
Software Quality Standards and Lean Approach in

Teaching and Learning Programming*

MILOŠ MILIĆ, SINIŠA VLAJIĆ, ILIJA ANTOVIĆ, DUŠAN SAVIĆ, VOJISLAV STANOJEVIĆ and

SAŠA LAZAREVIĆ
University of Belgrade, Faculty of Organizational Sciences, 154 Jove Ilića, Belgrade, Serbia. E-mail: mmilic@fon.bg.ac.rs,

vlajic@fon.bg.ac.rs, ilijaa@fon.bg.ac.rs, dules@fon.bg.ac.rs, vojkans@fon.bg.ac.rs, slazar@fon.bg.ac.rs

The aim of this research is to improve the process of teaching and learning programming. We have considered ISO/IEC

9126 software quality standard and theLean software developmentmethod applied to the process of teaching and learning

programming. Taking into account that each software system is characterized by the software syntax correctness, software

semantic correctness, and software quality, we argue for incorporating a software-metrics driven practice in the process of

teaching and learning programming. In this context, each software system should be in compliance with a software

development process. The fundamental principle applied in Lean programming education process is the detection of waste

(in terms of software quality violations, partially donework,motion, and defects) in the education process. In this way, it is

possible to improve the process of teaching and learning programming through a continuous inspection and improvement.

We have developed a software tool in order to improve the process of teaching and learning. To evaluate this approach, we

conducted an experiment with a total of 30 undergraduate students in which we investigated the violations of software

metrics in the students’ software projects. Although the number of participants in the experiment was limited, our findings

confirmed that software quality standards and the Lean software development method can be successfully applied to the

process of teaching and learning programming.

Keywords: programming; software quality; software metrics; ISO/IEC 9126; lean; education

1. Introduction

Software engineers are encountering different pro-
blems in software development process. Business

applications are distributed on multiple machines

and within multiple components. In addition, they

must be scalable and able to concurrently support

the work of a large number of users. At the same

time, applications should be easy tomaintain. These

circumstances constantly impose the need to deliver

software faster, at lower cost and with fewer defects
[1, 2]. For these reasons, even in the earliest periods

of software development experts saw the develop-

ment of software systems as a process with precisely

defined activities.

Software development is a complex process invol-

ving a number of models, methods, strategies, and

activities [3]. Therefore, a proper approach to a

software engineering education process is of a high
importance. Some of the questions that are in the

focus of researchers are related to software engi-

neering curricula, specific courses, teaching and

learning methods, and industrial relevance [4–7].

Programming is important part of a software

construction, which refers to the detailed creation

of working software through a combination of

coding, debugging and testing [8]. The main objec-
tive of initial programming courses is to develop

students’ analytical and problem-solving skills,

which could be expressed using a specific program-

ming language [9, 10]. There aremany proposals for

teaching programming [9–14] that differ in scope,

purpose, tools and techniques used. However, dif-

ferent learning problems are widely reported. The

lack of problem solving abilities and finding bugs in

programs are identified to be among the reasons

that cause learning problems [9, 15, 16].
In this paper, we introduce the Lean approach in

teaching programming with a focus on creating

value for students and teachers. This is achieved

by a continuous inspection and improvement of the

quality of software produced by students. Software

quality standards define the software quality attri-

butes in terms of software metrics. Software metrics

directly measure the fit of software quality attri-
butes, and at the same time measure the level of

quality of the overall software product. Lean

approach incorporates software quality standards

and software developmentmethods in the process of

teaching and learning programming. We promote

the idea of teaching students to develop programs in

amanner compliant with the procedures specified in

software quality standards. In order to verify the
feasibility of the proposed approach, SilabMetrics

tool have been developed as an extension of Sonar-

Qube, a software quality tool based on the ISO/IEC

9126 software quality standard.

The paper is organized in 7 sections. Section 2

presents the importance of software quality in the

software development process, as well as the Lean

approach, which advocates that themost important
goal of the production is creating a value for the

* Accepted 28 February 2017. 1345

** Corresponding author.

International Journal of Engineering Education Vol. 33, No. 4, pp. 1345–1360, 2017 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2017 TEMPUS Publications.

customer. Section 3 presents Lean approach in the

process of teaching and learning programming.

Section 4 presents the experimental method used

for verifying the feasibility of the approach. Threats

to validity are presented in Section 5. The discussion

is presented in Section 6. Finally, we summarize the
results of the research, identify the limitations, and

present the main conclusions and further research

directions in Section 7.

2. Background

2.1 Software quality standards

The application of software systems to today’s

business is quite diverse, and their proper function-

ing is of the key importance for business success,

safety and economy [17]. For each software devel-

opment project, it is important to define its specific

meaning of software quality during the early plan-
ning phase [18]. Software quality improvement

methods have a valuable role in the software engi-

neering practice [19]. Some of thesemethods include

code inspections, design walkthroughs, prototype

simulations, and measurement-based analyses [20].

Software quality assurance does not represent an

optional activity in software development. In the

extreme case, a defect in a software system can cause
major problems, e.g., increasing the cost of software

maintenance, which can lead to dissatisfaction of

customers [21]. One of the methods used by many

organizations is to complywith standards inwriting

programming codes. This ensures uniformity and

compliance with the best practice, and consequen-

tially maximizes the quality attributes of the soft-

ware system in accordance with the defined quality
model.

The quality of a software system can be checked

by static and dynamic analyses of software quality.

Static analysis refers to software quality analysis

without running the program. On the other hand, a

dynamic analysis is the analysis of the attributes of a

running program and covers areas such as software

performances. Dynamic and static analyses are
complementary techniques [22, 23]. Figure 1

shows the tools that can be used for static and

dynamic analyses of software quality. Since the

paper considers the quality of the software in the

context of teaching and learning programming and

promotes continuous inspection and continuous

improvement of all parts of the software (which

does not have to be executable), the focus will be

directed to the static analysis of software quality.
Using tools for the static analysis of software quality

enables faster identification of bugs and defects in

the software, as well as their correction in the early

phases of software development process, when it is

much easier and cheaper to correct them [24].

ISO (International Organization for Standardi-

zation) and IEC (International Electrotechnical

Commission) are international organizations
whose activities are directed towards establishing

international standards in different areas. The stan-

dards ISO/IEC 25000 [25], ISO/IEC 14598 [26] and

ISO/IEC 9126 [27] are especially important for

software engineering. ISO/IEC 14598 gives a gen-

eral framework for the evaluation of software

products using themodel in ISO/IEC 9126 standard

[28]. Standard ISO/IEC 9126 is used to define the
software metrics that are used for measuring the

performances of software system. This standard is

also used to define the characteristics (or quality

attributes) of software system and adequate metrics

are being defined for each characteristic accordingly

[29]. ISO/IEC 9126 standard includes four parts [27,

30]: ISO/IEC9126-1 defines theQualitymodel, ISO/

IEC9126-2 defines Externalmetrics, ISO/IEC9126-
3 defines Internal metrics and ISO/IEC 9126-4

defines Quality in use metrics. The ISO/IEC 25000

series of standards will replace and extend ISO/IEC

9126 and ISO/IEC 14598 [28, 31].

