents an introduction to the main topics of parallel, distributed and high-

performance computing (HPC). The course introduces main concepts and architectures used in parallel computing

today, and improve students’ skills to develop parallel programs using major parallel programming paradigms: MPI

(Message Passing Interface), OpenMP (Open-Multiprocessing). The main objective of the course is to teach practical

parallel programming tools and techniques forMIMDwith sharedmemory,MIMDwith distributedmemory and SIMD.

Each of these software tools can be used to give students experience with parallelization strategies, and ability to rate the

quality and effectiveness of parallel programs. We evaluate the success of our approach through the use of testing and

survey and provide directions for further improvements in teaching parallel programming.

Keywords: parallel computing; parallel programming; high performance computing; education; MPI; OpenMP; CUDA

1. Introduction

The advances and proliferation of multiprocessor

computing architectures during the last decade have

given rise to advanced parallel and distributed

computing research and development [1]. Recently,

there has been an increase in the acceptance and

implementation of parallel and distributed comput-

ing, both for high-performance scientific computing
and for a wide spectrum of general-purpose com-

puting applications [2]. Accordingly, parallel and

distributed computing has moved from mostly

elective graduate courses to become a core compo-

nent of undergraduate computing curriculum.

Therefore, it is not sufficient for current computer

science graduates to master sequential software

development and appropriate software tools and
methods. With the expected rapid changes and

advancements in high performance computing in

the coming years, based on multi-core processors,

many-core GPUs, cluster of workstations and dis-

tributed data centers in clouds, there is an increasing

need for including parallel computing topics in

computer science curriculum at an early stage.

Such an introductory course will be the foundation
for later undergraduate and graduate courses that

should include broad- and deep-based topics in

parallel, distributed and high-performance comput-

ing. The need for introducing parallel and distribut-

ing courses in undergraduate computer science

curriculum is widely recognized in the computing

community through various initiatives, such as

ACM/IEEE Computer Science Curricula 2013 [3]
and NSF/TCPP Curriculum Initiative on Parallel

and Distributed Computing—Core Topics for
Undergraduates [4].

Many researchers and educators have considered

how parallel computing should be introduced in

undergraduate courses [5, 6]. Since many universi-

ties lack the funds to purchase expensive parallel

computers, cost effective alternatives are proposed

to teach parallel computing and programming

methods and techniques. The rapid change in com-
puting platforms, programming languages and

environments, and software development tools,

make the challenge for educators to establish appro-

priate and effective curriculum related to parallel

and distributed computing.

At the University of Nis, we regularly teach an

introductory parallel computing course considering

parallel computer architectures and parallel pro-
gramming methods and techniques. As parallel

computing platforms we use multi-core and many-

core processor architectures, network of computers

and parallel software simulators. We present our

past and current experiences in teaching introduc-

tory parallel computing course that confirm that

such a course can be taught successfully with con-

siderable hands-on experience, with a limited
budget.

The rest of this paper is organized as follows.

Section 2 presents the related work in teaching

parallel and distributed computing across under-

graduate and graduate computing curricula. Sec-

tion 3 describes important parallel computing

models associated and the way they can be intro-

duced in an undergraduate course. Section 4 pre-
sents a practical approach to introducing parallel

* Accepted 25 April 2015. 1343

International Journal of Engineering Education Vol. 31, No. 5, pp. 1343–1351, 2015 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2015 TEMPUS Publications.

computing to undergraduate students with consid-

erable hands-on experience. Section 5 evaluates our

approach and confirms its benefits. Finally, Section

6 provides some conclusions.

2. Related work

With the increasing presence of multi-core proces-

sors, many-core graphics processing units (GPUs),

network and clusters of computers/workstations,

there is a need for including broad- and deep-

based courses in parallel and distributed computing

at various levels in the Computer Science and
Engineering curriculum. Several approaches pre-

sented in the literature have been proposed in an

attempt to integrate parallel computing and pro-

gramming topics across the computer science curri-

culum.

Danner and Newhall in [7] discuss changes made

to incorporate parallel and distributed topics into

all levels of undergraduate liberal arts computer
science curriculum. The center of their changes is a

new intermediate-level course that introduces stu-

dents to computer systems and to parallel comput-

ing that serves as a foundation to many upper-level

courses that provide more breadth and depth of

coverage of parallel and distributed computing

topics.

Arroyo in [8] proposes a set of related parallel and
distributed programming topics, to be included in

the updated computer science curriculum core

courses at the Rı́o Cuarto National University,

Argentina. They discuss several approaches for

teaching parallel programming topics in a set of

core courses to achieve a consistent, increasing and

complete training in high performance computing.

