
Key Issues of Low-Level Parallel Programming in the

Individual Projects for Graduate Students*

IRINA ZAKHAROVA
SoftwareDepartment, InstituteofMathematics andComputerScience,UniversityofTyumen,Volodarskogo6, 625003Tyumen,Russian

Federation. E-mail: i.g.zakharova@utmn.ru

ALEXANDER ZAKHAROV
Information Security Department, Institute of Mathematics and Computer Science, University of Tyumen, Volodarskogo 6, 625003

Tyumen, Russian Federation. E-mail: a.a.zakharov@utmn.ru

This paper presents the research project based methodology of teaching parallel programming to master’s students in a

High Performance Computing program. The requirements for completing a master’s degree state that all students should

be able to develop computer simulation programs using parallel and distributed computing technologies, regardless of

students’ background and their preferences for in-depth study of high or low-level programming, administration, and

information security. Creating computer simulations based on high-performance computing is impossible without the

experience of solving such key issues of low-level parallel programming as the data flow management, synchronization,

load balancing and fault tolerance. We believe that the best way to explore these issues is phased implementation of

appropriate algorithms in the application, and then carrying out computational experiments. Therefore, as amain tool for

the practical study, we offer the implementation of special project tasks. While developing the course tasks, we have used

not only our teaching experience of parallel programming for undergraduate and graduate students, but we also relied on

the existing practice of the development of distributed computing systems. In addition to the classic tasks, students

explored pairing algorithms, load balancing and fault tolerance through implementation in distributed applications and

testing in computational experiments. Our experience has shown that this approach to teaching parallel programming,

which includes modeling and simulations, enabled students to proceed gradually from classic tasks to the implementation

of full-scale research projects.

Keywords: parallel programming; graduate course; load balancing; fault tolerance; computational experiments

1. Introduction

Undergraduate courses in High Performance Com-

puting (HPC) and Parallel and Distributed Com-

puting (PDC), and in particular, parallel

programming, are no longer something exotic in

universities that respond to rapid changes in the IT

field. What was used 20 years ago only for solving

tasks on supercomputers, now works in applica-
tions for smartphones. That is why it is a basic

expectation within the IT community that any

professional software developer should be able to

use the technology of parallel programming. The

current requirements for training programmers,

formulated in the NSF/IEEE-TCPP Curriculum

Initiative on Parallel and Distributed Computing

[1, 2], suggest that undergraduate IT programs,
specifically Computer Science (CS) and Software

Engineering (SE) must include Courses in PDC. In

Russia, the Code of Knowledge and Skills for

supercomputer education has been developed

based on the Curriculum Initiative on Parallel and

Distributed Computing [3, 4]. This document con-

tains recommendations for universities, which, first

of all, must follow the ‘‘State Educational Stan-
dards’’ and professional standards. However, of all

existing professional IT standards [5], only the
professional standard ‘‘System programmer’’ [6, p.

5] reflects in its most general form the relevant

competences (PDC basics knowledge).

Therefore, in the context of studying parallel

programming for Russian educational programs,

many questions remain open. Unfortunately, even

graduates of IT fields of the bachelor’s program of

Russian universities sometimes have only super-
ficial ideas about PDC concepts.

At the same time, the master’s programs in the

HPC area tend to be oriented toward students with

sufficient knowledge of algorithms and technologies

for parallel programming.However, themobility of

students, combined with the rights of universities

themselves to determine the content of curricula in

the absence of training standards create certain
teaching difficulties.

In this paper, we propose a method of teaching

parallel programming based on students’ individual

projects. We show that this methodology helps

students not only to learn the basics of parallel

programming, but also prompts them to investigate

such complex problems as load balancing and fault

tolerance. Based on our experience in using this
method in teaching, we suggest that the following

* Accepted 1 February 2018.1250

International Journal of Engineering Education Vol. 34, No. 4, pp. 1250–1260, 2018 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2018 TEMPUS Publications.



conditions are necessary for obtaining successful

results: (1) a unified structure of tasks; (2) various

levels of complexity for tasks; (3) breakdown of the

project into separate small steps; (4) specific dead-

lines and requirements for interim results; (5) the

opportunity for students to choose the topic and the
level of complexity of the task for the project.

Students choose the level of complexity along with

the conditions that the solution of the original

problem should satisfy (however, the level of com-

plexity and completeness of conditions cannot be

lower than the minimum requirements for the

project).

1.1 Background

Institute of Mathematics and Computer Science at

Tyumen State University offers a two-year master’s

program in High Performance Computing. It

focuses on training in the field of software develop-

ment, administration and information security for

high-performance computing systems. This pro-
gram is open to students with bachelor’s degree in

Information Security, Information Systems,

Mathematics, Computer Science and Mechanics.

They come to Tyumen State University not only

from Russia but also from Kazakhstan, Tajikistan

and other CIS countries. Although the admission

requires a basic knowledge of computer science, the

students have different levels of knowledge in algo-
rithms and data structures, programming languages

and technologies.Moreover, students have different

motivations. Some of them try to improve the

previously obtained knowledge and skills, while

others want to explore new areas. That is why

students can choose a specialization that extends

their knowledge and skills obtained in their bache-

lor’s degree (for example, programmers specialize in
information security). Some students have just

obtained their bachelor’s degrees, while others

have already been working in research and IT

departments of large Russian and foreign compa-

nies (Rosneft, Gazprom, Schlumberger, Hallibur-

ton etc.); therefore, they have specific professional

interests. At the same time, all students regard

acquiring the knowledge and experience in the
field of computer simulation to be very important.