Standards define the qualitymodel (e.g., ISO/IEC

9126 quality model, ISO/IEC 25000 quality model),

whereas each quality model contains several quality

characteristics. On the other hand, each character-
istic contains several subcharacteristics, while each

subcharacteristic contains several software metrics,

as shown in Fig. 2.

The cost of a completion of software project is a

very important aspect in software development

process. Given that the production of software is a

series of intellectual and technical activities per-

formed by highly-educated engineers, it becomes

Miloš Milić et al.1346

Fig. 1. Tools for static and dynamic code analyses of software quality.

clear that the cost of the system greatly depends on

the time and effort required for its production [32].

Bymeasuring various characteristics of the software

product and its development process, actions can be

taken to increase software quality and reliability
[20]. In order to ensure the corresponding quality, it

is necessary to perform a proper specification and

evaluation of software quality. This can be accom-

plished by defining the corresponding attributes of

software quality, taking into account the purpose of

the application of the software. Software attributes

can characterize software quality of both the pro-

duct and software development process at the same
time [20].

2.2 Lean approach

The development of manufacturing has created a

need for different methods and approaches in pro-
duction in order to increase the level of quality and

assure continuous improvement of the production

process. Lean approach postulates that the most

important goal of the production is creating a value

for the end customer. Any consumption of

resources for any other purposes is therefore a

waste and should be eliminated [33, 34]. From the

customer’s perspective, the value represents any
action or process that a customer is prepared to

pay (the customer is certainly not prepared to pay

losses and problems that occur in the production

process). Lean approach has had a significant

impact on other approaches and, in addition to its

application to production, it is implemented in the

administration, services, education, software engi-

neering etc.
We can consider the software development pro-

cess in this context. A contemporary software

product is very complex; over the time it has evolved

from a product that represents the result of work of

an individual (or a small number of developers) to a

product that represents the work of hundreds of

multidisciplinary professionals who are often geo-

graphically dislocated. In addition, software devel-
opment is a complex process involving a number of

models, methods, strategies, activities, techniques,

and tools. Hence there is a need for good organiza-

tion of the software development process by select-

ing a software development approach that best suits

a particular software product.

Software engineering is becoming increasingly

agile, focusing on activities that impact on how

software is developed on a daily basis [35]. The
agile methods of software development (e.g.,

Extreme programming, Feature Driven Develop-

ment, Adaptive Software Development, Scrum,

Lean Software Development) are widely used in

software development process [36-38]. Lean is a

software developmentmethod based on the transfer

of positive experiences from the classic manufactur-

ing into the software development industry [33]. It is
primarily oriented on people and teams, which

means that it puts software engineers, who directly

produce software, in the central role. Lean, as agile

method, promotes software development in several

small iterations (usually from one to four weeks).

Each iteration requires teamwork during all activ-

ities of software development life cycle, including

gathering requirements, analysis, design, implemen-
tation, and testing phases. In addition, each itera-

tion should provide the required functionalities,

without bugs in the code or logic, in order to make

further customer requirements relate to future soft-

ware versions rather than to correct errors in the

current software version.

The fundamental principle applied in the Lean

software development is the elimination of waste
[33, 37]. Authors Marry and Tom Poppendieck in

[36] define seven types of waste in the software

development process and compare the list against

the waste of themanufacturing process, as shown in

Table 1.

Software Quality Standards and Lean Approach in Teaching and Learning Programming 1347

Fig. 2. The relationship between quality models, characteristics, subcharacteristics and software metrics.

Table 1. The Seven Wastes of Manufacturing and The Seven
Wastes of Software Development [36]

The Seven Wastes of
Manufacturing

The Seven Wastes of Software
Development

Inventory Partially Done Work
Extra Processing Extra Processes
Overproduction Extra Features
Transportation Task Switching
Waiting Waiting
Motion Motion
Defects Defects

The waste in Lean software development repre-

sents everything that does not bring the value to the

product from the end-user’s perspective:

� Partially Done Work refers to partially done

software development. The big problem with

partially done software is that a software devel-

opment teammight have no ideawhether or not it

will eventually work.

� Extra Processes refer to processes that consume
resources and slow down response time. Software

development team should concentrate on value-

adding processes to the final software product.

� Extra Features refers to adding new features to

the software product that are not required.

Taking into account that every line of code

increases complexity and is a potential failure

point, every extra feature is a serious waste.
� Task Switching refers to assigning people to

multiple projects. Belonging to multiple teams

or multiple projects usually causes more time in

order to switch from one task to another. Task

switching time should be eliminated.

� Waiting refers to delaying in software develop-

ment process (e.g., delays in starting a project,

delays in testing, and delays in deployment).
These delays increase time required for software

development.

� Motion refers tomoves required in order to finish

the assigned task (e.g., if a software developer has

a question, howmany motion does it take to find

out the answer).

� Defects refer to defects in a software product.

Defects can have high impact on further software
development and maintenance. Therefore, it is

very important to detect defects as soon as they

occur.

It is clear that these wastes e.g., ‘‘Partially Done

Work’’ or ‘‘Defects’’ do not represent the value for

the end-user; these defects must be eliminated by a

software development team. In this context, the first

step in waste elimination is its detection [36]. The

Lean software development is based on the contin-

uous improvement of people, processes, and tech-
nology and acting in accordance with that. In this

way, it is possible to correct defects in the early

phases of software development when it takes less

time and effort for their correction.

We examine the Lean approach in the process of

teaching and learning programming which is

instructed by the teacher. Taking into account that

students are fully committed to the course and their
software projects (each student has its own project),

there are no ‘‘Extra Processes’’ and ‘‘Task Switch-

ing’’. Students have precisely defined assignments

(previously approved by the teacher), which elim-

inates ‘‘Extra Features’’ and ‘‘Waiting’’. In this

context, we will consider ‘‘Partially Done Work’’,

‘‘Motion’’, and ‘‘Defects’’ as wastes that should be

eliminated.

2.3 Lean approach in engineering education

Engineering Education is facing more and more

challenges like: the proliferation of information,
the need for multidisciplinary for technological

development, the globalization of markets etc [39,

40]. These challenges require appropriate teaching

and learning methods and strategies in order to

bridge the gap between academy and industry.

Lean thinking principles are accepted interna-

tionally among many companies [34]. Therefore,

Lean provides ideal platform to educate engineers
[40]. Lean in Engineering Education includes a

systematic, student-centered and value-enhanced

approach to educational service delivery [41]. This

enables students to develop skills by integrating

comprehension, appreciation and application of

tools and concepts of engineering fundamentals

and professional practice [41].