They describe the use of parallel and distributed
computing tools suitable for teaching parallel pro-

gramming in different courses.

Deo et al. in [9] present an approach to include an

interdisciplinary course on computational model-

ing with a focus on parallel programming across the

undergraduate curriculum. They argue that compu-

tational modeling is a fundamental process in all

scientific disciplines, and that there is a necessity to
effectively employ massively parallel high-perfor-

mance computing machines in scientific computa-

tions.

Brown et al. in [10] present their experiences in

teaching concepts of parallel computing in two

undergraduate programming courses and an under-

graduate hardware design course. They describe

how parallel concepts have been integrated in the
courses, the assessments, and the results.

Gross in [11] presents an approach for including

parallel programming in the engineering-oriented

undergraduate curriculum. They added an intro-

duction to parallel programming to the list of

mandatory courses in the 2nd semester, exposing

students to three styles of parallel programming:

threads with shared memory, CSP-style message

passing, and OpenMP-based parallel program-

ming. They discuss benefits and disadvantages of
including an introductory class on parallel comput-

ing early in the undergraduate curriculum and point

to several issues that will be considered in the future.

Rivoire in [12] presents an approach to teaching

parallel programming models, by offering a

breadth-first introduction to multi-core and many-

core programming for upper-level undergraduates.

The students gained programming experience with
three different parallel programmingmodels related

to multicore and manycore computing. Their

assessments showed that the course gave students

a broad skill set in parallel programming and

ongoing developments in the field.

Freitas in [13] describes an experiment on a

traditional parallel programming Computer

Science course trying to explore the best schedule
for introducing parallel programming topics in

order to improve the quality of learning. Their

results show that the best results are achieved

when the OpenMP model is introduced before the

MPI model. They conclude that such a schedule

properly emphasizes parallel programming con-

cepts and improve student motivation and learning.

Fienup in [14] presents their experience with
incorporating parallel computing topics into the

Computer Science curriculum at the University of

Northern Iowa via the Computer Architecture

course. The paper discusses details related to

course goals, parallel programming tools, and tech-

niques for teaching parallel programming topics.

Praun in [15] presents an introductory parallel

programming course at the bachelor level organized
along the tiers of parallelism. These tiers are from

higher to lower abstraction levels and are defined

according abstractions and concepts needed when

developing a parallel program. The goal of the class

is to introduce fundamental principles of parallel

systems and to serve as a platform for further

exploration in specialized parallel computing

courses. The course has a significant share of lab
sessions and programming projects using X10 pro-

gramming language. The first experience in teaching

this course shows very positive student feedback.

Keller in [16] describes the teaching approach, the

content and the lessons learned of a lecture on

parallel programming for undergraduate students.

The focus of the course was on to provide hands-on

experience in developing parallel code for a HPC
cluster. The aim of the lecture was to provide an

in-depth understanding of several actual parallel

programming paradigms: OpenMP, MPI and

Natalija Stojanovic and Emina Milovanovic1344

OpenCL, as well as MapReduce based on Apache

Hadoop platform. The strong point of this course

lays in practical parallel programming and work on

real life codes.

Pacheco in [17] presents an approach for teach-

ing parallel computing to undergraduate computer
science students early in the curriculum. The

emphasis is on hands-on experience and early

start of ‘‘thinking in parallel’’, while formalism

and rigor are less important. The main topics of

their course are based on using MPI, Pthreads,

and OpenMP. The coursework includes weekly

homework assignments, five programming assign-

ments, two midterms and a final exam. They
report satisfactory outcomes, student enthusiasm

and motivation to further study graduate parallel

computing topics.

Our approach to teaching introductory parallel

computing course at the undergraduate level is

similar to [16] and [17] regarding hands-on experi-

ence, but in our opinion, it is more balanced and

appropriate as the introductory undergraduate
course in parallel computing. We take care that

the curriculum is not overwhelmed for a single

semester course, as it seems in Keller’s approach.

Also, in our course we cover in-depth the currently

most important parallel programming paradigms,

OpenMP, MPI, and basics of CUDA, and demon-

strate the effectiveness of applying parallel pro-

gramming paradigms over them in solving real life
computing and data-intensive problems. Also we

use Parallaxis simulator [18] for demonstrating

SIMD concepts that are not explicitly supported

by mentioned programming models.

