
A Computer Engineering Curriculum Model for Teaching

Software Development to Bridge the Gap between

Academia and Industry*

MARIA-JESÚS MARCO-GALINDO1, JOSEP M. MARCO-SIMÓ1 and MARC FUERTES-ALPISTE2

1Universitat Oberta de Catalunya, Dept. of Computer Science, Multimedia, and Telecommunications.
2Universitat Oberta de Catalunya, eLearn Center, Rambla Poblenou, 156. 08018 Barcelona, Spain.

E-mail:{mmarcog, jmarco, mfuertesal}@uoc.edu

Software development has been traditionally taught in universities starting with programming, then analysis and design

phases of software engineering, and ending up with software management processes. However, this bottom-up approach

(from the specific to the general software view) is precisely the opposite of the typical accepted software development

processes and life cycles found in the professional field. With the aim to bridge this gap between academia and industry, a

multidisciplinary team of eleven lecturers of the Universitat Oberta de Catalunya participated in a long-term research

study with the aim to propose a new engineering curriculum model in the scope of software development. This paper

reports on this study and demonstrates the correct adaptation of the proposed curriculum model to the design of the

Bachelor in Computing Engineering within the European Higher Education Area whilst revealing in general a positive

impact in the actual implementation of the innovative software development curriculum in our university in terms of

academic performance and satisfaction.

Keywords: software development; curriculum model; computing engineering; higher education; industry; bachelor in computing
engineering (BCE); European Higher Education Area (EHEA); Universitat Oberta de Catalunya (UOC)

1. Introduction

In the last decades, the software development (SD)

landscape has dramatically changed. Human activ-

ity is software dependent and hence software pro-

duction is continually evolving [1]. Knowledge on

developing quality and effective software is con-

stantly expanding and this is putting SD curricula

under pressure to fit the industry needs [2]. This
situation is creating new challenges in SD education

to bridge the gap between what industry demands

and the competences and skills of Computing

Engineering graduates [1].

Traditionally, the teaching of aspects involved in

the SD scope has followed a bottom-up approach,

i.e., starting with programming (P), following the

aspects of analysis and design of software engineer-
ing (SE)—often in parallel to database (DB)

design—and ending with SD management tasks

(M). As can be seen in Fig. 1, in Universitat

Oberta de Catalunya (UOC), we followed this

type of bottom-up curriculum model, typically

found in SD curricula in Computer Science pro-

grams. The origin of this bottom-up approach can

be found in the historical evolution of the SD
process itself. However, currently this bottom-up

approach is precisely the opposite of the typical

accepted SD processes and life cycles found in the

industrial arena [3, 4].

In other Computer Science scopes, teaching had

also followed this bottom-up approach. For
instance, the computer networks’ teaching pathway

started and was focused on the lower layers of the

OSI model, even though the main professional

interest lies in the upper layers. Nowadays, many

proposals have been made to abandon the tradi-

tional bottom-up approach by taking the opposite

direction based on a top-down vision (i.e. they start

with the upper layers of the OSI model). This is
being adopted in many university programs though

often implies a change of some contents [5].

In line with the above-mentioned, current discus-

sions in the SD scope deal with: (a) the extent to

which a computer engineer should be trained in

programming [6], (b) how to adapt the computer

curricula to the European Higher Education Area

(EHEA), and (c) what are the differential compe-
tencies and skills of a computer engineer compared

to other professionals in the sector, thus fostering a

reflection about how to articulate and organize

teaching in the SD scope while trying to determine

which obsolete aspects could be discarded and what

new training needs should be included. The ultimate

goal of these efforts is to set out a new curriculum

model in the SD scope following a top-down
approach (from the general to the specific software

view), accordingly with the actual software devel-

opment in the professional field.

To this end, this paper reports on the results of a

long-term research study conducted by a team of

* Accepted 12 March 2018.1400

International Journal of Engineering Education Vol. 34, No. 4, pp. 1400–1410, 2018 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2018 TEMPUS Publications.

eleven professors from theUOC that come from the

four knowledge areas involved in the SD scope we
take into account in this research (P, DB, SE and

M). In 2007, with the aim to perform and submit a

constructive criticism, this teaching team partici-

pated in joint discussion sessions in which they re-

thought the usual topics of each knowledge area

while attempting to formulate a new proposal that

followed the top-down approach. In 2010, the

creation of the newEHEAdegree programs allowed
the implementation of this proposal in the new

degree in Computing Engineering. Since then and

throughout 6 consecutive academic years, data was

collected, analyzed and discussed in terms of the

impact of the new engineering curricula in the

teaching of software development.

The paper is organized as follows. Section 2

presents previous work related to our study. Section
3 describes the research methodology and describes

the proposal of a new curriculum model of SD at

university level.Within this methodology, Section 4

shows the results of this research by a demonstra-

tion that our SDmodelworkedwell when applied to

a degree design adapted to the EHEA as well as the

evaluation of the actual implementation of this

model in our university. We conclude the paper in
Section 5 by summarizing the main ideas of this

paper and outlining the next directions of our

research.

2. Related work

Many authors claim that students perceive SD

education as a challenging field for the high level

of abstraction it implies and because it is not very
much connected with real objects [7]. In some cases,

students find it hard to create a clear mental model

of a program execution [8] due to a lack of knowl-

edge of initial programming strategies [9] and pro-

cedural programming skills [10]. To overcome these

barriers, there is a strong need to link the SD
curriculumwith real life competences and skills [11].