Providing engineering students with knowledge
of Lean principles has positive impact on engineer-

ing education; in this way students can apply

theoretical knowledge in solving real-world pro-

blems [42]. This could be achieved through Pro-

ject-based learning (PBL), which is a process of

learning through the practical application of theo-

retical knowledge [42–44]. This is one of the major

trends in software engineering education [43].

3. Lean approach in the process of
teaching and learning programming

3.1 Description of the proposed approach

Lean approach can be applied in teaching and

learning programming. This is achieved by incor-

porating software quality standards in the process

of teaching and learning programming. More pre-

cisely, the process of teaching and learning pro-

gramming is guided by software quality standards.

In this context, we examine the transformation of

the programming task to task solution (represented
by students’ program code), as shown in Fig. 3.

In other words, software quality standards are

used in the specification and evaluation of software

quality of a students’ program code-task solution.

Our approach defines a model of software quality

and software metrics for measuring the level of

software quality. This implies that a student’s pro-

gram code has to be compliant with the software
metrics specified in the software quality model.

In the process of learning programming students

receive programming tasks and transform them to

program codes. To facilitate the proposed Lean

approach to teaching and learning programming,

Miloš Milić et al.1348

we have developed the SilabMetrics software qual-

ity tool. Using the SilabMetrics software quality

tool students have the opportunity to analyze the

program code and thus obtain feedback on its

quality. Feedback includes information about the

analyzed software classes, lines of code where a

software metric has been violated as well as the
description of the problem. In addition, the feed-

back includes a detailed explanation of the problem,

usually with examples of compliant and non-com-

pliant solutions. For example, if a student uses a

hard-coded value in a statement, SilabMetrics will

explain that this program code is hard to test and

maintain, and will suggest defining a constant.

Consequently, students can better understand the
mistakes they make and what should be done to

create error-prone code.

Teachers can also use SilabMetrics tool to ana-

lyze the program code written by their students. In

this way teachers can understand where students

make mistakes in the process of learning program-

ming, orwhat they should do to improve the applied

instructional design. In this context teachers can
improve their own knowledge of students’ learning

process as well as assist their students in developing

programming knowledge and skills. Consequently,

students will learn to pay more attention to the

quality of the written code while learning program-

ming.

Writing and analyzing small segments of pro-

gram code lead to immediate detection of problems
in teaching and learning programming. In Lean

manufacturing this concept is called Poka-Yoke

[34, 45]. Poka-Yoke includes any mechanism in

the manufacturing process that prevents partici-

pants from making mistakes. The analysis of soft-

ware quality is a good example of application of the

Poka-Yoke concept in the process of teaching and

learning programming. In this way, it is possible to
correct partially done work, motion, and defects in

the early phases when it takes less time and effort for

their correction. It directs students to write a pro-

gram code that is in compliance with defined soft-

ware quality model.

Software quality standards provide students and

teachers with good insight into software systems

quality. Therefore, we can say that software quality

standards are related to all stakeholders in the

process of teaching and learning programming.

Although the implementation of Lean approach

in software engineering is not new [33, 36, 38, 46], it

is not typically applied to teaching and learning

programming. The proposed Lean approach in
the process of teaching and learning programming

is shown in Fig. 4. In order to present the process of

teaching and learning programming we have used

role/task-oriented perspective [47] in which a set of

tasks is performed by two different roles: student

and teacher. We can observe different tasks related

to each role aswell as different artifacts that are used

within specific tasks. Consequently, it is possible to
improve the process of teaching and learning pro-

gramming through continuous inspection and con-

tinuous improvement, as shown in Fig. 4.

As discussed in Section 2, the most important

concept of Lean approach is the elimination of

waste and the first step to achieve this goal is

waste detection. In the context of learning program-

ming, detection of waste refers to detection of
partially done work, motion, and defects in code

and software metrics violations. To this end the

Lean approach in learning programming involves

the implementation of the following concepts:

� Continuous inspection; refers to a continuous

inspection of the software quality, students’

knowledge, but also teachers’ knowledge and

the overall building process knowledge. We can

analyze the current result (program code), recog-

nize the shortcomings in the software quality, and
thus create the basis for improving the software

quality and the knowledge of all the participants

in the process of teaching and learning program-

ming. In our approach, Continuous inspection is

supported by SilabMetrics tool.

� Continuous improvement; involves a constant

effort to improve the software quality and the

process of teaching and learning programming.
As a result of using SilabMetrics tool we obtain

quantitative indicators on software quality (e.g.,

compliance with the software metrics, violated

software metrics, number of defects, defects

Software Quality Standards and Lean Approach in Teaching and Learning Programming 1349

Fig. 3. Transformation of the programming task to task solution guided by software quality standards.

severity). These software metrics are in compli-

ance with a defined software quality model. In

other words, SilabMetrics makes it possible to

perform the analysis of a programming tasks
right after its completion, realize its shortcomings

and make the required improvements. The new

solution can also be analyzed and improved in

order to obtain the desired level of software

quality.

Continuous inspection and continuous improve-

ment of software quality allows changes in software
at the time when they are needed, which leads to less

waste and explicitly affects the software quality. In

addition, continuous inspection and continuous

improvement of program code prevents one pro-

gramming error from repeating several times.

3.2 SilabMetrics software quality tool

The described approach is independent of the pro-

gramming language, problem domain as well as the

size and type of software systems that students

develop. We have developed the SilabMetrics soft-

ware quality tool that performs static analysis of
program code to prove the feasibility of this

approach.

SilabMetrics tool is language dependent: it sup-

ports static code analysis in Java which is object-

oriented language. This implies that we currently

support object-oriented programming paradigm.

On the other hand, Java is one of the most popular
programming languages used in software develop-

ment. The tool is integrated with NetBeans devel-

opment environment to improve the learning

process. It is based on SonarQube software quality

tool that contains SQALE quality model [48, 49].

SQALE quality model is based on the principles

defined in ISO/IEC 9126 standard. The following

software characteristics are defined by the Silab-
Metrics software tool: Changeability, Efficiency,

Maintainability, Portability, Reliability, Reusabil-

ity, Security, and Testability. SilabMetrics supports

software quality characteristics and software

metrics previously defined in SQALE standard. In

this way students can develop theoretical and prac-

tical knowledge related to industrial software qual-

ity standard and the best practice in the software
development process.

These characteristics are applicable to every soft-

ware system and thus ensure consistent terminology

in defining the quality of a software product as

well as the framework for the specification of the

software quality requirements. SilabMetrics tool

includes over 100 software metrics (e. g. Depth of

InheritanceTree, CouplingBetweenClasses, Cyclo-
matic Complexity of the Class/Method) that are

used for measuring the quality of software system.

These characteristics and software metrics can be

Miloš Milić et al.1350

Fig. 4. Lean approach in the process of teaching and learning programming.

configured by a teacher in order to improve the

process of teaching and learning programming.