3. Models of parallel computing

To achieve high performance, application software

needs to effectively use parallelism available in

current computer architectures. There are several

types of parallel computing architectures, based on

parallel and distributed processing principles. Some

of such architectures employ parallel processing at a

single computing node while others are built from

collections of networked, possibly heterogeneous
computers/workstations. Because of its scalability

and availability these networked environments

represent a promising solution for low-cost, high

performance computing. There are also different

models of parallel programming based on different

topologies that define connection of processors and

memory modules. The three most commonly used

models are: SIMD (Single Instruction Multiple
Data), MIMD (Multiple Instructions Multiple

Data) with shared memory and MIMD with dis-

tributed memory. Parallel software platforms that

we use in our course to support these models are:

� OpenMP (Open-Multiprocesing) for MIMD

with shared memory.

� MPI (Message Passing Interface) which enables

that a network of workstations is treated as

MIMD with distributed memory.

� Parallaxis software simulator of SIMD computer
[18].

Nowadays, each desktop or laptop computer

empowered with multi-core processor becomes a

small parallel system. Consequently, OpenMP has
been developed to enable writing of parallel pro-

grams for shared-memory multiprocessor plat-

forms. MPI has become the major model of

programming distributed-memory applications on

a cluster of workstations. Parallaxis is a sophisti-

cated SIMD simulator which runs on a variety of

platforms. Parallaxis is a machine-independent

language for data-parallel programming. Program-
ming in Parallaxis is done on a level of abstraction

with virtual processors and virtual connections,

which may be defined by an application program-

mer.

3.1 OpenMP

Shared-memory systems include many CPUs that

share the same physical memory. This kind of

architecture is sometimes called MIMD (Multiple
Instruction Multiple Data) with shared memory.

Until recently, shared-memory systems cost hun-

dreds of thousands of dollars and were affordable

only by large companies and scientific/education

institution. Nowadays, multi-core machines, in

which two or more CPUs share a common

memory, in the desktop, laptop computers and

even in smartphones, are widely available.
OpenMP represents a set of compiler directives,

library routines, and environment variables which

enable programmer to specify to the compiler which

instructions to execute in parallel. Also, OpenMP

provides programmer to define how to distribute

these instructions among the threads that will run

the code. OpenMP is not a new programming

language. Rather it is a notation that can be added
to a sequential program in C, C++ and Fortan to

describe how the work can be shared among the

threads that execute on different processors or

cores, as well as to order access to shared data [22].

OpenMP supports the so-called fork-join pro-

gramming model (Fig. 1).This approach assumes

that the programbegins execution as a single thread.

Every time this thread encounters OpenMP parallel
construct during program execution, it creates a set

of threads. It then becomes a parent thread and

cooperateswith other threads of the programexecu-

tion. At the end of parallel construct only the initial

Teaching Introductory Parallel Computing Course with Hands-On Experience 1345

thread continues execution, interrupting the execu-

tion of others.

To properly implement parallel OpenMP appli-

cation, it is expected that a student specifies the

parallel parts of the program and the method of

parallelism applied. The responsibility of OpenMP

framework is to classify the parts of the program

and create appropriate threads, aswell as to allocate
a piece of code to be executed by each thread. The

method of work division can have a significant

impact on the program performance. Students

usually use OpenMP to parallelize loops. They

also have opportunity to use schedule clause to

perform different scheduling policies which deter-

mine how loop iterations aremapped to the threads.

In loop parallelization, the students also get con-
fronted with problems caused by data races and

dependencies.

3.2 MPI

A set of commodity PCs (nodes) networked

together can be used as a parallel processing

system. The PCs are individual machines, which

can be uniprocessor or multiprocessor. Networking

them together and using parallel-processing soft-

ware environments, such as MPI, can form very

powerful parallel systems (Fig. 2). MPI has become
the major model of programming parallel distrib-

uted-memory applications. MPI is a specification,

not an implementation of library routines, helpful

for users that write portable message-passing pro-

grams in C/C++ and Fortran. There are different

implementations of MPI: MPICH, OpenMPI,

LAM, WMPI, Cray MPI, etc. The most popular

MPI implementation is MPICH2 [19].

Themajor goal ofMPI, aswithmost standards, is

a degree of portability across different machines.