Some authors have proposed alternatives to

address these challenges and particularly in the

programming subjects, which are related to the

requirements of logical thinking and abstract con-

cepts. One example is the use of problem-based

learning approaches to increase students’ motiva-

tion and involvement [7]. For instance, problem-
based learning has been used for teaching Scrum-

based software development methods [12] and

Object-oriented programming [13], as well as in

combination with game-based learning to teach

Computational Logics [14], database management,

programming, and data structure [15]. Another

example is the design of meaningful learning activ-

ities through the use of microworlds [16]. However,
these proposals do not solve the problem of the

traditional bottom-up approach used in program-

ming subjects.

The curriculum model we propose in this paper

has points of connection with the contributions of

Meyer for the teaching of SD, who back in 1993 [17]

assumed the principles of inverted curricula or

progressive opening of black boxes [18] applied to
the field of electrical engineering education. In this

case, instead of adopting a top-down vision, Meyer

promoted an outside vision which is based on

introducing the student first as a software consu-

mer-user who moves towards a producer-developer

role.His proposals were based on giving total access

to the exclusive and unambiguous object-oriented

use, with design by contract as a strategy and
supported by a powerful library environment.

Regarding low-level concepts and skills, students

take care of all the aspects required by the SD,

ranging from a broad approach to more specific

details [19]. However, it seems that these proposals

A Computer Engineering Curriculum Model for Teaching Software Development 1401

Fig. 1. Traditional bottom-up UOC’s curriculum model of SD before the European Higher Education Area (EHEA) period.

have beenmainly limited to the initial programming

subjects [20] even though Meyer already presented

some interesting guidelines for a complete curricu-

lum design [21]. Regardless of its actual final scope,

Meyer’s reasons for the need to deeply rethink the

curriculum organization of SD teaching are very
close to our views.

3. Method

The context of this research study is found in the

higher education field and particularly in the Com-

puting Engineering degrees. The study was con-

ducted by a multidisciplinary team of eleven

lecturers of the UOC who proposed an innovative

engineering curriculum model to bridge the gap

between academia and industry in the scope of

software development. Both the human factor and
the complexity of the study made appropriate to

consider an interpretative perspective of the

research [22], motivated by the need to deeply

understand the observed reality rather than control

it [23, 24].

From this interpretative perspective, we selected a

research methodology that supports the creation

and evaluation of IT solutions applicable to real
organizational needs [25]. To this end, we consid-

ered the Design Science Research Methodology

(DSRM) [26], which proposes a process with several

activities in a nominal sequence, including (i) the

identification of the problem and motivation, (ii)

definition of the objectives for a solution, (iii) the

design and development (of the artifact, such as a

model, system, etc.) that solve the observed pro-
blem, (iv) the demonstration, and (v) the evaluation

of the artifact to measure to what extend the results

obtained are in line with the research objectives.

The sequence of these five activities fit quite well

the achievement of the research goals of our study.

Following the DSRM methodology, next we

describe the first three activities while the results of

the last two activities will be shown and discussed in
Section 4.

3.1 Identification of the problem and motivation

The main purpose of this study is to conduct

research in the context of Computing Engineering

degrees within the EHEA in order to investigate if it

is possible to implement the teaching of SD from a

top-down approach, starting with the SE analysis

and design phases before undertaking the program-

ming phase. This purpose turned into the research
question: can the SD teaching get close to the widely

accepted SD life cycles found in the professional

field?

Following an interpretative view of the problem

and motivated by the research question posed, we

first performed a literature review (see Section 2) in

order to understand the different views of the

problem found in the literature, which motivated

the research process to be carried out. Then, we

searched for existing engineering curriculum pro-

posals in our geographical context of higher educa-
tion, namely the Universitat Politècnica de

Catalunya, Universidad Politécnica de Madrid,

Universidad Politécnica de Valencia and Universi-

dadCarlos III deMadrid, thoughwithout any result

in line with our study was found. We continued our

search in the international higher education context

and found some representative SE curriculum [27],

which proposed to start with SE. However, from a
deeper analysis we observed that this curriculumdid

not only include programming, but actually started

with programing.

Overall, we could not find sound approaches

similar to our study except for some theoretical

proposals presented in Spanish conferences on

Education. However, these were addressed from a

different perspective or tackled the problem only
partially. For instance, they identified the discon-

nection between the academic areas of program-

ming and software engineering, resulting in

knowledge gaps and poor engagement when learn-

ing new software design techniques, since the stu-

dents claimed these techniques to be irrelevant when

facing programming tasks. This view is in line with

the purpose of our study.
Apart from these approaches, we detected a

number of criticisms about the traditional SD

curriculum organization from informal discussions

and comments in both the UOC and in other

universities within our geographical context. We

summarize them next:

1. Traditionally, students do not have a complete

vision of the SD scope until they arrive to the

late stages of their studies. Hence it is necessary

to provide a global and top-down vision of the

SD from the very beginning. A proposed solu-

tion was the creation of a SD reference frame-

work that students could learn from at the

beginning and during their studies.
2. Several reasons made inappropriate to drasti-

cally reverse the SD curriculum from a bottom-

up to a top-downapproach.Among them, there

was a tight curriculum dependency between the

involved knowledge areas in SDandother areas

of the same degree, the expectations to rapidly

train programmers to meet the needs of the job

market, the wrong perceptions of the actual
student’s skills, and the own doubts of the

teaching teams about the feasibility of reconsi-

dering the entire curriculum model for SD. A

less drastic approach was proposed by introdu-

Maria-Jesús Marco-Galindo et al.1402

cing SE and P in parallel rather than starting

with SE before P in the first place. This would

allow for reinforcing and insisting on common

aspects between SE and P whilst minimizing
content overlapping.