This could be a time consuming activity; on the

other hand, teachers can use predefined software

quality model.

A double click on the violation in the Silab-

Metrics tool opens a specific line of code in Net-

Beans development environment, which enables
detailed analysis of the violation and its correction,

as shown in Fig. 5. Thus, we can reduce motion and

discovery cost [38], i.e. the time it takes a student to

find the appropriate program code that can be used

as information or help in solving a given problem.

4. Evaluation

In order to verify the feasibility of the proposed

approach and assess its benefits for students learn-

ing to program, we conducted an empirical study.

The experiment was conducted with the students of

the Department of Software Engineering of a large

university. The experiment was part of a course on

Software Design where students acquire theoretical

and practical knowledge of the software develop-
ment process. The experiment was driven by the

following research questions:

� RQ1: Are software quality standards applicable

Software Quality Standards and Lean Approach in Teaching and Learning Programming 1351

Fig. 5. SilabMetrics tool and NetBeans IDE integration—a double click on the violation in the SilabMetrics tool
opens a specific line of code in NetBeans IDE.

in the process of teaching and learning program-

ming?

� RQ2: Is it possible to improve the process of

learning programming through continuous

inspection and continuous improvement of soft-

ware quality?
� RQ3: Can a software quality tool help students

develop programming skills?

4.1 Participants

There are many proposals related to empirical

studies in software engineering [50–54]. Some of

the questions that are in the focus of researchers
are related to an experimental design, the number

and kind of participants, data collection and analy-

sis procedures [53, 54].

The experiment included a total of 30 under-

graduate students who took our Software Design

course in the 2013–2014 academic year. The stu-

dents were randomly divided into experimental (15

students) and control (15 students) groups. The
students had different GPA scores achieved in

previously taken courses. In addition, there were

no differences between experimental and control

groups regarding GPA scores. The number of

participants corresponds to a usual number of

students in a computer classroom who attend

classes in this and similar courses in the software

engineering field. This ensures that all the partici-
pants in the study have similar experience [53].

Complex relationships between students and tea-

chers (researcher) have raised several ethical dilem-

mas in empirical studies with students. Some

countries have legal regulations that obligate a

researcher to provide the Subject consent document

for participants [51]. However, our students volun-

teered to participate, so this kind of consent was not
used in this survey. Previously, all the students were

informed about the research goals, and research

policies, i.e. guaranteed anonymity, as well as the

fact that their participation will not affect grades in

any way. In this way, we have tried to contribute to

the research ethics, although our laws do not

provide any specific rules that pertain to this area.

4.2 Procedure

Both groups of students had the same traditional

lectures (theoretical part and practical laboratory

sessions). Laboratory sessions cover basic and

advanced concepts of object-oriented programming

in Java: classes and methods, inheritance, abstract

classes, interfaces, strings, exception handling, gra-

phical user interface, database programming, con-
current programming, and network programming.

In addition, the experimental group received addi-

tional classes on software system quality. Students

from the experimental group were also introduced

to SilabMetrics tool for a static analysis of software

quality. The goals of the course are completely

harmonized with the research goals, which

improves the pedagogical value [50] of the research.

There are twomainweaknesses that are related to

empirical studies with students [50]. The first relates
to the fact that the results of surveys conducted on

student population cannot be applied to experi-

enced software engineers, and the second is that in

this type of research results are often based on mini

projects, but such results cannot be applied to real

industry projects. It is important to point out that

this research does not suffer from any of mentioned

weaknesses. The results of research are related
specifically to the students as well as student pro-

jects, not on experienced engineers or industrial

projects. This makes the goal of the research in

full compliance with the environment in which the

research results shall be applied.

The experiment was focused on a programming

task to be solved and implemented in the Java

programming language. The students used the Net-
Beans development environment, and the teachers

provided them with all the necessary instructions

and explanations. Each student project was given a

grade. We used Larman’s software development

method [55], which includes the following phases:

gathering requirements, analysis, design, implemen-

tation, and testing. The first two phases, gathering

requirements and analysis, were conducted by fol-
lowing the teachers’ instructions. As a result of these

phases, user requirements, the structure and the

behavior of a software system were defined. The

structure of the software system was defined with

the domain model and the relational model, while

the behavior of the software systemwasdefinedwith

the system operations. Based on this, students were

working independently on design, implementation,
and testing phases. Each student project includes 10

use-cases previously approved by the teacher.

Architecture of a student project is shown in Fig.

6.We can observeModel-View-Controller architec-

ture. In addition, software development process is

guided by software quality standards.

The students’ projects from the experimental

group were reviewed from two perspectives: from
the teacher’s perspective and from the student’s

perspective. After the students implemented the

first version of their software systems, the teacher

performed a static analysis of the student’s solutions

using SilabMetrics tool. The teacher looked at the

indicators of software metrics violations, and thus

realized where students failed in the knowledge

development process. Based on these insights, the
teacher gave the students the necessary explanations

and instructions how to improve the quality of their

software systems. Next, students conducted the

Miloš Milić et al.1352

analysis of their program code using SilabMetrics

tool both before and after they improved their code.

Since the tool was integrated with NetBeans devel-

opment environment, students had the opportunity
to directly analyze and eliminate software metrics

violations. In addition, the experimental group was

requested to fill in a post-course questionnaire.

4.3 Instruments

In the static analysis process, we used the Silab-

Metrics software quality tool. Also, we used a

questionnaire-based survey. The questionnaire

was based on a five-point Likert-like scale with

values ranging from 1—strongly disagree to 5—

strongly agree. The questionnaire contained eight
closed questions related to the Lean approach and

the usability of the SilabMetrics software quality

tool. The question statements are given in Table 4.

4.4 Data analysis

We analyzed the violation of software metrics in the

students’ program code using descriptive statistics,

namely a mean and standard deviation. Software

metrics are objective, formalized measures used for

software system analysis [3]. In this way, we can

obtain feedback on a student’s software systems
quality. In addition, we calculated Cyclomatic com-

plexity [56] per class and per function. Cyclomatic

complexity is a software metric used to indicate the

complexity of a software system. It is a quantitative

measure related to different software quality attri-

butes, e.g., software maintenance [57] and software

testing [58]. Cyclomatic complexity measures con-

trol flow statements within a method and/or class
(e.g., if-then, if-then-else, case, break, return, and

continue). A method with high Cyclomatic com-

plexity contains multiple control flow statements

and vice versa; in this way, we can calculate student

projects complexity.

We also calculated Technical Dept. It is a quanti-

tative measure which aggregates all software

metrics and software quality attributes into a
single value. Technical Dept represents remediation

cost of all violations in the code [49]. Hours were

used as ameasurement unit, but other units could be

used as well [48]. Taking into account these char-

acteristics, Technical Dept gives good insight into a

student’s project quality in terms of the remediation

cost.