This is largely due to the fact that specialists in the

field of design and development of applications for

the study of geological objects, computational

experiments to study physical processes in wells

and bottomhole zone, visualization of hydrody-

namic and geological models, processing and inter-

pretation of seismic data, etc. are in high demand in
the Tyumen region.

Since the master’s program is related to the HPC

area, students must learn to implement parallel and

distributed applications for computational experi-

ments with different models. The development of

such programs inevitably involves the study of key

problems of low-level parallel programming, such

as load balancing and fault tolerance in computa-

tions.

This paper discusses the research project based
methodology of teaching parallel programming to

master’s students in a High Performance Comput-

ing program. In addition to the classic tasks, stu-

dents explored pairing algorithms, load balancing

and fault tolerance through implementation in dis-

tributed applications and testing in computational

experiments.

1.2 Related work

A lot of research has been dedicated to the issues in

PDC education. However, at present there is no

clear idea of the overall structure of the training and

the content of undergraduate and graduate courses.

In particular,many questions remain open: does the

curriculum include one course or several, what is
their volume, what initial training is needed,

whether to teach it in introductory or advanced

courses. At the same time, the fundamental courses

in Computer Science dealing with languages, meth-

ods and technologies of programming, structures

and algorithms of computer data processing, com-

puter geometry and graphics, discrete and compu-

tational mathematics should take into account the
current trends in the training of IT professionals.

The content of these courses will be incomplete

without highlighting the role and capabilities of

algorithms and parallel programming technologies

in software implementation of solutions of various

applied problems. Graham [7] shows how parallel

programming concepts (threads programming,

system calls programming, virtual machine pro-
gramming, message passing operations) might be

introduced in CS curriculum. John & Thomas [2]

present the distributed approach for PDC integra-

tion with traditional CS courses through the special

modules and discuss the advantages of these courses

providing students with an understanding of main

PDC concepts and new experience in parallel pro-

gramming. Brown & Shoop [8] argue for including
flexible modules in CS courses and continuous

teaching parallelism and concurrency at all under-

graduate levels. Burtscher et al. [9] describe an

innovative approach to introduce PDC concepts

in the short modules taught across several lower

division CS courses without an overhaul of the

curriculum. However, independent courses in par-

allel programming that are geared towards the
practical development of models and technologies

of PDC (OpenMP,MPI, pthreads) for low and high

divisions have become more widespread.

Pacheco [10] justifies the possibility of studying

Key Issues of Low-Level Parallel Programming in the Individual Projects for Graduate Students 1251



PDCbasics in lower division undergraduate courses

and offers an introductory course for the under-

graduate students with minimal background in CS

[11]. Gergel & Kustikova [12] present undergradu-

ate course ‘‘Introduction to Parallel Computing’’

for the 2nd year students with skills in the software
development and basic mathematical knowledge.

Stojanovic and Milovanovic [13] present under-

graduate (8th semester) course designed to improve

students’ parallel programming skills. According to

them, students get hands-on experience with pro-

gramming for the shared and distributed memory

computers in limited budget conditions. Yazici et al.

[14] substantiate the effectiveness of the special
teaching approach for undergraduate elective

course ‘‘Parallel Computing’’ for computer engi-

neering students. This methodology includes using

real-life analogies to introduce main parallel con-

cepts (pipeline, master-worker, SPMD), supple-

menting theoretical slides with the demonstration

of real parallel code and small team projects. Wilk-

inson et al. [15] describe new pattern-based
approach for teaching parallel programming with

higher-level patterns in the special frameworkdevel-

oped for the implementation and execution of the

parallel and distributed programs. According to

them, this approach has more advantages than

disadvantages and main benefit is building the

foundation for the future professional application

development.
Although the NSF/IEEE-TCPP Curriculum

Initiative on Parallel and Distributed Computing

[1] does not require detailed study of many issues

(data flow, load balancing, fault tolerance etc.),

their place in graduate courses is not exactly defined.

Differences in students’ background and variety of

master’s programs further complicate the develop-

ment of graduate courses in PDC. Muresano et al.
[16] present active learning methodology for grad-

uate course in parallel programming concentrated

on teaching master-worker and SPMD concepts

and developing efficient applications through stu-

dents’ experiences. According to them, active learn-

ing help the students to overcome such key PDC

issues as mapping, scheduling, load balancing etc.

Ponce et al. [17] discuss the need for masters’
programs in HPC and note that in some cases

students have to use non-academic options. Relying

on their review of the academic and non-academic

education programs, they prove the effectiveness of

the design for master’s programs in HPC, based on

the experience in not-for-credit training in HPC at

the SciNet HPC Consortium at the University of

Toronto.With regards to the need ofHPCandPDC
courses that are available for students of various IT

Programs, Wilson and Dey [18] describe four

courses in scientific computation (starting with

‘‘Introduction to Scientific Programming’’ and con-

cluding with ‘‘Distributed and Grid Computing for

Scientists and Engineers’’). They include hands-on

exercises, labs and semester projects (both formal

assignments and projects proposed by students),

and substantive opportunities of the proposalmeth-
odology for the development of skills in applied

parallel programming for upper division under-

graduate and graduate students. Gonçalves et al.