3. In order to approach the academic view to that

of the industry, it was proposed to reduce the

time devoted to those learning contents that are

less relevant for the SD profession as well as

rationalize the rest of contents by avoiding

redundancies and introducing the relevant SD

aspects.
4. The Computing Engineering degrees include

several knowledge areas (computer networks,

operating systems, etc.) different from those

that strictly constitute the SD scope, which

can also contribute to improve and enhance

SD teaching. However, the inclusion of further

knowledge areas in our study would require

reconsidering the learning contents of these
areas as well as overall a complex strategy to

be operative.

Finally, we reflected in our approach the reasons

to prevent attempts to propose new SD curriculum

models while criticizing the feasibility of our pro-

posal.

3.2 Define the objectives for a solution

The above reported discussions and reflections by

our participating teaching team set out a number of

requirements to be met when building a new curri-

culum model for the effective SD teaching based on

a top-down approach. Next, we formulate these

requirements in terms of research objectives:

� O1: Provide a global vision of the SD scope at the

beginning of the studies.

� O2: Introduce SE and P in parallel.

� O3: Optimize the SD learning contents.

� O4: Other knowledge areas will contribute to the

SD curriculum.

3.3 Design and development

From our interpretative approach to the problem

and objectives set out previously, we started in 2007

the design of the new Bachelor in Computing

Engineering (BCE) degree at the UOC. The same

A Computer Engineering Curriculum Model for Teaching Software Development 1403

Fig. 2.Model proposal of 2007 (white cells, units of learning content) vs. 2009 (shaded cells, BCE subjects).

Maria-Jesús Marco-Galindo et al.1404

Table 1. Learning goals and skills to be achieved for each primitive unit of learning content.

Units of content Skills

Introduction to Software
Engineering

� Phases/Stages of the Software Development Life Cycle (SDLC)
� Software programming paradigms (structured, object oriented)
� Basics of algorithmic (control structures, elementary types, in/out)
� Programming process (coding, debugging, testing)

Algorithmic and Programming
Foundations

� Data structures: Array, record
� Direct access, sequential search
� Code efficiency

Software Engineering. Analysis � Object Oriented features
� Unified Process
� Requirement elicitation and analysis (UML and OCL)
� Functional testing
� Persistent data (UML. Data modelling)

Software Engineering. Design
Foundations

� Use case design
� Architectural design
� UML

Database Foundations � Management information principles and historical evolution
� Data Base Management Systems functionalities
� Relational databases

Object Oriented Design � Adjustment to a programming language

Object Oriented Programming � Object Oriented programming motivation
� Object Oriented Code. Java tools.
� Unit testing, integration testing
� Interfaces

Interfaces Design � User interface design

Relational Database Design � Programming Logic and design
� Standardization
� Physical design (indexes, tuning)

Interactive SQL � Database creation and table, queries and DB changes (insertion, delete, update)
� Views, triggers, stored procedures, transactions, authorizations and roles

Embedded SQL � JDBC and SQL-J

Linear Data Structures � Introduction to ADT
� Study of efficiency
� Sequences: stack, queue and list
� Priority queue
� ADT libraries in Java

Nonlinear Data Structures � Recursive programs
� Three, functions and sets, relations and graphs
� Design of complex ADT
� ADT libraries in Java

Relational Database Management
Systems Architecture

� View management
� Security Management
� Query optimization
� Concurrency control and recovery in Data Base Systems

Beyond Relational Databases � DB OO and DB Object-relational
� Data warehouse (multidimensional, FIC, OLAP)
� Semi structured data and XML

Distributed Databases � Distributed database access
� Distributed architectures BDMS

SE: Distribution � Specification (RM-ODP)
� Distributed architectures
� components engineering (UML association)
� Distributed design OO (UML association)

SE: Reuse � Principles of reuse
� Patterns and components
� Other Reuse techniques

SE: Process � Quality
� Software configuration management
� Maintenance
� Metrics

Software Development Practice � A practical software development case

teaching teamof eleven lecturers also participated in

the design of the new subjects of this degree, con-

sidering all the discussions and reflections con-

ducted until then.

Figure 2 shows the initial SD curriculum model

proposal of 2007 (white cells with primitive units of
learning content) in contrast to the resulting SD

subjects of the BCE whose design was eventually

completed in 2009. TheBCEsubjects are depicted as

containers of the units of learning content in order

to represent how the BCE design covered our 2007

model proposal as to learning contents. In addition,

the learning goals and skills for each unit of learning

content are summarized in Table 1.

4. Results and discussion

Following the DSRM methodology (see previous
section) we continue in this section with the rest of

the activities related to report on the results of the

research conducted so far.

4.1 Demonstration

In this activity we discuss on and demonstrate that

our SD model proposed in 2007 (made of primitive

units of learning content) worked well when applied

to the BCE design within the EHEA in 2009. The

research objectives formulated in Section 3.2 will
drive the following discussion.