4.5 Results

According to the predefined model of software

quality, 120 software metrics were used to measure

the quality of a software system. By analyzing the

final version of the students’ program code, we

observed violations of 47 software metrics. Differ-
ent severity levels (Info, Minor, Major, Critical and

Blocker) are defined for violation of software

metrics. By analyzing the students’ programming

code, wemade some interesting observations. Fig. 7

shows the distribution of ametrics violation accord-

ing to the severity level for a control group. If we

observe the control group,most violations are at the

Major level, then at Minor and Critical level, and
finally at Info and Blocker level. On the other hand,

Fig. 8 shows the distribution of a metrics violation

according to the severity level for experimental

group. Most violations in the experimental group

are at the Minor and Major level.

Table 2 shows the quality of students’ software

projects, separately for control and experimental

groups. In particular, the table presents Cyclomatic
complexity (per class and per function) and the

number of violations in students’ software systems.

We can observe lower occurrence of metrics viola-

tion in the experimental group where the Silab-

Metrics tool was used for a static code analysis.

Mean score of software metrics violations in the

experimental group is 27.07, while themean score of

software metrics violations in the control group is
194.73. Also, we can observe that Cyclomatic com-

plexity in the experimental group is somewhat lower

than Cyclomatic complexity in the control group.

In addition, Table 3 shows Technical Dept of the

students’ software projects. This measure is calcu-

lated using SonarQube software quality tool. Tech-

nical Dept represents the time required to fix all

software metrics violations in the code. This means
that a student in the experimental group will need

5.90 hours to fix all issues and create error-prone

code. On the other hand, a student in the control

group will need 129.40 hours to remove all viola-

Software Quality Standards and Lean Approach in Teaching and Learning Programming 1353

Fig. 6. Architecture of a student project.

Miloš Milić et al.1354

Fig. 7. The distribution of a software metrics violation according to the severity level—Control Group.

Fig. 8. The distribution of a software metrics violation according to the severity level—Experimental Group.

Table 2. The quality of students’ software projects

Control group Experimental group

Cyclomatic
complexity Per
Class

Cyclomatic
complexity Per
Function Violations

Cyclomatic
complexity Per
Class

Cyclomatic
complexity Per
Function Violations

Mean score 8.08 2.01 194.73 Mean score 7.18 1.88 27.07

Standard
deviation

2.83 0.58 99.02 Standard
deviation

1.22 0.15 8.27

tions. This is an expected result taking into account

that students in the experimental group have to fix

lower number of issues.

Finally, 15 students from the experimental group
completed the post-course questionnaire. The

results are presented in Table 4. Lower value for

the question ‘‘Tool for static analysis of software

quality is simple and easy to use’’ indicates that the

usability of SilabMetrics tool should be improved.

Overall, the results suggest that the use of the soft-

ware quality standards and the tool for static

analysis of software quality enable students to
learn and develop programming skills easier.

5. Threats to validity

The small number of the participants in the experi-

ment limits any strong conclusions. Control and

experimental groups should contain more students

and students’ software projects should be more

complex in order to retrieve more reliable results.

In the process of teaching and learning program-
ming SilabMetrics tool has been used. This software

quality tool is language dependent: it supports static

code analysis in Java and object-oriented program-

ming paradigm. It would be useful if SilabMetrics

tool supported multiple programming paradigms

and multiple programming languages. On the other

hand, the proposed approach is independent of the

programming language and programming para-
digm: in another paradigm, different software qual-

ity indicators would be used.

In addition, students from the experimental

group were requested to complete the post-course

questionnaire in order to retrieve feedback about

proposed process of teaching and learning pro-

gramming. Although students were encouraged to

express their opinions, the questionnaire results
present subjective measure. Experimental group

should contain more students and questionnaire

statements should be improved in order to obtain

more reliable feedback.

6. Discussion

The experiment results indicate that the Lean soft-

ware development method and software quality

standards can be incorporated in the process of
teaching and learning programming. A fundamen-

tal principle applied in teaching and learning pro-

gramming is the detection and elimination of waste

(in terms of software quality violations, partially

done work, motion, and defects) in the education

process.

Gomes and Mendes identify a lack of problem

solving abilities that many students show as one of
the reasons that cause learning problems [9]. We

believe that Lean approach, continuous inspection,

and continuous improvement can help detecting

and eliminating these problems. Students and tea-

chers apply aproactive approach to the learning and

teaching programming thus encouraging greater

engagement in the education process itself [43].

This allows students to gain practical experience
and gives the teachers an opportunity to instruct the

course in order to achieve the goals of the course

[42, 50].

The introduction of project based learning

Software Quality Standards and Lean Approach in Teaching and Learning Programming 1355

Table 3. Technical Dept. of students’ software projects

Control group Experimental group

Technical Dept
(in hours)

Technical Dept
(in hours)

Mean score 129.40 Mean score 5.90
Standard deviation 70.53 Standard deviation 5.54

Table 4. Questionnaire results for the experimental group

Question Mean score Standard deviation

This approach contributes to a better understanding of the programming. 4.93 0.26

This approach contributes to a better understanding of the software quality. 4.80 0.56

This approach contributes to a better understanding of the course lessons. 4.93 0.26

Knowledge developed in this way can be applied in the development of other software systems. 4.87 0.52

Integration of the tool for static analysis of software quality with NetBeans development
environment improves the process of learning programming.

4.87 0.35

Tool for static analysis of software quality is simple and easy to use. 4.40 1.12

Tool for static analysis of software quality makes finding bugs in code easier and faster. 4.93 0.26

This kind of tool would be useful and applicable to other phases of software development process
(e.g., gathering requirements, software design).

4.87 0.52

enables students to apply theoretical knowledge in

solving real-world problems [42, 44]. Inclusion of

the semester project in the course had a positive

impact on the students’ knowledge in learning

course concepts and promotes active learning

[42, 43].
The experiment results show significantly lower

occurrence of metrics violation if software quality

tool is used. Consequently, students will need less

time tofix all softwaremetrics violations in the code.

Instead of analyzing the quality of the final software

product we promote Lean manufacturing principle

of building-in quality into the product at the source

[59]. In this way, it is possible to timely detect
programming errors, make program improve-

ments, and learn on the base of these activities

[9, 60].

In addition, the questionnaire results indicate

that software quality standards and software qual-

ity tools could be interesting and motivating to

students in order to develop programming skills

and improve critical thinking. This could be espe-
cially important for the initial programming courses

[9, 13], as well as later courses taught to IT majors

only [11]. The results also indicate that the Silab-

Metrics tool should be improved. We will improve

the user interface with the visualization of software

metrics violations and simplify installation and

integration with NetBeans development environ-

ment.
We are in favor of incorporation of software

metrics-driven practice in teaching and learning

programming. It can complement test-driven learn-

ing approach [11, 61], which promotes test-first

perspective [62, 63]. In this way, it is possible to

perform static and dynamic analyses of software

quality, indicating a potential for increasing the

quality of student code [63, 64].
In addition, each software system is characterized

by software syntax correctness, software semantic

correctness, and software quality:

� Software syntax—provides a basis for the devel-

opment of a software system. If we observe

imperative, static-typed programming languages,
software syntax correctness can be verified at the

compile time using compiler and software system

building tools. If the software system is syntacti-

cally incorrect, the compiler will terminate the

software compiling process. In this case the

compiler displays a description of the problem,

as well as the instructions on how to resolve the

problem. Consequently, syntax errors can be
easily corrected.