[19] substantiate the importance of OpenMP in-

depth study in graduate course and demonstrate

the connection between the fundamental knowledge

of the parallel computing system architecture and

the quality of the parallel program code.
The closest to our methodology are Wilson and

Dey [18] in context of the research projects and

Muresano et al [16] in the context of overcoming

key PDC issues.However, we focus on themodeling

and simulation of load balancing and fault toler-

ance, as well as different parallel programming

languages and libraries.

1.3 PDC terminology

This paper uses terminology in parallel and distrib-

uted computing [1], some of the more commonly

used terms are specified here.

Process—running program with resources (virtual
memory addresses, access to the files and ports)

for the execution of program instructions.

Thread—lightweight process. Each process has at

least one thread. Thread has local data but shares

the same virtual memory addresses and other

resources of the parent process. Data transfer

between the threads is supported by shared

memory.
Shared memory—architecture of the computing

system, based on the direct access of all the

system’s processors to the common physical

memory.

Shared memory programming model—model, in

which parallel processes (threads) have direct

access to the same variables in the shared

memory.
OpenMP (OpenMulti-Processing)—open standard

that supports shared memory programming

model. OpenMP describes a set of compiler

directives, library functions and environment

variables that are intended for programming

multi-threaded applications in C/C++ and For-

tran.

Distributedmemory—architecture of the computing
system, where each processor can only address its

ownmemory, but has network based access to the

physical memory of all the system’s processors.

Distributed memory programming model—model,

where parallel processes of the distributed appli-

Irina Zakharova and Alexander Zakharov1252



cation have direct access to the local processor

memory only and must use network communica-

tions to accessmemory on other processorswhere

other processes are executing.

Message passing—type of communication between

processes, where processes can send messages
(data) to other processes and receive messages

from them.

MPI (Message Passing Interface)—the standard for

producing special libraries that supports the dis-

tributed memory programming model based on

message passing. At the same time, MPI is a

method of performing distributed computations.

There are numerous message passing libraries
(MPI distributions), that are intended for pro-

gramming distributed applications in C/C++,

Fortran, Python and other programming lan-

guages.

Synchronization—coordination of parallel pro-

cesses (threads) in real time to ensure correct

execution of algorithms, avoiding incorrect

access to variables in shared memory (for
threads), deadlocks, etc.

Load balancing (in the context of parallel program-

ming)—special algorithm that improves the dis-

tribution of parallel processes between multiple

computing nodes. Balancing can be performed

both to optimize the load of the entire computing

system, and to provide fault tolerance by reser-

ving resources.
Fault tolerance (in the context of parallel program-

ming)—property of the distributed application to

continue execution in the event of failure of some

computing nodes. Such stability may be provided

by the application itself, system software, hard-

ware or a combination of all of them.

Checkpoints—instant copy of the current state of

the data that is used by the application. Check-
points are important for fault tolerance because

they allow restoration of a distributed application

in the event of a node failure, continuing the

execution of the corresponding process from the

point of the last saved state, and not performing a

full restart.

2. Course content

2.1 Place of the course in the curriculum

Individualization of training with the possibility of

specialization in the field of software development,
administration or protection of high-performance

computing systems is the guiding principle of our

master’s program. To reach this goal, the program

offers elective courses (one course per semester at

the student’s choice). However, all students are

required to take courses in the basic disciplines

(Table 1). This program allows a shift of emphasis

and even the exclusion of certain topics in the
elective courses.Herewe take into account students’

preferences and the subjects of their research or

application projects. At the same time, for basic

disciplines all topics are mandatory.

The course on ‘‘Algorithms and Parallel Pro-

gramming’’ takes a special place in the curriculum

due to its integrative approach [20]. The main goal

of this course is fairly standard—to teach students
to develop parallel algorithms and programs in

following stages [21, 22]:

1. to select subtasks in the initial task that can be

executed in parallel;

2. to adapt the initial task for managing the

execution of subtasks;

3. to develop a parallel algorithm for subtasks and

an algorithm for managing sub-tasks;
4. to choose parallel programming technology

and implement algorithms;

5. to evaluate the effectiveness of the solution

obtained in the course of computational experi-

ments.

Ultimately, the course prepares students to

develop software for high-performance computing

Key Issues of Low-Level Parallel Programming in the Individual Projects for Graduate Students 1253

Table 1.Mathematics and IT courses (2016/2017 academic year)

Mandatory courses Elective courses

First semester

Algorithms and Parallel Programming
Modern Programming Languages
Discrete Optimization

Information Security Methods
MATLAB for Simulation
Communication Networks

Second semester

Algorithms and Parallel Programming
Modern Programming Languages
Computer System Architecture
Administration and Security of Distributed Systems

Open Technologies for Software Development
Data Analysis
Distributed Storage Systems

Third semester

Simulation Systems
IT-Project Management

Optimal Control Problems
Mobile Applications Development
Cloud and Distributed Computing Security



systems for real-world applications. At the same

time, it is possible to single out a number of

additional aims arising from the main goal. On

one hand, such an integrative course makes it

possible to assess the quality of the content and

teaching of many disciplines that have been studied
in a bachelor’s degree. Throughout the teaching

process, we observe how well students understand

the basic concepts, such as computer architecture,

operating systems, network technologies, language

semantics and programming models, compilation

theory, computer data structures and algorithms,

models and methods of discrete and computational

mathematics. In addition, practical tasks for this
course are based on the content of both basic and

elective courses that students take at the same time.