O1: Provide a global vision of the SD scope at the

beginning of the studies. The primitive unit of learn-

ing content ‘‘Introduction to Software Develop-

ment’’ became the targeted reference framework

and introduction where the SD scope was globally

presented. In the final BCE design, this unit was

included in the subject ‘‘Teamwork Network’’
(TN), which is being compulsory in the first aca-

demic semester. This subject introduces first the

different knowledge areas of the BCE, and in

particular the areas of SE, DB, P and M. Then, it

provides a solid reference framework for students to

learn and have a global vision of the SD scope at the

very beginning of their BCE studies.

O2: Introduce SE and P in parallel. The primitive
unit of content ‘‘Algorithmic and Programming

Foundations’’, which introduced P was split into

two subjects in the BCE design: First, ‘‘Program-

ming Foundations’’ introduced algorithmics and

provided a first learning contact with an actual

programming language. Second, ‘‘Programming

Practices’’ tackled the skills of programming tech-

niques (e.g., use of an integrated development
environment and initial hands-on experiences in

the code-compile-test programming cycle). This

separation of concerns into two subjects (12 aca-

demic credits in all) allowed for responding some

criticisms towards the traditional SD curricula (e.g.,

lack of time for students to tackle the full learning of

Pwhile gettingmature knowledge as to algorithmics

and programming mechanisms). The resulting cur-

riculum map showed the parallelization of the first

subjects of P and SE, which led to a more natural

connection between both areas, thus eventually
dealing with another strong criticism towards the

traditional SD curricula (see Section 3.1).

O3:Optimize the SD learning contents. Following

our 2007 proposal, the BCE design discarded or

reduced to the minimum certain outdated topics in

the professional praxis, such as a) SE based on

structured analysis and design in favor of SE

based on Object Oriented (OO) principles, and b)
old-fashioned pre-relational DB aspects. Similarly,

the BCE design eliminated certain overlapping

contents as pointed out in our 2007 proposal: a)

the design of the data models which was repeated in

both SE and DB, and b) the OO principles and

UMLnotation included in both SE andP. From the

start of the new BCE degree, these contents are

being explained only once from a general perspec-
tive and then applied to either SE or P accordingly.

Eventually, the resulting BCE design presented a

curriculum arrangement closer to the actual SD

logics of the professional field. In this sense, parallel

to the introduction of SE and P, the subjects

Requirements Engineering and Project Manage-

ment are introduced. These two subjects are not

exclusively related with SD, but they introduce the
agile methodologies that are essential today in the

SD professional field.Moreover, after the introduc-

tion of SE, the aspects of the interface design were

encompassed in the subject ‘‘Human Computer

Interaction’’ (HCI) being well integrated in terms

of SD process, thus allowing for responding further

criticisms of the traditional curriculum organiza-

tion. However, HCI contents are cross-curricula as
they are applied further to the SD scope, such as the

device interface design, thus complicating their full

integration.

O4: Other knowledge areas will contribute to the

SD teaching. This objective was not fully realized

since in spite of setting up a steering committee to

centralize and make the main decisions of the BCE

design, the lecturers of all the involved knowledge
areas participated in the BCE design from different

separated sub-committees, thus hindering the com-

munication between the SDand the rest of scopes.A

representative issue is the specific arrangement of

the conceptual subject ‘‘Logic’’ (L) in parallel with

‘‘Programming Practices’’ and ‘‘Software Engineer-

ing’’ instead of preceding them as pre-required

conceptual knowledge. Moreover, following L,
there is ‘‘Graphs andComplexity’’, which is another

conceptual-purposed subject that coincides in time

with the application-purposed subject ‘‘OO Design

A Computer Engineering Curriculum Model for Teaching Software Development 1405

and Programming’’ instead of preceding it. Finally,

certain units of content, such as ‘‘SE: Process’’ (see

Fig. 2) were not eventually covered in the BCE

design. Overall, however, the BCE design conveni-

ently responded to the different reasons to prevent

attempts to propose a new SD curriculum model as
well as to criticisms about the feasibility of our

proposal (see Section 3).

4.2 Evaluation

In this final activity of the DSRMmethodology, we

present a quantitative and qualitative evaluation of

our SD curriculummodel proposed in Section 3.3 in

terms of the impact of the actual implementation of

the BCE design since the introduction of the BCE

degree in 2010.
It is out of the scope of this paper to present and

analyze the full implementation of each and every

BCE subject in detail as well as to describe the level

of adaptation of the subjects according to the BCE

design. Instead, from the results obtained in the first

semesters after introducing the new BCE degree,

certain details of these subjects whose implementa-

tion has been significantly deviated from the BCE
design will be revealed. In the next section (Conclu-

sions) these deviations will be duly informed.

4.2.1 Quantitative evaluation

Table 2 shows the comparative results in terms of

teaching impact in academic performance and satis-

faction of the different subjects related to the SD

scope between the BCE degree within the EHEA

(implementing our SD curriculum model) and the

equivalent pre-EHEA Computer Technical Engi-

neering (CTE) degree (without implementing our
SD curriculum model). Academic performance

refers to the percentage of students who pass a

subject out of those enrolled in the course. Satisfac-

tion refers to the percentage of each response to a

Likert-scale questionnaire (‘‘very satisfied’’, ‘‘satis-

fied’’, ‘‘neither’’, ‘‘dissatisfied’’, ‘‘very dissatisfied’’)

out of the total number of responses obtained from

students who usually assess the subject at the end of
course. The data was collected in the UOC during

the period between February 2010 (introduction of

the BCEwithin the EHEA) and February 2017, and

throughout 14 consecutive academic semesters. The

statistical mean for Performance and Satisfaction

presented from pre-EHEA corresponds to all the

historical data available before February 2010.