MPI has the ability to run on heterogeneous sys-

tems, groups of processors with distinct architec-
tures [20, 21]. Therefore,MPI provides a computing

model that hidesmany architectural differences. It is

not necessarily to know whether the program code

sends messages between processors of the same or

different architectures. The MPI implementation

automatically performs any necessary data conver-

sion and utilizes the correct communications pro-

tocol. This means that the same source code can be
executed on a variety ofmachines as long as theMPI

library is available. Message passing works by

creating processes which are distributed among a

group of processors. The basic assumption behind

MPI is that multiple processes work concurrently

using messages to communicate and collaborate

with each other. In this course, students learn

about communication paradigms of MPI and con-
sider the advantages and disadvantages of blocking

and non-blocking communication. By applying the

knowledge regarding collective communication,

user-defined communicators, derived datatypes

and virtual topologies the students are able to

apply different parallelization strategies to distri-

bute work among multiple processors.

MPI is not a simulator; it usesmultiple processors
to perform the work. This means that execution

times can be captured and analyzed. It can be

concluded fromobservingmany parallel algorithms

implemented using MPI that they run slower than

their sequential counterparts. The overhead asso-

ciated with forking and killing processes and the

time it takes to sendmessages across the network are

the main causes of the slowdown. Actual speedup
mostly occurs in algorithms that perform large

amounts of computation and require small amounts

of data transfer. However, the slowdown opens the

eyes to students as to the limitation of parallel

computations, and a discussion of the causes is

very educational. Even though slowdowns, the

ability to capture timing data does allow the stu-

dents to make relative comparisons between alter-
native parallel algorithms.

3.3 Parallaxis

In Parallaxis [18] each processing element has its

own local memory, but all processing elements

execute common instruction stream synchronously.

Parallaxis allows the programmer to specify the
number of (simulated) processing elements and the

topology which connects the elements. Parallaxis

supports two types of variables, scalar and vector.

Scalar variables reside on the central control unit,

Natalija Stojanovic and Emina Milovanovic1346

Fig. 1. OpenMP fork-join programming model.

Fig. 2. The overall architecture of network of workstations-MPI.

and vector variables reside on the processing ele-

ments. When writing programs for Parallaxis, the

student needs to determine what parts of the algo-

rithm can be executed in parallel and what parts

have to be executed sequentially. Vector variables

have to be specified for the data that will participate
in the parallel portion of the algorithm. Corre-

sponding scalar arrays need to be created to support

I/O operations. Load and store statements copy

data between a scalar array and a vector variable.

Operations referred to vector variables are: propa-

gate operationwhich copydata fromone processing

element to another and reduction operators, such as

a global addition, summarize data across all proces-
sing elements. Parallaxis lets students experiment

with different connection topologies and mapping

parallel algorithms onto specific topologies, but

they do not have chance to experiment with the

speedup of a true parallel machine.

4. Programming assignments and projects

To efficiently teach and evaluate students in intro-

ductory parallel computing, we organize assign-

ments, programming projects and a final exam.

Since, the course emphasis is on parallel program-

ming, the projects are an important part of the

course. They give students hands-on experience on

usingMPI andOpenMP on commodity computers.
Assignment 1: The purpose of the first assignment

is to implement sequential andOpenMPapplication

for matrix multiplication. Students need to use an

OpenMP directive for loop parallelization, which

splits up loop iterations among the threads. The

number of threads is adjusted to the number of

cores. Both the execution time of sequential applica-

tion and application implemented using OpenMP
directives are measured and compared, for various

matrix dimensions. Students learn to determine

what variables are private/shared and also which

loop in loop nest is better to parallelize to obtain

better performance.

Assignment 2: The purpose of this assignmentis

to implement sequential and OpenMP application

for finding number of prime numbers between 2 and
N. Students need to use an OpenMP directive for

loop scheduling with and without reduction clause

for combining partial results in threads. Again, the

execution time of sequential application and appli-

cation implemented using OpenMP directives are

measured and compared, for different values of N.

Students learn how to implement program with

critical directive if it is necessary and how the use
of reduce clause can affect performance gains.

Assignment 3: The purpose of this assignment is

to transform a loop with loop-carried dependences

into one which can be parallelized easily. The loop

with loop-carried dependences is the loop where

dependence exists across iterations. If loop-carried

dependence exists, it can prevent safe loop paralle-

lization. A student needs to unroll loop, discover

dependences and transform code in a way that

makes this loop parallelizable. Also, if there is
doubly-nested loop with loop-carried dependence,

a studentmust examinewhich index of possible two,

guarantees parallelization. Also, the student exam-

ines how loops interchange affects performance.

After the first three assignments, students gain

knowledge about the communication mechanisms,

scalability and performance issues. Therefore, it is

time to implement more sophisticated parallel code,
execute it and get new conclusions.