� Software semantics—can be verified using a

software debugger tool, software testing, code

inspections, design walkthroughs, prototype

simulations etc. In this way, we can verify that

the software system is implemented in compliance

with functional requirements.

� Software quality—can be defined as ‘‘an effective

software process applied in a manner that creates

a useful product that provides measurable value
for thosewhoproduce it and thosewho use it’’ [3].

In this way, we can verify that the software system

is implemented in compliance with non-func-

tional requirements. Non-functional require-

ments are usually called quality attributes of the

software system [65].

A precondition for software semantic analysis
and software quality analysis is syntax correctness

of the software system.Unlike syntax errors, seman-

tic errors and software quality errors are much

harder to notice: they cannot be noticed by compil-

ing the software system. On the basis of software

syntax, software semantic, and software quality we

can observe four different situations, as shown in

Fig. 9:

1. Software syntax correctness is verified; soft-

ware semantic correctness and software quality

are not verified: this means that a software

system contains software development gap.

2. Software syntax correctness and software

semantic correctness are verified; software

quality is not verified: this means that software
system contains a software quality gap.

3. Software syntax correctness and software qual-

ity are verified; software semantic correctness is

not verified: this means that software system

contains a software semantic gap.

4. Software syntax correctness, software semantic

correctness, and software quality are verified:

this means that the software is in compliance

with a software development process.

On the other hand, Lahtinen, Ala-Mutka, and

Järvinen have argued that finding bugs in programs

is one of the most difficult issues in programming

courses [16]. The SilabMetrics software quality tool

allows students and teachers to focus on program

code, software metrics, and software metrics viola-
tions. In this context, teaching and learning pro-

gramming is based on software quality standards,

which is supported by industrial software develop-

ment tools. Taking into account that one of the

major educational objectives in teaching program-

ming is to teach students to develop good programs

and not only to learn programming syntax [66],

students can develop theoretical and practical
knowledge related to best practices applied in the

software development industry, which conse-

quently leads to more ‘‘ready-to-perform’’ gradu-

ates [35]. Furthermore, students can easily adapt to

Miloš Milić et al.1356

new emerging software engineering technologies

[11].

In software engineering education process, we

can observe multiple key stakeholders: students,
teachers, researchers and industry [4, 67]. We

strongly believe that the implementation of the

Lean approach and software quality standards in

software engineering education process can signifi-

cantly contribute to all stakeholders.

We believe that software quality analysis if

applied in the learning process may bring numerous

benefits to students:

� Students can efficiently apply the acquired

knowledge,

� Students are able to understand where they are
wrong in the learning process,

� Through the feedback, students can improve

their knowledge,

� Students become aware of the software quality

importance and can be quickly incorporated into

the software industry with respect to company

standards and best practices related to the soft-

ware development process.

We also believe that software quality analysis in

the teachingprocessmaybring numerous benefits to

teachers:

� Teachers are able to understand where students

make mistakes in the learning process,

� Teachers are able to understand where they are
wrong in guiding the knowledge development,

� Through the feedback teachers can improve their

knowledge,

� Through the feedback teachers can build students

knowledge in a different way.

7. Conclusions

This paper presents software quality standards and

the Lean software development method and their

application in the process of teaching and learning

programming. We have implemented the Lean
approach with a focus on creating a value for

students and teachers, which is achieved by contin-

uous inspection and continuous improvement of

software quality. In this way, it is possible to

timely detect defects, make program improvements,

and learn on the base of these activities. In addition,

teachers could modify the course in order to guide

knowledge development.
Although the experimentwas limited in scope and

number of participants, the results indicate that the

software quality standards and the Lean approach

can be successfully implemented in the process of

teaching and learning programming. The introduc-

tion of project based learning enables students to

apply theoretical and practical knowledge to sol-

ving engineering problems. Students are guided to
write program codes that are in compliance with a

defined software quality model, which increases the

level of software quality and indicates the improve-

ment of the process of teaching and learning. On the

other hand, programming is part of software con-

struction which is just one of the knowledge areas

defined in the Software Engineering Body of

Knowledge. Therefore, in further research we will
investigate how this approach can be applied within

other knowledge areas in software engineering

education process (e.g., Lean approach in software

requirements gathering, Lean approach in software

testing, Lean approach in software maintenance).

We will continue to explore the importance of soft-

Software Quality Standards and Lean Approach in Teaching and Learning Programming 1357

Fig. 9. Syntax correctness, semantic correctness, and software quality of the software system.

ware quality standards for the learning process and

design tools to support this process.

References

1. I. Sommerville, Software Process Models, in A. B. Tucker
(Ed.), Computer science handbook, CRC press, 2004.

2. P. Kruchten, The rational unified process: an introduction,
Addison-Wesley Professional, 2004.

3. R. S. Pressman, Software engineering: a practitioner’s
approach, Palgrave Macmillan, 2005.

4. J. Carver, L. Jaccheri, S. Morasca and F. Shull, Issues in
using students in empirical studies in software engineering
education,Proceedings of the Ninth IEEE International Soft-
ware Metrics Symposium (METRICS’03), 2003, pp. 239–
249.

5. B. Kitchenham, D. Budgen, P. Brereton and P.Woodall, An
investigation of software engineering curricula, Journal of
Systems and Software, 74(3), 2005, pp. 325–335.

6. T.C. Lethbridge,What knowledge is important to a software
professional?, Computer, 5, 2000, pp. 44–50.

7. T.C.Lethbridge,R. J. LeBlanc,A.E.K. Sobel, T.B.Hilburn
and J. L. Diaz-Herrera, SE2004: Recommendations for
undergraduate software engineering curricula, IEEE Soft-
ware, 23(6), 2006, pp. 19–25.

8. P. Bourque and R. E. Fairley (Eds.), Guide to the Software
Engineering Body of Knowledge (SWEBOK (R)): Version
3.0, IEEE Computer Society Press, 2014.

9. A. Gomes and A. J. Mendes, An environment to improve
programming education, Proceedings of the ACM interna-
tional conference on Computer systems and technologies 2007,
2007, pp. 88–95.

10. A. G. Gein, Informatics in schools: Problems of content,
Programming and Computer Software, 37(6), 2001, pp. 284–
287.

11. N. R. Boyer, S. Langevin and A. Gaspar, Self direction &
constructivism in programming education, Proceedings of
the 9th ACM SIGITE conference on Information technology
education, 2008, pp. 89–94.