Although diminishing, the CTE degree was still
running in parallel with the BCE until its total

extinction in 2016. Next, we show the most relevant

results of the comparative data analysis by using

basic descriptive statistics (mean).

The introductory subjects of P, ‘‘Programming

Foundations’’ (PF) and ‘‘Programming Practices’’

(PP), have the lowest performance of the BCE

though in line with the equivalent subjects of the
pre-EHEAdegree for (about 35%). Indeed, the first-

degree subjects enrolled by newly admitted students

at the university usually result in high drop-out rates

[3]. On the other hand, PF’s satisfaction in both

EHEAandpre-EHEA is as high as 74% thoughPP’s

shows a negative impact in both performance

(45.85% from 53.63%) and above all satisfaction

(52.80% from 70.55%). This decrease in both indi-
cators actually responds to many difficulties

informed by the teaching staff so as to design

effective learning activities that tackle the most

complex contents of these subjects (e.g., recursivity,

complexity and algorithmic efficiency) while report-

ing high levels of knowledge immatureness of the

newly admitted students. It is worth noticing that

Maria-Jesús Marco-Galindo et al.1406

Table 2. Summary of the results of academic performance and satisfaction for the SD subjectswithin theEHEA (implementing ourmodel)
and the equivalent SD subjects within the pre-EHEA (without our model)

SD Subjects of BCE (EHEA)

EHEA
Performance
(mean) %

pre-EHEA
Performance
(mean) %

EHEA
Satisfaction
(mean) %

pre-EHEA
Satisfaction
(mean) %

Teamwork Network (TN) 72.21 65.90 76.65 74.19
Programming Foundations (PF) 36.30 34.62 73.70 74.40
Programming Practices (PP) 45.86 53.63 52.80 70.55
Software Engineering (SE) 65.79 69.10 78.97 64.36
OO Design & Programming (OODP) 65.09 53.63 73.51 70.55
Human Computer Interaction (HCI) 71.24 64.20 65.82 49.24
DB Use (DBU) 59.07 69.73 78.75 81.88
DB Design (DBD) 62.43 75.90 79.73 87.50
DB Architecture (DBA) 82.26 69.75 79.58 74.93
Data Structures Design (DSD) 71.40 35.47 72.69 58.16
SE Component & Distributed Systems (SECDB) 72.42 77.42 79.21 51.93
Analysis and Design Patterns (ADP) 76.75 77.42 81.38 51.93
Software Development Project (SDP) 93. 06 82.03 N/A 61.93
Requirements Engineering (RE) 85.59 N/A 84.67 N/A
Project Management (PM) 72.25 64.29 60.03 64.35
Logic (L) 49.24 36.36 78.05 72.45
Graphs & Complexity (GC) 54.39 51.14 66.48 46.05

these complex contents were neither included in our

model proposal of 2007 nor in the BCE design of

2009, but in the BCE implementation these contents

had to be eventually incorporated into these sub-

jects as they were the only compulsory subjects in

the P area.
The following subject in the P area is ‘‘Object-

Oriented Design and Programming’’ (OODP),

which has an acceptable level of performance and

satisfaction (65.09% and 73.51% respectively) and

higher than the pre-EHEA degree (53.63% and

70.55%, respectively). This positive impact chiefly

in performance can be justified because students are

in later stages of their studies as well as this subject’s
demands are in line with the training received and

skills acquired in previous subjects of P and SE.

Similarly, the next subject in P, ‘‘Data Structures

Design’’ (DSD), obtained a high level of perfor-

mance (71.60%), doubling the same indicator of the

equivalent subject in the pre-EHEAdegree. In terms

of satisfaction, the improvement is also significant

(72.69% vs. 58.16%). This highly positive impact
responds to the same criteria as OODP, since the

previous subjects in P sufficed to face the challen-

ging contents of this subject, such as the design of

data structures, the development of algorithms and

the programming issues related to them. Further-

more, DSD represents a quantum leap in terms of

knowledge level and focus with respect to previous

subjects in P (OODP and PP), thus conferring even
more relevance to this result.

Regarding the SE area, as above mentioned the

subject ‘‘Software Engineering’’ (SE) can be studied

in parallel with the subjects of the P area during the

first academic semester of the EHEA degree. The

results of performance and satisfaction are very

acceptable (65.79% and 78.97%, respectively) and

similar to the equivalent subject in the pre-EHEA
degreewith anotable positive impact in satisfaction.