Project 1: The purpose of this project is to

implement sequential and OpenMP version of spa-

tial join algorithm. Students need to implement the

spatial join between a large dataset related to

trajectories of moving objects and the dataset on

the road network on which they move in order to

perform map-matching. The result of the map-
matching process is a dataset containing points at

the road segments that are the closest to the appro-

priate trajectory points. This way moving points

that represent trajectories are matched to corre-

sponding road segments at which their movements

occur. Students should execute implemented solu-

tions on Intel Core 2 Duo T5870 2GHz CPU and

Intel i7-2670QM 2,2GHz multicore architecture.
Intel Core 2 Duo has two cores, while Intel Core

i7 has 4 cores with implemented hyper-threading

(HT) technology. After measuring the speedup and

the execution time, students are required to show

the results in the table for different number of

threads. An example of obtained results is shown

in Table 1.

Students can conclude that for Core 2 Duo the
best performance results are when using two

threads, while performance decreases for both algo-

rithms when engaging more than two threads. For

the Core i7 processor, hyper-threading technology

enhances the speedup for applications with two to

eight threads. The maximum speedup in the case of

map-matching is obtained for eight threads.

Assignment 4: The purpose of this assignment is
to get experience in MPI point-to-point commu-

Teaching Introductory Parallel Computing Course with Hands-On Experience 1347

Table 1. Performance of map-matching application obtained for
different number of threads

Core2Duo i7

threads TP SP threads TP SP

2 181,006 1,824 2 71,585 1,954
4 186,489 1,771 4 42,661 3,278
6 191,441 1,725 6 31,016 4,509
8 222,351 1,485 8 25,823 5,416

nication functions. Process with rank 0 (master

process) need to divide the input array of p*(p+1)

elements (p-number ofworker processes) and send a

part of array with 2*i elements to every worker

process (i-process rank). Every worker process

needs to find the sum of values in its part of array
and print it together with its rank. Students learn

how to implement point-to-point communication

mechanisms using point-to-point communication

routines.

Assignment 5: Process with rank 0 (master pro-

cess) needs to send and receive the same message

to/from all worker processes using blocking and

non-blocking point-to-point communication
mechanisms. The communication time in both

cases is measured. Students need to consider solu-

tions depending on message size that is sent/

received. Students learn how to implement blocking

and non-blocking point-to-point communication

mechanisms and how using non-blocking point-to-

point communication mechanism can affect perfor-

mance.
Assignment 6: The purpose of this assignment is

to get experience with collective communication

functions and functions for creating derived types.

The implemented solution needs to find minimum

value in the part of square matrix Anxn(n-even

number) that consists of columns with even index

(j=0,2,4,. . .). A matrix is initialized in a master

process. Every process needs to get elements from
previously mentioned columns but from corre-

sponding n/p rows (p- number of processes, n is

evenly divisible by p) and finds local minimum.

Finally, master process finds and print global mini-

mum inmatrix. Sending data frommaster process is

realized using derived data types. Computing global

minimum is realized using collective communica-

tion function.
Assignment 7: The purpose of this assignment is

to implement MPI program which finds and prints

minimal odd number with a specified property and

the rank (id) of process that contains it. Odd

numbers are in the interval [a,b] (a and b are given

constants). A number possesses the specified prop-

erty if it is divisible by a given number x. During

examination (whether the number possesses the
specified property or not) each process generates

and examines corresponding oddnumbers as shown

in Table 2. Final results need to be printed by a

process that contains minimal count of numbers

with specified property. The purpose of this assign-

ment is to find a solution using only collective

communication functions. To find the process that

containsminimal odd number, aswell as the process
with minimal count of numbers with a specified

property students have to use MPI_Reduce with

MPI_MIN_LOC operator.

After these MPI assignments, students gain

knowledge about the communication mechanisms,

scalability and performance issues. Therefore, they

need to implementmore sophisticated code, execute

it and get new conclusions.

Project 2: The purpose of this project is to
implement matrix multiplication and to see how

different methods of implementation can affect

performance. Both matrices are square matrices of

the same order n. Students have to implement three

differentmethods formatrixmultiplication, execute

corresponding implementations for various matrix

dimensions and various numbers of nodes. The

execution times of these implementations are mea-
sured using MPI_Wtime function. After execution

of their applications, they compare obtained results.

In the first method, matrices are divided in k x k

blocks. The master process distributes blocks of

k x k dimension extracted from matrices A and B

to every worker process. The number of worker

processes is (n/k)3. Each worker process performs

multiplication of corresponding blocks in parallel
and sends result to the master process. The master

process performs addition of received results.