Therefore, the quality of these assignments reflects

quite well the degree to which a student understands

new concepts. On the other hand, we can provide

the opportunity to personalize the training depend-

ing on the level of basic knowledge and skills, as well

as the preference for in-depth study of high or low-
level programming, administration, and informa-

tion security. This will allow us to react quickly to

the arising difficulties due to insufficient initial

preparation. Moreover, the focus on obtaining

concrete results in the implementation of projects,

carrying out computational experiments and work-

ing on a user interface helps students to use and

rethink the content of those courses that they are
taking at the same time (see Table 1). Thus, the

additional objectives of the course ‘‘Algorithms and

Parallel Programming’’ are to evaluate students’

level of initial training in the field of computer

science and monitor the achievements of students

in general during the first year of studying.

2.2 Course content

The course ‘‘Algorithms and Parallel Program-

ming’’ consists of 35 lectures and 35 practical

sessions. We determined the content of lectures

proceeding from the fact that the primary goal of

this course is teaching parallel programming. The

architecture of parallel computers and distributed

systems, connection networks, special program-
ming languages (Haskell, Erlang, Elixir), deploy-

ment and performance management applications

are covered in detail in other courses. That is why

lectures include overviews of basic information

about the architecture for multiprocessor systems,

models and technologies of parallel programming

(Open MP, MPI, CUDA), and multithreaded pro-

gramming (C#, C/C++).
The lectures use a small set of problems (solving a

system of linear algebraic equations, numerical

integration) to illustrate various PDC technologies.

This helps students in the development of their own

applications in practical classes, which have a com-

pletely traditional goal—the concretization and

application of theoretical knowledge for solving

applied problems.

During the practical sessions, students perform

mandatory tasks of two types:

(1) a computational experiment to determine the

execution time, speedup and efficiency of par-

allel algorithms, or to compare simultaneously

running different decision algorithms of the

same problem (numerical integration, search

and sorting, graph algorithms, numerical solu-

tion systems of algebraic equations);
(2) applications’ implementation for calculations

on the given mathematical models and visuali-

zation solutions using multithreading for

improved user interface (gradient methods for

finding the extremum problem, numerical

methods for solving boundary value problems

for 2D heat transfer equation and Poisson’s

equation).

In the first case, students should use C/C ++

programming language and OpenMP, MPI,

CUDA, OpenACC technologies. For assignments

of the second type, students can choose any pro-

gramming language and technology (althoughmost

students prefer the C # language in combination

with Microsoft Task Parallel Library [23] and
MPI.NET [24, 25]). This can be explained by the

fact that C # .NET has become almost a must-have

for Russian undergraduate programs. Throughout

the course, as the algorithms and technologies of

parallel programming are learned, tasks are increas-

ingly aimed at creating applications for computer

modeling. They include the requirements for data

generation, controlled by a series of computational
experiments and the collection of results by a

separate control thread (process).

It is worth noting that we do not require the

mandatory use of parallel programming patterns

for performing these tasks [21], since this issue is

studied in other courses (Modern Programming

Languages, Computer System Architecture).

Our goal is for students to independently discover
two important features of developing parallel and

distributed applications:

(a) many parallel programming tasks use standard

architectural solutions; this helps one to quickly

develop an application prototype;

(b) however, standard solutions do not take into

account hardware particularities, which is the
crucial task of high performance computing.

Therefore, the programmer should provide for

the features of program execution on real

equipment, that is, solve the problems of low-

Irina Zakharova and Alexander Zakharov1254



level parallel programming (we use the term

‘‘low-level’’ not in the context of the program-

ming language, but speaking about the degree

of proximity of the task to the hardware level).

We do not limit the practical experience of

students in compulsory assignments. In addition,

the course includes individual projects in the 2nd

semester. Depending on their specialization (soft-

ware development, administration of computer
systems or information protection), a student can

select an application task to develop a parallel or

distributed application. It is during the implementa-

tion of these projects that students explore the issues

of low-level parallel programming—load balancing

and fault tolerance by the application itself.

3. Proposed methodology

Practical tasks on parallel programming are focused

on the software implementation of a fairly standard
set of algorithms for solving problems of discrete

and computational mathematics. However, this

level of training is not sufficient to carry out research

at a master’s level and implement applied projects

using distributed computing technologies. Creating

computer simulations based on high-performance

computing is impossible without the experience of

solving such issues of low-level parallel program-
ming as the data flow management, synchroniza-

tion, load balancing and fault tolerance. Any

programmer who develops software for distributed

systems encounters these issues. Of course, experts

in the field of administration and protection of

distributed computing systems should also under-

stand the essence of the corresponding problems

and have an idea of the methods for solving them.
We believe that the best way to solve these problems

is to compute the appropriate algorithms in the

application, and then carry out computational

experiments. Therefore, as a main tool for the

practical study, we offer the implementation of

special project tasks. The main problem that had

to be solved when creating tasks was how to

simultaneously (a) provide a single logic for setting
tasks; (b) take into account the specialization of

students; (c) allow students to determine the level of

the solution to the original problem, but not below

the minimum requirements.

Tasks include exploring data distribution (map-

ping), synchronization, load balancing and fault

tolerance. Projects vary in level of difficulty and

the formalization or, on the contrary, the openness
of the original problem statement. At the same time,

all tasks are based on generalized sector models,

which ensures a common base and achievement of

learning objectives. We use the term ‘‘generalized’’

here because the problems can include domain

decomposition, pre-existing connected or overlap-

ping areas, and data decomposition. At the same

time, we do not limit the application of such models

to computer simulations of physical processes only

(such as sector hydrodynamic reservoir model).
While we offer all students a unified statement of

the general problem, it can have different content.