Therefore, we can conclude that anticipating SE in

the EHEA degree has not been counterproductive

from the SD teaching view. Similarly, the other

subjects in the SE area, ‘‘Software Engineering of

Components and Distributed Systems’’ (SECDS)

and ‘‘Analysis and Design Patterns’’ (ADP) show

good results on performance and above all satisfac-
tion (about 80%). These results are similar to the

equivalent subjects of the pre-EHEA in terms of

performance while showing a significant positive

impact in satisfaction (30 percentage points of

increase). This is interpreted as students in the

EHEA feel comfortable and competent with their

previous knowledge on SE when they study these

advanced subjects.
In line with the SE knowledge area, the subject in

the DB area ‘‘DB Use’’ (DBU) also introduces the

databases in parallel with the subjects of P and SE

areas. However, the results are not so good (59.07%

of performance and 78.75%of satisfaction) showing

a negative impact compared to the equivalent sub-

jects of the pre-EHEA degree, though not signifi-

cant. The following subject in the DB area ‘‘DB

Design’’ (DBD) points out similar trends as for
performance and satisfaction (62.43% and 79.73%,

respectively) showing again a negative impact of

both indicators with respect to the equivalent sub-

jects of pre-EHEA (75.90% and 87.50%, respec-

tively). On the other hand, the following and last

subject in this area, ‘‘DB Architecture’’ (DBA)

shows a change of trend with good results and a

positive impact of both satisfaction (79.58%) and
above all performance (82.26%) with respect to the

equivalent subjects of the pre-EHEA degree. We

can conclude that considering the DB area as a

whole, the change of orientation of the subjects

was performed successfully, though partially, since

the positive effects are not noticed until late stages of

this area.

4.2.2 Qualitative evaluation

In addition to the previous quantitative evaluation,

we also conducted a qualitative analysis of the

actual implementation of our curriculum model in

the BCE degree. To this end, we collected the

evaluation reports that the teaching staff perform

and submit at the end of the academic semester, and
throughout 14 consecutive semesters. We comple-

mented these reports with personal interviews with

the teaching staff driven by the objectives of our

study.

Next, we summarize the main results with respect

to the objectives formulated in Section 3.2 (see also

Table 3).

O1: Provide a global vision of the SD scope at the

beginning of the studies.Asmentioned in Section 4.1,

providing a global vision of the SD scope was

included in the subject TN, which was compulsory

during the first academic semesters after introdu-

cing the BCE, thus the reading and study of this

specific content was mandatory. However, given

that the main goal of TN was focused on acquiring

cross-curricula skills (not the global vision of the SD
scope), this subject has been evolving in a way that

this specific content has been gradually set aside and

its mandatory condition forgotten by the teaching

staff in charge of the subject. Even though the BCE

steering committee can force teaching staff to exe-

cute certain actions, it is more productive to seek a

natural agreement by leaving the teaching staff the

eventual decision to whether keep this content as
mandatory. It is worth noticing that the TN teach-

ing staff has a non-technical profile with a strong

background in social sciences and in education in

particular.

A Computer Engineering Curriculum Model for Teaching Software Development 1407

O2: Introduce SE and P in parallel. As already

discussed in the quantitative evaluation, the intro-

duction of SE and P subjects in parallel was mana-

ged without too many curricula issues. On one
hand, the gradual completion of the SE area

throughout the involved subjects was perceived as

natural and sufficient by the students. On the other

hand, P subjects were perceived as problematic by

the students, in particular PP and DSD subjects.

The reasons argued by the teaching staff were

actually out of scope of our proposed curriculum

model as many new students usually enroll directly
in these two subjects without having studied the pre-

required PF subject. The bottom line is that many

newly admitted students at the UOC have some

subjects validated from previous studies. In the

particular case of P subjects, many students have

the initial and fundamental PF subject validated

from either vocational formation courses studied in

the context of high school or previous Computing-
related degrees studied long ago, thus their pro-

gramming skills are quite low. Indeed, PP andDSD

require good knowledge of algorithmics and strong

skills in programming languages and techniques.

Therefore, the study of PF becomes fundamental so

as to have these skills updated andwell-built knowl-

edge. On top of that, the key learning contents used

in the P area have turned out to bemore formal than
applicable, thus somehow hindering to put them

into practice by the students.

O3 & O4: Optimize the SD learning contents &

Other knowledge areas will contribute to the SD

teaching. In general, the perception of the teaching

staff on these two aspects is in line with the discus-

sions reported in Section 4.1 related to these same

objectives. On the one hand, some learning content

overlapping and repetitions were eliminated while

reordering the contents satisfactorily. On the other

hand, a smooth interaction was not managed

among the subjects involved in different scopes
from SD (e.g., L, GC, RE, PM, etc.) but with

connections with SD. As mentioned, the reason

behind this issue is the complexity of communica-

tion and collaboration among the teaching staff of

each scope as well as the tight time frames to

implement the subjects in time to start the new

BCE degree as scheduled, thus making uneasy the

coordination among the teaching teams in charge of
these subjects.

We conclude this long-term research work by

stating that there is neither positive nor negative

limited response to our main research question of

whether the SD teaching can get close to the widely

accepted life cycles found in the professional field.

On one hand, the achieved knowledge level of P was

reported not to be enough for students to get
introduced to other teaching scopes, such as com-

puter networks, operating systems and distributed

systems, which require better programming skills

than those planned in the SD scope with 12 aca-

demic credits only and with many students with P

subjects validated from previous studies coursed

long ago, thus having quite low programming skills.

Moreover, we could not find the appropriate
mechanisms to overcome the limited communica-

tion and collaboration with teachers from other

teaching scopes close to SD, thus not receiving

contributions from them. On the other hand, a

global vision of the SD was successfully introduced

in the first academic semester as oneof the objectives

of our model. Moreover, by parallelizing P and SE,

students successfully faced SE in the first courses at

Maria-Jesús Marco-Galindo et al.1408

Table 3. Overall summary of the results regarding the general question and the research objectives

Objectives Results

O1. Provide a global vision of the SD scope at the beginning of the
studies

Global vision of SD introduced as compulsory content into the
BCE first-semester ‘‘Teamwork Network’’ subject.