In the second method, matrices are divided in k x

k blocks and these blocks form the corresponding

row vectors of matrix A and corresponding column

vectors of matrix B. The master process distributes

corresponding row vectors of matrix A and corre-

sponding column vectors of matrix B to the worker
processes. The number of worker processes is

(n/k)2. Every worker process performs multiplica-

tion of corresponding rowvector and columnvector

and addition of partial results and sends obtained

values to master process.

In the third method, the master process distri-

butes the corresponding column vectors ofmatrixA

and the corresponding row vectors of matrix B to
the worker processes. The number of worker pro-

cesses is n/k. Every worker process performs multi-

plication of corresponding row and column vectors

in parallel and generates partial products. After-

wards, MPI_Reduce function performs addition of

corresponding partial products inworker processes,

in order to generate result elements of matrix C.

The implementation and running of proposed

Natalija Stojanovic and Emina Milovanovic1348

Table 2. The example for assignment 7

P0 P1 P2 P3

3 5 7 9
11 13 15 17
19 21 23 25
27 29 31

number _ of _ processes ¼ 4; a ¼ 3; b ¼ 31; x ¼ 5) min ¼ 5;
id ¼ 1; number _ of _ numbers _with _ specified _ property ¼ 3;
id _ of _ process _ that _ pr int s _ results ¼ 0

three methods is performed on the various numbers

of nodes (2, 4, 6, 8) for the various matrix dimen-

sions (from 64 to 1024, power of 2) and block size

equals 64x64. After measuring the speedup and the

execution time, students are required to show results

in the tables for different number of nodes and
matrix dimensions. The first method shows small

performance gain for smaller matrix dimensions, as

the number of nodes arises. But, the speedup is less

than one. Also, for larger matrix dimensions, it

shows performance degradation as the number of

nodes arises, although speedup has values greater

than 1. Students can conclude that it is consequence

of a fact that there are a large number of processes
that have a large communication overhead and

there is not enough processing load in each process

to overcome this overhead. Students can conclude

that the speedupof the second and the thirdmethod,

for a small matrix dimensions, although greater

than one, decreases, as the number of nodes

increases. For larger dimensions (>128) the second

and the third method speedup increases and has
values greater than one, as the number of nodes

increases. The student can conclude that the third

method speedup is always greater than the second

method speedup, as the number of nodes increases.

All of these facts exclude the firstmethod for parallel

execution of matrix multiplication on more than

two nodes. At the same time, students can conclude

that the second and the third implementations are
useful for parallel implementation of matrix multi-

plication. An example of a table that is obtained for

matrix dimension N=512 is shown in Table 3.

Assignment 7: The purpose of this assignment is

to find a value that approximates the value of an

integral using Parallaxis. The range of the integra-

tion has to be broken into a large number of strips.

The number of processing elements is equal to the
number of strips. At each strip, a rectangle whose

height is the value of the integrand at the middle of

the strip is placed. Each processing element calcu-

lates the area of corresponding rectangle as the

product of function value at the middle of the strip

and the width of the strip. The sum of the areas of

each rectangle equals an approximation to the

integral. The reduction function is used for this
purpose. The students learn how to divide data

among processing elements and execute the same

function in order to get integrand in corresponding

point. Also, they learn how to use the reduction

function to sum the partal results.

The last part of the course introduces GPU as

massively parallel architecture consisting of many
small, efficient cores designed for handling multiple

threads simultaneously. The initial parts of lectures

are dedicated to showing differences between CPU

andGPU.CPU is latency optimized but is built with

complex andpower inefficient hardware. Compared

with commodity CPU, GPU has an order of mag-

nitude higher computation power, as well as

memory bandwidth. It provides general parallel
processing capabilities and general-purpose pro-

gramming languages such as NVIDIA CUDA

(Compute Unified Device Architecture) [23].

CUDA includes programming model along with

hardware architecture that supports data-parallel

type of implementation. CUDA C/C++ compiler,

libraries, and runtime software enable program-

mers to access data-parallel computation model
and develop and accelerate data-intensive applica-

tions. The key concepts of CUDA programming

were introduced to students through very simple

examples. This part of the course is not extensively

covered, yet. In the future, we plan to provide more

in-depth coverage by discussing concrete program-

ming examples and compare performance of

CUDA solutions with corresponding OpenMP
solutions.

Parallel software design should also allow a

hybrid approach that integrates different levels of

parallelism, e.g. hybrid parallelization with

MPI+OpenMP andMPI+CUDA.An introduction

of combined programming models and integration

of students’ code into a more complicated problem

solutions represent our plans for the future.