While developing the course tasks, we have used

not only our teaching experience of parallel pro-

gramming for undergraduate and graduate stu-

dents. We also relied on the existing practice of the

development of distributed computing systems. In

particular, the Department of Software and Infor-
mation Security carried out a project to develop a

distributed system for hydrodynamic modeling

based on sector models for both undergraduate

and graduate students. It was important that it

was the students who sought to try different solu-

tions. They tested parallel algorithms for coupling

sectormodels, compared the technologies for imple-

menting distributed computing, developed heuristic
algorithms for dynamic load balancing and so on.

At the same time, we first offered the students a

rather abstract statement of the problem. Only after

the prototype of the system was created, we supple-

mented the original problem with the physical and

geometric features ofmodel interfacing, the require-

ments for synchronization and data balancing. In

this way, a bridge was naturally constructed from
the use of manual mapping to runtime load balan-

cing, from handling exceptions to ensuring the fault

tolerance of the entire system.

Our experience has shown that the presented

approach to development based on the generalized

application of sector models allowed to proceed

gradually from educational problems to the imple-

mentation of full-scale research projects.
The students were expected to explore a set of

issues for solving the following problems:

� The rules and interface conditions (distribution/
synchronization) of models (solutions in the sub-

domains).

� Load balancing on the compute nodes.

� Providing fault tolerance during data processing.

Solutions for the problem of balancing and fault

tolerance in educational applications can be quite

formal, without regard to the nature of the original

problem. However, the first problem requires spe-

cial attention: specifically, features of interface con-

ditions can be decisive for the choice of methods of
load balancing and fault tolerance. For example, in

one of the lectures we showed students that when

solving theDirichlet problemby the domain decom-

position method [26], it may be necessary to change

the grid in one of the subregions due to the peculia-

Key Issues of Low-Level Parallel Programming in the Individual Projects for Graduate Students 1255



rities of the boundary conditions. This would entail

a change in both the interface conditions, and the

distribution of the load on the nodes. Then we

added the fault tolerance requirement: we needed

to get a solution in case of failure of one of the

computing nodes. For this, it was necessary to take
into account all these features in the model proto-

type of the future program and to perform compu-

tational experiments for choosing the optimal

solution.We used similar examples in other lectures

to show the need for computer modeling not only to

solve the original problem, but also to develop a

parallel or distributed application.

For our proposed course methodology, we take
into account both the learning objectives of the

course and various professional interests of stu-

dents. Therefore, we offer students two types of

interface conditions problem. The first option is a

formal statement of the problem (the transforma-

tion of arrays, lists, trees) and interface conditions

determined by formal rules (e.g., the calculation of

the generalized aggregating function, merge sort
etc.). The second option involves solving applied

problems. Accordingly, the applied problem (heat

andmass transfer, optimal route planning, search in

the attack graph etc.) and interface conditions are

based on specific subject areas (e.g., physical laws,

connections in social networks, regulatory criteria

in the search for vulnerabilities in distributed sys-

tems and so on).
The requirements for the load balancing and fault

tolerancewere set as follows (we have given optional

conditions in parentheses):

Load balancing on the nodes is determined in

advance (run-time) based on the characteristics of

the volume of raw data, the computational com-

plexity of the algorithm and performance of the

nodes (including fault history).
The history of failures for the last month is stored

in a file (txt, csv, xslx, xml). The student must

evaluate the distribution of the failure rate and

propose solutions within the acceptable probability

of failure. The failure history can be analyzed using

additional tools, for example, Python, R,

MATLAB libraries. But it is more preferable that

the analysis and visualization tools are included into
the functions of the program.

One of following methods should provide fault

tolerance:

� storages for checkpoints located on the local disks

of nodes (the central node);

� local intermediate results periodically (depending
on the expected failure rate) are sent to the other

nodes (only central node);

� restart all the processes (in case of failure of any

node, data is re-sent from the central node).

In all cases, we assume the absence of central node

failures. The student must determine the control

points him- or herself in accordance with the paral-

lel algorithm and the program architecture and

assess how the chosen method of fault tolerance

affects the execution time of the program.Wedonot
limit students in the choice of equipment for devel-

oping and deploying applications. They can use a

training cluster, 4-core computers and a local net-

work in a training laboratory or homenetwork from

any suitable devices. Simulation of distributed com-

puting on one node, as well as a failure simulation

using a request to cancel a task, is also permissible.

Students work on the project in the 2nd semester
for 12weeks (see Table 2). The lecturer evaluates the

quality of the project at all stages. In addition, the

entire group of students participates in the evalua-

tion of the user interface and project presentation.

Accordingly, the total score determines the final

grade: A (90–100), B (76–89), C (61–75), D (0–60).

4. Evaluation of proposed methodology

The course ‘‘Algorithms and Parallel Program-

ming’’ for graduate students has been taught for 4

years (2013–2016). A total of 73 students attended

it, out of which 58 students completed their projects

in accordance with the plan (see Table 3).

The results of the projects in the 2013/2014
academic year showed a few problems with the

first version of the plan, which is described in

Table 4.