O2. Face SE at the beginning of the BCE degree SE successfully aligned with P at the beginning of BCE.
Programming becomes crucial to face other teaching scopes.

O2. Keep overall academic performance and satisfaction Academic indicators equal or better than the pre-EHEA learning
of software development.

O2. Achieve enough knowledge level of programming to face
other teaching scopes.

Updated andwell-built programming knowledge by separation of
concerns (algorithmics and programming) as well as learning
extended up to 2 subjects and 12 credits.
Perceived need formore practice and application of programming
knowledge.

O3. Eliminate learning content overlapping and repetitions Overlapping significantly reduced after a rigorous revision of
learning contents.

O4. Overcome the limited communication and collaboration with
teachers from other teaching scopes close to SD

Found strong complexity of communication and collaboration
among the teaching staff from different scopes and knowledge.
Detected tight time frames to implement the subjects of BCE
degree.

the same time of P, thus keeping P at the beginning

of the curriculum as a crucial tool to face other

teaching scopes with programming requirements.

Finally, learning content overlapping and repeti-

tions were eliminated. Overall, in terms of academic

performance and satisfaction the actual implemen-
tation of our SD curriculum model in the BCE

degreewithin theEHEAachieved acceptable results

in line or better on average than the pre-EHEA

teaching of SD.

5. Conclusions and future work

In this paper, we have presented an independent

free-context engineering curriculum model for

teaching SD based on primitive units of learning

and the corresponding skills to acquire. This model

was proposed as early as in 2007 by a teaching team

of the UOC with the aim to reverse the traditional

academic bottom-up approach so as to get closer to

the accepted SD life cycles of the professional field
based on the opposite approach (top-down). For

evaluation purposes, our curriculum model was,

first, applied to the BCE design within the EHEA

in 2009, which demonstrated to fit well for the

purpose of reorienting the knowledge areas forming

the SD scope. Then, we implicitly evaluated our

model by comparing the performance and satisfac-

tion levels achieved by the SD subjects based on our
model implemented in the newBCEdegree (EHEA)

to the equivalent SD subjects existing in the pre-

vious degrees (pre-EHEA). The comparative results

reveal that most of our curriculum model had a

positive impact in the teaching and learning at the

UOC. However, a few subjects were reported to

have a negative impact, sometimes due to certain

unexpected issues or reasons, which are out of scope
of our model.

To sum up, although turning upside-down the

teaching of the SD scope was not completely man-

aged, our proposed curriculum model fostered the

participating teaching team to face a challenging

exercise to step outside the comfort zone and to re-

think many topics and stereotypes about the teach-

ing of the SD, which were profoundly accepted in
academia settings after many years of teaching SD

from the same perspective and approach. Even-

tually, we managed to get fairly close to a real

implementation of the SD inversion in the way we

imagined when we proposed our model far back in

2007.

As future work we plan to conduct a qualitative

study with BCE graduated students (or in their last
academic semester) who have fully experienced the

implementation of our model in the SD teaching in

order to evaluate whether they have acquired the

expected global degree skills, beyond those particu-

lar skills of each SD subject. To this end, we will

design a practical use case for these students to

identify and assess whether their skills match the

global BCE skills. Moreover, we plan to comple-

ment this study with the analysis of the final theses

carried out in the SD scope over the last years within
both the EHEA and pre-EHEA so as to evaluate

whether the quality of these theses has significantly

increased within EHEA while identifying specific

improved aspects as well as areas for improvement.

Acknowledgements. The authors acknowledge the financial sup-
port from the Faculty of Computer Science, Multimedia and
Telecomunications of Universitat Oberta de Catalunya. The
authors are also deeply grateful to Professor Santi Caballé of
the same Faculty for his extremely productive, constructive,
motivating and helpful dedication and guidance in the design of
the final version of this paper.

References

1. J. Liebenberg, M. Huisman and E. Mentz, The relevance of
software development education for students, IEEE Trans-
actions on Education, 58(4), 2015, pp. 242–248.

2. P. Dolog, L. Thomsen and B. Thomsen, Assessing Problem-
BasedLearning in a SoftwareEngineeringCurriculumUsing
Bloom’s Taxonomy and the IEEE Software Engineering
Body of Knowledge, ACM Transactions on Computing
Education (TOCE), 16(3), 2016, p. 9.

3. R. S. Pressman, Software engineering: a practitioner’s
approach, Mc Graw Hill, New York, 2001.

4. I. Sommerville, Software Engineering, Pearson Education,
Harlow, 2001.

5. J. F. Kurose and K. W. Ross. Computer networking: a top-
down approach, Pearson Education Ltd, 2012

6. N.McBride, The Death of Computing, 2007, Retrieved from
http://www.bcs.org/server.php?show=ConWebDoc.9662 (as
of June 2017).

7. L.De la Fuente, A. Pardo andC.Delgado,Addressing drop-
out and sustained effort issues with large practical groups
using an automated delivery and assessment system, Com-
puters & Education, 61, 2013, pp. 33–42.

8. I. Milne andG. Rowe, Difficulties in Learning and Teaching
Programming - Views of Students and Tutors,Education and
Information Technologies, 7(1), 2002, pp. 55–66.

9. A. Robins, J. Rountree and N. Rountree, Learning and
teaching programming: a review and discussion, Computer
Science Education, 13(2), 2003, pp. 137–172.