5. Evaluation

The main goal of this course is not only to teach

students about theoretical concepts in parallel

computing, but to give them significant hands-on

experience through assignments and programming
projects. For the theoretical part of the course,

PowerPoint slides are used that are available to

students at Faculty’s Moodle platform. Parallel

programming practices of the course include assign-

ments and programming projects. For each of them

students need to implement and demonstrate par-

allel program, analyze its behavior, evaluate perfor-

mance and speedup and explain results. Also,
students are required to answer the questions

about assignments/projects. Such test is worth

20% of the assignment grade. After the group of

assignments, a quiz is organized that estimates

Teaching Introductory Parallel Computing Course with Hands-On Experience 1349

Table 3. Performance of matrix-multiplication application
obtained on different number of nodes

N=512

Nodes T1 T2 T3 S1 S2 S3

2 0.849 0.792 0.697 1.47 1.57 1.79
4 0.999 0.692 0.588 1.25 1.80 2.12
6 1.063 0.602 0.548 1.17 2.07 2.28
8 1.226 0.589 0.482 1.02 2.11 2.58

students’ progress. About 73% of all students have

developedMPI programs and answer the questions

successfully. About 80% of all students have devel-

oped OpenMP programs and answer the questions

successfully. The final exam requires that students

synthesize their knowledge about different parallel
computing architectures and programming models

learned.

The outcome of the course is very positive. Based

on students’ comments and questionnaires, most

students are satisfied with the course. Our positive

experience is also justified by:

� Increased interest in performing independent

research work and final projects at the end of

undergraduate and in the first year of graduate

studies.
� Increased enrollments in elective high-perfor-

mance computing courses in graduate computer

science curriculum, such as High Performance

Computing, Cloud Computing, BigData, etc.

� Increased interest of students to pursue bachelor

and master thesis related to parallel, distributed

and high/performance computing.

In the current Computer Science curriculum,

Parallel computing course is included in the last

semester (8th) of undergraduate studies. Today, it is
difficult to ignore parallel computing in even the

core of a CS undergraduate curriculum. So we

believe students can consider parallel solution of

problem they want to solve earlier in education, and

have tried to introduce such course (or two courses)

in the previous semesters (6th and 7th).

6. Conclusions

The increasing availability of parallel architectures,

multi-core and many-core processors, and compu-

ter clusters demands the introduction of parallel

computing/programming in the undergraduate

computer science curriculum. Current students

and IT professionals need to know how to develop

parallel software applications on these architectures

to achieve best possible efficiency, performance, and
scalability. Therefore, traditional parallel comput-

ing courses require a shift toward more hands-on

experience even with commodity parallel architec-

tures.

Our current experience proves that parallel com-

puting course can be taught successfully with a

hands-on experience and a limited budget. In our

course we introduced OpenMP (for programming
sharedmemoryMIMD computers). Also, we intro-

duce concept ofMIMD computers with distributed

memory using MPI framework and software tools

on interconnected computers of varied architecture.

We introduce Parallaxis as simulator of SIMD

computers. In this way, student gets hands-on

experience with all models associated with parallel

processing. The key concepts of CUDA program-

ming were introduced to students through very

simple examples. In future, we plan to provide

more coverage of CUDA solutions, as well as
introduction and coverage of hybrid approach as

MPI+OpenMP and/or MPI+CUDA.

References

1. P. Pacheco, An Introduction to Parallel Programming, Addi-
son Wesley, 2nd edition, 2003.

2. K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.
Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J.
Shalf, S. W. Williams and K. A. Yelick, The landscape of
parallel computing research: A view from Berkeley, Vol. 2.,
Technical Report UCB/EECS-2006-183, EECS Department,
University of California at Berkeley, December 2006.

3. ACM/IEEE-CS Joint Task Force, Computer science curri-
cula 2013, www.acm.org/education/CS2013-final-report.
pdf, Dec 2013, Accessed 03 April 2015.

4. S. K. Prasad et al., NSF/IEEE-TCPP Curriculum Initiative
on Parallel and Distributed Computing—Core Topics for
Undergraduates, Version I, Dec 2012, http://www.cs.gsu.
edu/�tcpp/curriculum/index.php, Accessed 03 April 2015.

5. A. Minaie, R. Sanati-Mehrizy, Incorporating Parallel Com-
puting in the Undergraduate Computer Science Curriculum,
American Society for Engineering Education, 2009

6. D. J. John and S. J. Thomas, Parallel and Distributed
Computing across the Computer Science Curriculum,
IEEE International Parallel & Distributed Processing Sym-
posium Workshops (IPDPSW), 2014, Phoenix, AZ, USA,
19–23 May 2014, pp. 1085–1090.