Therefore, we made the project plan more

detailed (see Table 2) and used the requirements of

stages 1–4 of the new plan also for routine practical

tasks. This allowed us to improve the course content

and the methodology, as well as gain valuable
experience. We significantly changed the time allo-

cated for the implementation of the sequential

algorithm for solving the basic problem. Initially,

we had allocated a period of 4 weeks for this task,

and for this reason, many students did not show

sufficient activity. Furthermore, experience has

shown that students do not pay enough attention

to the design of the user interface. At the same time,
the user interface is very important for computer

modeling and simulation systems. In addition, the

quality of the interface reflects the conscientiousness

of the student and the professional attitude to the

development of programs. Therefore, interface

development has become a separate stage of the

project. Finally, we decided to allocate a different

number of maximum points for each stage in order
to show students the relative importance of each

project stage.

We applied the proposed methodology in its final

form in 2015–2016 for a course with 37 students.

Irina Zakharova and Alexander Zakharov1256



Key Issues of Low-Level Parallel Programming in the Individual Projects for Graduate Students 1257

Table 2. Project schedule

Stage Week Results at this stage
Score
(max) What is being assessed ?

1 1–2 Implementation of sequential
algorithms for solving the basic
problem in the console application

10 Code quality including accuracy of algorithm
implementation, reliability, efficiency, data structures,
style, comments (source code has to be submitted to the
lecturer and instructor)

2 3–4 Development and implementation of
the data (or domain) decomposition
algorithms and interface conditions
of particular solutions

15

3 5–6 Development and debugging of the
distributed application (MPI)

15 Application quality including efficiency and scalability
(source code, the description of the development and
debugging stages have to be submitted to the lecturer and
instructor)

4 7 Design of the user interface 10 Usability including learnability and efficiency (The
lecturer and students evaluate the demo version of the
corresponding module).

5 8 Development of balancing
algorithms and their inclusion in the
main application

15 Application quality including accuracy of balancing
(fault tolerance) algorithm implementation, efficiency
and scalability (source code and the description of the
additional algorithm have to be submitted to the lecturer
and instructor)6 9–10 Developing fault tolerance

algorithms and their inclusion in the
main application

15

7 11 The computational experiment and
analysis of results

10 The quality of the computational experiment and the
validity of the results (description of the computational
experiment design and data analysis methods, the results
in the form of tables, charts and graphs have to be
submitted to the lecturer)

8 12 Project presentation 10 Presentation skills (The lecturer and students evaluate
the structure and content of the report, the clarity of the
presentation, the answers to the questions and
communication with the audience)

Table 3. Projects’ results: the distribution of final grades

Academic year

Final evaluation 2013/2014 2014/2015 2015/2016 2016/2017

A 0 2 2 4
B 3 3 5 7
C 9 8 6 9
D 5 6 1 3
Total number of students 17 19 14 23

Table 4. Project schedule (2013/2014)

Stage Week Results at this stage Score (max)

1 1–4 Implementation of sequential algorithms for solving the basic problem in the console application 10

2 5–8 Development and implementation the distributed application (MPI) in accordance with the
decomposition algorithms and conjugation of particular solutions

30

3 9 Development balancing algorithms and their inclusion in the main application 20

4 10 Developing fault tolerance algorithms and their inclusion in the main application 20

5 11 The computational experiment and analysis of results 10

6 12 Project presentation 10



Table 5 shows the combined relative characteristics

of students’ grades, specifically themaximum,mini-

mum values and median with respect to the highest

possible score—Score (max).

A small number of students—8 (21.6%) chose

applied tasks for their projects, but out of these only

five students (62.5%) were able to complete their
projects (in other words, they received a score of no

less than 75% at each stage). 29 students (78.4%)

have chosen a formal task, 13 of them (44.8%) were

also able to complete their projects. The students in

the first group achieved higher results, although the

level of complexity of applied and formal assign-

ments was approximately the same. We assumed

that students who fulfilled projects corresponding
to their specialization had the necessarymotivation.

Conversations with students confirmed this

assumption. We have analyzed how the students

carried out various parts of the project. We found

that simulation of random failures and fault toler-

ance were the biggest challenges for students. How-

ever, 22 students (59.5%)were able to implement the

simple solution (restart all processes).
The detailed assessment of the project’s quality at

all stages (see Table 2) revealed the results of taking

different courses in the bachelor’s program. The

choice of programming languages and technologies

confirmed the popularity of .NET technologies: 20

students (54.1%) used C # (MPI.NET), 2 students

(5.4%)—C # (Windows Communication Founda-

tion), 11 students (29.7%)—C ++ (MPI), 3 students
(8.1%)—C ++ (OpenMP + MPI), 1 student

(2.7%)—Erlang. The overwhelming majority of

students (89.2%) preferred Windows OS, which

they previously studied in the course on Operating

Systems. However, almost all these students needed

the help of an instructor to debug a parallel pro-

gram, because they were only superficially familiar

with thework of threads at theOS level. At the same
time, students who used Linux OS were more

creative. They previously studied the features of

debugging programs independently and success-

fully coped with this task. The analysis of the

source code showed that all studentswho completed

projects competently designed the application as a

whole, preferring the object oriented programming

model. They freely implemented standard graph

algorithms and other methods of discrete mathe-

matics, but they needed help to formalize the

applied problem. Insufficient training in the field
of mathematical modeling was the reason for refus-

ing to solve applied problems. Nevertheless, stu-

dents successfully coped with computational

experiments, which they repeatedly carried out

when solving simple tasks on parallel programming

(multiplication ofmatrices, solving systems of equa-

tions, etc.). The results showed that the students

performed computational experiments and ana-
lyzed the data to a very high standard. At the

same time, 24 students (64.9%) included the neces-

sary tools into the program and implemented a

computer simulation system.However, the students

noted that the material of mathematical courses

could contain more tasks related to the modeling

of parallel and distributed computing. In addition,

the students evaluated the course organization and
their results through the questionnaires. Regardless

of their final grade, the majority of students – 31

(83.8%) noted the importance of such projects for

the practical study of the problems associated with

the development of distributed systems.