10. G. White and M. Sivitanides, A theory of the relationships
between cognitive requirements of computer programming
languages and programmers’ cognitive characteristics, Jour-
nal of Information Systems Education, 13(1), 2002, pp. 59–66.

11. A. Alarifi, M. Zarour, N. Alomar, Z. Alsahaikh and A.
Mansour, SECDEP: Software engineering curricula devel-
opment and evaluation process using SWEBOK, Informa-
tion and Software Technology, 74, 2016, pp. 114–126.

12. N. H. El-Khalili, Teaching Agile software engineering using
problem-based learning, International Journal of Information
and Communication Technology Education, 9(3), 2013, pp. 1–
12.

13. A. J. Olier, A. A. Gómez and M. F. Caro, Design and
Implementation of a Teaching Tool for Introduction to
object-oriented programming, IEEELatinAmericaTransac-
tions, 15(1), 2017, pp. 97–102.

14. F. J. Gallego-Durán, C. Villagrá-Arnedo, F. Llorens-Largo,
R. Molina Carmona, PLMan: A game-based learning activ-
ity for teaching logic thinking and programming, Interna-
tional Journal of EngineeringEducation, 33(2), 2017, pp. 807–
815.

15. Y.-H. Hung, R.-I. Chang and C.-F. Lin, Developing Com-
puter Science Learning System with Hybrid Instructional

A Computer Engineering Curriculum Model for Teaching Software Development 1409

Method, International Journal of Engineering Education,
32(2), 2016, pp. 995–1006.

16. F. Djelil, A. Albouy-Kissi, B. Albouy-Kissi, E. Sánchez and
J. M. Lavest, Microworlds for learning object-oriented
programming: considerations from research to practice,
Journal of Interactive Learning Research, 27(3), 2016, pp.
247–266.

17. B.Meyer, Towards an object-oriented curriculum, Journal of
Object-Oriented Programming, 6(2), 1993, pp. 76–81.

18. B. Cohen, The Inverted Curriculum, Report, National Eco-
nomic Development Council, London. 1991.

19. B. Meyer, The outside-In Method of Teaching Introductory
Programming in M. Broy and A. V. Zamulin (eds), Perspec-
tives of System Informatics, Lecture Notes in Computer
Science, vol 2890, Springer, Berlin, Heidelberg. 2003.

20. M. Pedroni and B. Meyer, The inverted curriculum in
practice, Proceedings of the 37th SIGCSE Technical Sympo-
sium on Computer Science Education, SIGCSE ’06, pp. 481.

21. B. Meyer, Software Engineering in the Academia, IEEE
Computer, 43(5), 2001, pp. 28–35.

22. W. J. Orlikowski and J. J. Baroudi, Studying information
technology in organizations: Research approaches and
assumptions, Information Systems Research, 2, 1991, pp. 1–
28.

23. J.W.Creswell,Researchdesign:Qualitative, quantitative, and
mixed methods approaches, Sage, 2013.

24. L. Cohen, L.Manion andK.Morrison,ResearchMethods in
Education, Routledge, 2007.

25. V.K.VaishnaviandB.Kuechler,Designresearch in informa-
tion systems,MISQuarterly, 28(1), 2004, pp. 75–105.

26. K. Peffers, T. Tuunanen, M. A. Rothenberger and S.
Chatterjee, A design science research methodology for
information systems research, Journal ofManagement Infor-
mation Systems, 24, 2007, pp. 45–77.

27. The Joint Task Force on Computing Curricula, IEEE
Computer Society, Association for Computing Machinery
(ACM/IEEE-SE). Software Engineering 2004: Curriculum
Guidelines for Undergraduate Degree Programs in Software
Engineering, ACM, New York, 2004.

Maria-Jesús Marco-Galindo is an Associate Professor at the Universitat Oberta de Catalunya (UOC) since 1999. She had

also been part-time Assistant Professor in the Universitat Politècnica de Catalunya (UPC) two years before. She holds a

PhD in Education and ICT (eLearning) at the UOC, aMSc in Information Society at the UOC and anMBA at the UPC

and she also received herBSdegree inComputer Science at theUPC.From2001 to 2007 she has beenAcademicDirector of

Computer Engineering (CTE) degree at the UOC. In addition to her research in the field of IT curriculum design and

didactics of programming learning, she is also focused on the study of the teaching professional competencies and soft-

skills in ICT curriculums, with special interest in written ICT professional communications.

JosepM.Marco-Simó is anAssociate Professor at theUniversitatOberta deCatalunya (UOC) since 2001.He holds a PhD

and aMSc in Information Society (UOC) and he received his BS degree in Computer Science at theUniversitat Politècnica

deCatalunya (UPC).From2003 to 2015hehas beenAcademicDirector ofComputerTechnical Engineering (CTE)degree

at the UOC. In addition to his research in the field of IT curriculum design, he is also focused in ITmanagement field with

special interest in the study of the provision processes of IT.

Marc Fuertes-Alpiste is a researcher at the eLearn Center of the Universitat Oberta de Catalunya (UOC). His research

interests are mainly devoted to the study of teaching and learning processes with digital technologies. He has a Bachelor in

Educational Science and received his PhD in Educational Multimedia from the Universitat de Barcelona in 2011. He has

authored papers in conferences, book chapters and articles in indexed journals at both national and international level.

Maria-Jesús Marco-Galindo et al.1410