12. J. Long, Just For Fun: Using Programming Games in Soft-
ware Programming Training and Education, Journal of
Information Technology Education, 6(1), 2007, pp. 279–290.

13. A. Robins, J. Rountree and N. Rountree, Learning and
teaching programming: A review and discussion, Computer
Science Education, 13(2), 2003, pp. 137–172.

14. J. Sorva, V. Karavirta and L. Malmi, A review of generic
program visualization systems for introductory program-
ming education,ACMTransactions on Computing Education
(TOCE), 13(4), 2013, p. 15.

15. C. Bravo,M. J.Marcelino,A. J.Gomes,M.Esteves andA. J.
Mendes, Integrating Educational Tools for Collaborative
Computer Programming Learning, Journal of Universal
Computer Science, 11(9), 2005, pp. 1505–1517.

16. E. Lahtinen, K. Ala-Mutka and H. M. Järvinen, A study of
the difficulties of novice programmers,ACMSIGCSEBulle-
tin, 37(3), 2005, pp. 14–18.

17. H. F. Guo, A semantic approach for automated test oracle
generation, Computer Languages, Systems & Structures, 45,
2016, pp. 204–219.

18. Y. A. Alsultanny and A. M. Wohaishi, Requirements of
Software Quality Assurance Model, Second IEEE Interna-
tional Conference on Environmental and Computer Science
(ICECS’09), 2009, pp. 19–23.

19. N. F. Schneidewind, Body of knowledge for software quality
measurement, IEEE Computer, 35(2), 2002, pp. 77–83.

20. Y. Liu, T. M. Khoshgoftaar and N. Seliya, Evolutionary
Optimization of Software Quality Modeling with Multiple
Repositories, IEEE transactions on software engineering,
36(6), 2010, pp. 852–864.

21. M. Jørgensen, Software quality measurement, Advances in
engineering software, 30(12), 1999, pp. 907–912.

22. T. Ball, The concept of dynamic analysis, 7th European
Software Engineering Conference ESEC/FSE’99, France,
Springer Berlin Heidelberg, 1999, pp. 216–234.

23. G. Della Penna, A type system for static and dynamic
checking of C++ pointers, Computer Languages, Systems &
Structures, 31(2), 2005, pp. 71–101.

24. B. Johnson,Y. Song,E.Murphy-Hill andR.Bowdidge,Why
don’t software developers use static analysis tools to find
bugs?, 35th IEEE International Conference on Software
Engineering (ICSE), 2013, pp. 672–681.

25. ISO/IEC 25000, Software Engineering—Software product
Quality Requirements and Evaluation (SQuaRE), http://
www.iso.org, Accessed 15 January 2016.

26. ISO/IEC 14598: Information Technology—Evaluation of
Software Products Standard, http://www.iso.org, Accessed
15 January 2016.

27. ISO/IEC 9126, Software Engineering Standard, http://
www.iso.org, Accessed 15 January 2016.

28. N. Bevan, International Standards for HCI, In Claude
Ghaoui (Ed.),Encyclopedia of HumanComputer Interaction,
Idea Group Publishing, 2005.

29. H. Schackmann,M. Jansen andH.Lichter, Tool Support for
User-DefinedQualityAssessmentModels,Proceedingsof the
Software Metrik Kongress (MetriKon2009), 2009.

30. Y.Kanellopoulos, P.Antonellis,D.Antoniou, C.Makris, E.
Theodoridis, C. Tjortjis and N. Tsirakis, Code Quality
Evaluation Methodology Using The ISO/IEC 9126 Stan-
dard, International Journal of Software Engineering and
Applications, 1(3), 2010, pp. 17–36.

31. T. Galli, F. Chiclana, J. Carter and H. Janicke, Towards
introducing execution tracing to software product quality
frameworks, Acta Polytechnica Hungarica, 11(3), 2014, pp.
5–24.

32. I. Antović, S. Vlajić, M. Milić, D. Savić and V. Stanojević,
Model and software tool for automatic generation of user
interface based on use case and data model, IET Software,
6(6), 2012, pp. 559–573.

33. P. Middleton, Lean software development: two case studies,
Software Quality Journal, 9(4), 2001, pp. 241–252.

34. J. P. Womack and D. T. Jones, Lean thinking: banish waste
and create wealth in your corporation, Simon and Schuster,
2010.

35. K.A.Cary, The software enterprise: Practicing best practices
in software engineering education, International Journal of
Engineering Education, 24(4), 2008, pp. 705–716.

36. M. Poppendieck and T. Poppendieck, Lean software devel-
opment: an agile toolkit,Addison-Wesley Professional, 2003.

37. J. Shore and S. Warden, The art of agile development,
O’Reilly Media, Inc., 2007.

38. J. O. Coplien and G.Bjørnvig, Lean architecture: for agile
software development, John Wiley & Sons, 2011.

39. A. Rugarcia, R.M. Felder, D. R.Woods and J. E. Stice, The
future of engineering education I. A vision for a new century,
Chemical Engineering Education, 2000, 34(1), pp. 16–25.

40. A. C. Alves, F. J. Kahlen, S. Flumerfelt and A. B. S.
Manalang, Lean engineering education: Bridging-the-gap
between academy and industry, International Conference of
thePortugueseSociety forEngineeringEducation (CISPEE),
2013.

41. S. Flumerfelt, F. J. Kahlen, A. C. Alves and A. Siriban-
Manalang, The future of lean engineering education: Sus-
tainability, systems and ethics competency, ASME Press,
2013.

42. D. Kanigolla, E. A. Cudney, S. M. Corns and V. A.
Samaranayake, Enhancing engineering education using pro-
ject-based learning for Lean and Six Sigma, International
Journal of Lean Six Sigma, 5(1), 2014, pp. 45–61.

43. J. E. Froyd, P. C.Wankat andK.A. Smith, Fivemajor shifts
in 100 years of engineering education, Proceedings of the
IEEE, 2012, 100 (Special Centennial Issue), pp. 1344–1360.

44. J. E. Mills and D. F. Treagust, Engineering education—Is
problem-based or project-based learning the answer?, Aus-
tralasian journal of engineering education, 3(2), 2003, pp. 2–
16.

45. J. Tierney, Eradicating mistakes from your software process
through Poka Yoke, 6th International Software Quality
Week, Software Research Institute, 1993, pp. 300–307.

46. M. Poppendieck, Lean software development, In Companion
to the proceedings of the 29th International Conference on

Miloš Milić et al.1358

Software Engineering, IEEE Computer Society, 2007, pp.
165–166.

47. A. R. da Silva, J. Saraiva, D. Ferreira, R. Silva and C.
Videira, Integration of RE and MDE paradigms: the Pro-
jectIT approach and tools, IET software, 1(6), 2007, pp. 294–
314.