7. A. Danner and T. Newhall, Integrating Parallel and Dis-
tributed Computing Topics into an Undergraduate CS
Curriculum, Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), Cambridge, MA,
USA, 20–24 May 2013, pp. 1237–1243.

8. M. Arroyo, Teaching Parallel and Distributed Computing
topics for the Undergraduate Computer Science Students,
IEEE 27th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), Cam-
bridge, MA, USA, 20–24 May 2013, pp. 1297–1303.

9. N. Deo, F. Hussain, S. K. Jha and M. Vasudevan, Introdu-
cing parallel programming across the undergraduate curri-
culum through an interdisciplinary course on computational
modeling, IEEE Technical Committee on Parallel Program-
ming, Boston, MA, USA, July 2013.

10. C. M. Brown, L. Yung-Hsiang and S. Midkiff, Introducing
Parallel Programming in Undergraduate Curriculum, IEEE
27th International Parallel and Distributed Processing Sym-
posium Workshops & PhD Forum (IPDPSW), Cambridge,
MA, USA, 20–24 May 2013, pp.1269–1274.

11. T. R. Gross, Breadth in depth: a 1st year introduction to
parallel programming, In Proceedings of the 42nd ACM
technical symposium on Computer science education, March
2011, pp. 435–440.

12. S. Rivoire, A Breadth-First Course in Multicore and Man-
ycore Programming, Proceedings of the 41st ACM technical
symposium on Computer science education, SIGCSE ’10,
USA, March 10–13, 2010, pp. 214–218.

13. H. C de Freitas, Introducing parallel programming to tradi-
tional undergraduate courses, Frontiers in Education Con-
ference (FIE), Seattle, WA, USA, 3–6 Oct. 2012, pp. 1–6.

14. M. Fienup Parallel Computing in the Computer Science
Curriculum via the Computer Architecture Course,Midwest
Instruction and Computing Symposium, Verona, WI, USA,
April 25–26, 2014.

15. C. von Praun, Parallel Programming:Design of anOverview
Class, Proceedings of the 2011 ACM SIGPLAN X10 Work-
shop, San Jose, CA, USA, June 4, 2011.

Natalija Stojanovic and Emina Milovanovic1350

16. R. Keller, Teaching parallel programming to undergrads
with hands-on experience,Workshop on Education for High-
Performance Computing, EduPDHPC-13, Nov 16, 2014.

17. P. Pacheco, Teaching Parallel Programming to Lower Divi-
sion Undergraduates, 1st NSF/TCPP Workshop on Parallel
and Distributed Computing Education, EduPar 2011, Ancho-
rage (Alaska), USA, May 16, 2011.

18. Parallaxis-III—A Structured Data-Parallel Programming
Language, http://robotics.ee.uwa.edu.au/parallaxis/, Accessed
03 April 2015.

19. MPICH2—the implementation of the MPI standard, http://

www.mcs.anl.gov/research/projects/mpich2/, Accessed 03
April 2015.

20. M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J.
Dongara,MPI: Complete Reference, The MIT Press, 1998.

21. T.Rauber andG.Rünger,Parallel Programming: ForMulti-
core and Cluster Systems, Springer, Berlin, Heidelberg, 2010.

22. B. Chapman, G. Jost and R. Van Der Pas, Using OpenMP:
portable shared memory parallel programming, MIT Press,
2008.

23. D. Kirk and W. M. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach, Elsevier, 2010.

Natalija Stojanovic is an Assistant Professor at the Computer Science Department, Faculty of Electronic Engineering,

University of Niš, Serbia. She received her PhD,MSc, and BSc degrees in Computer Science from theUniversity ofNiš, in

2009, 2003 and 1999, respectively. Her current research interests include high-performance parallel and distributed

computing architectures and programming models, data-intensive applications and cloud computing. She successfully

participates in several international and national projects in those and related domains.

Emina I. Milovanovic is a Full Professor at the Department of Computer Science, Faculty of Electronic Engineering,

University of Nis, Serbia. Her research interests include parallel, systolic and distributed algorithms, FPGA designs,

cluster computing, computer architectures, fault-tolerant systems and computer networks. She has published more than

120 research articles in leading international journals and/or conference proceedings, 6 textbooks, and 5 book chapters in

international monographs.

Teaching Introductory Parallel Computing Course with Hands-On Experience 1351