5. Conclusion

This paper has presented a methodology for pre-

paring graduate students to implement application

projects that use distributed computing technolo-

gies. The goal of this method of teaching is to enable

students to gain practical experience in solving

problems of low-level parallel programming. Our

approach allows us to build a complete system of
project-type tasks with different levels of complex-

ity: from connecting formally processed arrays or

images to interface conditions of sector hydrody-

namic models. In addition to the classic tasks for

parallel programming, they include the study of

Irina Zakharova and Alexander Zakharov1258

Table 5. Intermediate results of assignments

Scores’ statistics

Applied tasks (8 students) Formal tasks (29 students)

Stage Score (max) max min median max min median

1 10 1.00 0.70 0.90 1.00 0.70 0.80
2 15 0.93 0.53 0.80 0.87 0.40 0.73
3 15 0.87 0.53 0.80 0.87 0.40 0.67
4 10 1.00 0.70 0.80 1.00 0.80 0.90
5 15 0.93 0.40 0.73 0.80 0.33 0.60
6 15 0.87 0.33 0.80 0.87 0.33 0.53
7 10 1.00 0.60 0.80 1.00 0.50 0.70
8 10 1.00 0.70 0.90 1.00 0.70 0.80
Total 100 0.93 0.55 0.79 0.90 0.51 0.68



algorithms and rules of interface conditions, issues

of load balancing and fault tolerance.

Resolving the issues of data analysis and compu-

ter modeling is also an obligatory part of the

projects. Our experience has shown that such pro-

jects are quite complex to implement in full. How-
ever, they help students to identify the key problems

of the computational systems development based

on high performance computing technologies.

These issues are not usually included in traditional

parallel programming tasks, although they encou-

rage students to apply the material of various CS

courses (Math Modeling, Simulation, Graph

Theory, Data Analysis etc.) to solve a particular
problem. We understand that complex assignments

for all graduate courses would be an ideal tool for

the professional development of students. Evalua-

tion of the results of using the proposed methodol-

ogy prompted the authors to start developing

practical cases: ‘‘Modeling and simulation of dis-

tributed application failures’’ for the basic course

‘‘Simulation Systems’’; ‘‘Static and dynamic load
balancing for a distributed computing system’’ for

the elective course ‘‘Optimal Control Problems’’;

‘‘Attack Graph Generation and Visualization’’ for

the elective course ‘‘Cloud and Distributed Com-

puting Security’’. We hope that the methodology

presented in this paper will be useful and inspire

lecturers to go beyond their standard course curri-

culum and use similar projects both for developing
programming skills and studying PDC concepts, as

well as motivating students to use methods of

applied mathematics and computer modeling for

the development of computer systems.

References

1. S. K. Prasad et al., NSF/IEEE-TCPP Curriculum Initiative
on Parallel and Distributed Computing—Core Topics for
Undergraduates, Version I, Dec 2012, https://grid.
cs.gsu.edu/�tcpp/curriculum/sites/default/files/NSF-TCPP-
curriculum-version1.pdf, Accessed 06 October 2017.

2. D. J. John and S. J. Thomas, Parallel and Distributed
Computing across the Computer Science Curriculum,
IEEE International Parallel &Distributed Processing Sympo-
sium Workshops (IPDPSW), 2014, Phoenix, AZ, USA, 19–
23 May 2014, pp. 1085–1090.

3. V. Voevodin, V. Gergel and N. Popova, Challenges of a
Systematic Approach to Parallel Computing and Super-
computing Education, Parallel Processing Workshops
(Euro-Par 2015), 2015, Vienna, Austria, 24–28 August
2015, pp. 90–101.

4. V. Gergel, A. Liniov, I. Meyerov and A. Sysoyev, NSF/
IEEE-TCPP Curriculum Implementation at the State Uni-
versity of Nizhni Novgorod, IEEE International Parallel &
Distributed Processing Symposium Workshops (IPDPSW),
2014, Phoenix, Arizona, USA, 19–23 May 2014, pp. 1079–
1084.

5. Professional Standards ‘‘Communication, Information and
Communication Technologies’’, http://fgosvo.ru/docs/101/
69/2/6, Accessed 06 October 2017.

6. Professional Standard ‘‘System Programmer’’, http://fgos-
vo.ru/uploadfiles/profstandart/06.028.pdf, Accessed 6 Octo-
ber 2017.

7. J.R.Graham, IntegratingParallel ProgrammingTechniques
intoTraditionalComputer ScienceCurricula,SIGCSEBull.,
39(4), 2007, pp. 75–78.

8. R. Brown and E. Shoop, Modules in Community: Injecting
MoreParallelism intoComputerScienceCurricula,The 42nd
ACM Technical Symposium on Computer Science Education
(SIGCSE 2011), 2011, Dallas, Texas, USA, 9–12 March
2011, pp. 447–452).