48. J. L. Letouzey, The SQALEMethod for Evaluating Techni-
cal Debt,Proceedings of the Third InternationalWorkshop on
Managing Technical Debt ICSE 2012, IEEE Press, 2012, pp.
31–36.

49. J. L. Letouzey and M. Ilkiewicz, Managing technical debt
with the sqale method, IEEE software, 2012, (6), pp. 44–51.

50. [50] J. C. Carver, L. Jaccheri, S. Morasca and F. Shull, A
checklist for integrating student empirical studies with
research and teaching goals,Empirical SoftwareEngineering,
15(1), 2010, pp. 35–59.

51. J. Singer andN.G.Vinson, Ethical issues in empirical studies
of software engineering, IEEE Transactions on Software
Engineering, 28(12), 2002, pp. 1171–1180.

52. C. B. Seaman, Qualitative methods in empirical studies of
software engineering, IEEE Transactions on software engi-
neering, 25(4), 1999, pp. 557–572.

53. B.A.Kitchenham, S. L. Pfleeger, L.M.Pickard, P.W. Jones,
D. C. Hoaglin, K. El Emam and J. Rosenberg, Preliminary
guidelines for empirical research in software engineering,
IEEE Transactions on software engineering, 28(8), 2002, pp.
721–734.

54. A. Jedlitschka and D. Pfahl, Reporting guidelines for con-
trolled experiments in software engineering, IEEE Interna-
tional Symposium on Empirical Software Engineering, 2005.

55. C. Larman:ApplyingUMLand Patterns: an introduction to
object-oriented analysis and design and iterative develop-
ment, Pearson Education, 2004.

56. T. J. McCabe, A complexity measure, IEEE Transactions on
Software Engineering, 2(4), 1976, pp. 308–320.

57. G.K.Gill andC.F.Kemerer,Cyclomatic complexitydensity
and software maintenance productivity, IEEE Transactions
on Software Engineering, 17(12), 1991, pp. 1284–1288.

58. A. H. Watson, T. J. McCabe and D. R. Wallace, Structured
testing: A testing methodology using the cyclomatic com-
plexity metric, NIST special Publication, 500(235), 1996, pp.
1–114.

59. R. B. Detty and J. C. Yingling, Quantifying benefits of
conversion to leanmanufacturingwith discrete event simula-
tion: a case study, International Journal of Production
Research, 38(2), 2000, pp. 429–445.

60. R. Duque, L. Bollen, A. Anjewierden and C. Bravo, Auto-
mating the Analysis of Problem-solving Activities in Learn-
ing Environments: the Co-Lab Case Study, Journal of
Universal Computer Science, 18(10), 2012, pp. 1279–1307.

61. D. Janzen and H. Saiedian, Test-driven learning in early
programming courses, ACM SIGCSE Bulletin, 40(1), 2008,
pp. 532–536.

62. S.H. Edwards,Rethinking computer science education from
a test-first perspective, 18th annual ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages,
and applications, 2003, pp. 148–155.

63. H. Erdogmus, M. Morisio and M. Torchiano, On the
effectiveness of the test-first approach to programming,
IEEE Transactions on Software Engineering, 31(3), 2005,
pp. 226–237.

64. S.H. Edwards,Using software testing tomove students from
trial-and-error to reflection-in-action, ACM SIGCSE Bulle-
tin, 36(1), 2004, pp. 26–30.

65. L. Chung and J. C. S. do Prado Leite, On non-functional
requirements in software engineering, In Conceptual model-
ing: Foundations and applications, Springer Berlin Heidel-
berg, 2009, pp. 363–379.

66. G. Fischer and J. W. von Gudenberg, Improving the quality
of programming education by online assessment, ACM 4th
international symposium on Principles and practice of pro-
gramming in Java, 2006, pp. 208–211.

67. B. Boehm, A. Egyed, D. Port, A. Shah, J. Kwan and R.
Madachy, A stakeholder win-win approach to software
engineering education, Annals of Software Engineering,
6(1–4), 1998, pp. 295–321.

Miloš Milić is a teaching assistant at University of Belgrade, Faculty of Organizational Sciences, Department of Software

Engineering. He has taught undergraduate and graduate level courses: Introduction to Programming, Software Design,

Design Patterns, and Java Programming Language. His research interests include software quality, software design, and

software testing. He is the author or co-author of several publications on national and international conferences and

journal papers. He is a PhD student at the University of Belgrade.

Siniša Vlajić is an associate professor of software engineering at University of Belgrade, Faculty of Organizational

Sciences, Department of Information Systems. He has taught undergraduate and graduate level courses: Introduction to

Programming, Introduction to Information System, Software Design, Design Patterns, ProgrammingMethodology, and

Java Programming Language. He wrote many books and publications about C++, Java, software design, software

patterns, databases and information systems. His main research interests include: software process, software design,

software maintenance, software pattern formalization, and programming methodology. He is one of the founders of the

Laboratory and Department of the Software Engineering at Faculty of Organizational Sciences.

Ilija Antović is an assistant professor at Software Engineering Department—Faculty of Organizational Sciences,

University of Belgrade. His research interests are: Automation of User Interface Development, Modeling and Meta-

modeling,Model Driven Engineering, Requirement Engineering, Software Patterns, andCodeGeneration. He lectures at

undergraduate and graduate level courses in his area.He is the author or co-author of several publications on national and

international conferences and journal papers.

Dušan Savić is an assistant professor on Faculty of Organizational Sciences at the Software Engineering Department. He

has interests in the following areas: modeling and meta-modeling, model driven engineering, requirement engineering,

software development, software design, domain specific languages, and automation of user interface development. He has

taught undergraduate and graduate level courses in his area. He is the author or co-author of several publications on

national and international conferences and journal papers.

Vojislav Stanojević is a teaching assistant of software engineering at University of Belgrade, Faculty of Organizational

Sciences, Department of Information Systems. He has taught undergraduate and graduate level courses: Introduction to

Programming, Introduction to Information System, Software Design, Design Patterns, ProgrammingMethodology, and

Software Quality Standards and Lean Approach in Teaching and Learning Programming 1359

Java Programming Language. He wrote publications about Java, software design, software patterns, application

frameworks and domain specific languages. His main research interests include: software design, application frameworks,

business rules, and domain specific languages.

Saša Lazarević is an associate professor of software engineering at University of Belgrade, Faculty of Organizational

Sciences,Department of SoftwareEngineering.Undergraduate and graduate level courses: Introduction toProgramming,

Programming Principles, Software Design, Software Construction, Software Testing, and Software Quality; Databases,

Information Systems Design. His main research interests include: software process, software design, software testing,

software quality, databases and programming on .NET platform. As an academician and educator, he authored or co-

authored over 50 scholarly articles and published three books, whilementoring a number of students and supervising a few

dissertations. He is one of the founders of the Laboratory and Department of the Software Engineering at Faculty of

Organizational Sciences.

Miloš Milić et al.1360