9. M. Burtscher, W. Peng, A. Qasem, H. Shi, D. Tamir and H.
Thiry, A Module-based Approach to Adopting the 2013
ACMCurricularRecommendations on Parallel Computing,
The 46th ACM Technical Symposium on Computer Science
Education (SIGCSE2015), 2015,KansasCity,Missouri, 4–7
March 2015, pp. 36–41.

10. P. Pacheco, Teaching Parallel Programming to Lower Divi-
sion Undergraduates, The 1st NSF/TCPP Workshop on
Parallel and Distributed Computing Education (EduPar
2011), 2011, Anchorage, Alaska, USA, 16 May 2011.

11. P. Pacheco, An introduction to parallel programming, Else-
vier, 2011.

12. V. Gergel and V. Kustikova, Internet-Oriented Educational
Course ‘‘Introduction to Parallel Computing’’: A Simple
Way to Start, in V. Voevodin and S. Sobolev (eds), Super-
computing. RuSCDays 2016. Communications in Computer
and InformationScience,687. Springer,Cham,2016, pp. 291–
303.

13. N. Stojanovic and E. Milovanovic, Teaching Introductory
Parallel Computing Course with Hands-On Experience,
International Journal of Engineering Education, 31(5), 2015,
pp. 1343–1351.

14. A. Yazici, A. Mishra and Z. Karakaya, Teaching Parallel
Computing Concepts Using Real-Life Applications, Inter-
national Journal of Engineering Education, 32(2), 2016, pp.
772–781.

15. B. Wilkinson, J Villalobos and C. Ferner, Pattern Program-
ming Approach for Teaching Parallel and Distributed Com-
puting, The 44th ACM Technical Symposium on Computer
ScienceEducation (SIGCSE2013), 2013,Denver,Colorado,
USA, 6–9 March 2013, pp. 409–414.

16. R. Muresano, D. Rexachs and E. Luque, Learning Parallel
Programming: aChallenge forUniversity Students,Procedia
Computer Science, 1(1), 2010, pp. 875–883.

17. M. Ponce, E. Spence, D. Gruner and R. van Zon, Scientific
Computing, High-Performance Computing and Data
Science in Higher Education, https://arxiv.org/pdf/
1604.05676.pdf, Accessed 06 October 2017.

18. L. A. Wilson and S. C. Dey, (2016, November). Computa-
tional Science Education Focused on Future Domain Scien-
tists, Workshop on Education for High Performance
Computing (EduHPC 16), 2016, Salt Lake City, Utah,
USA, 13–18 November 2016, pp. 19–24.

19. R. Gonçalves, M. Amaris, T. Okada, P. Bruel and A. Gold-
man, OpenMP is Not as Easy as It Appears, The 49th IEEE
Hawaii International Conference on System Sciences
(HICSS), 2016, Koloa, Hawaii, USA, 5–8 January 2016,
pp. 5742–5751.

20. I. Zakharova and A. Zakharov. Integrative Possibilities of
the Course ‘‘Parallel Programming’’, The 1st Russian Con-
ference on Supercomputing Days (RuSCDays 2015), 2015,
Moscow, Russian Federation, 28–29 September 2015, pp.
759–762.

21. T. G. Mattson, B. Sanders and B. Massingill, Patterns for
Parallel Programming, Pearson Education, 2004.

22. M.McCool, J. Reinders andA.Robison, Structured Parallel
Programming: Patterns for Efficient Computation, Elsevier,
2012.

23. D. Leijen, W. Schulte and S. Burckhardt, The Design of a
Task Parallel Library, ACM SIGPLAN Notices, 44(10),
2009, pp. 227–242.

24. D. Gregor and A. Lumsdaine, Design and Implementation
of a High Performance MPI for C# and the Common
Language Infrastructure, The 13th ACMSIGPLANSympo-
sium on Principles and Practice of Parallel Programming,
2008, Salt Lake City, Utah, USA, 20-23 February 2008, pp.
133–142.

25. M. Hafeez, S. Asghar, U. A. Malik, A. ur Rehman and N.

Key Issues of Low-Level Parallel Programming in the Individual Projects for Graduate Students 1259



Riaz, Survey of MPI Implementations, International Con-
ference on Digital Information and Communication Technol-
ogy and Its Applications (DICTAP 2011), 2011, Dijon,
France, 21–23 June 2011, pp. 206–220.

26. V. Dolea, P. Jolivet and F. Nataf, An Introduction To
Domain Decomposition Methods: Algorithms, Theory and
Parallel Implementation, https://hal.archieves-ouvertes.fr/
cel-01100932/document, Accessed 06 October 2017.

Irina Zakharova is a Professor and the Head of the Software Department at University of Tyumen, Russian Federation.

Her research interests include Math Modeling, Simulation, Parallel Programming, Open Source Math Software, High

PerformanceComputingEducation, IT inEducation. Shehas publishedmore than 100 scientific articles, 7 textbooks and4

book chapters in these fields. She has a vast experience in distance education related to Programming Languages courses.

Alexander Zakharov is a Professor and the Head of the Information Security Department at University of Tyumen,

Russian Federation. His areas of research and interest are Information Security of Distributed Systems, Cloud

Computing,Medical Information Systems,DataAnalysis, Internet of Things, andComputerNetworks.He has published

many scientific articles and research reports in the field of Information Security and Medical Information Systems. Prof.

Zakharov is the Head of Tyumen Cisco Networking Academy and has a large experience in online education covering

courses in Information Security of Distributed Systems and Computer Networks.

Irina Zakharova and Alexander Zakharov1260


