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Concept inventories (CIs) have become popular assessment tools in science, technology, engineering, and mathematics

education. Some researchers use CI scores when looking at differences in conceptual understanding or learning gains

across demographic groups, but very few CIs have been evaluated for measurement bias or other aspects that threaten the

fair assessment of learners. The most common psychometric evaluation models are shaped primarily by the majority

demographic group, so these models can hide biases in the assessment against minority groups. The purpose of this study

was to evaluate the extent towhich the validity, reliability, and fairness evidence supports the use of the total score on a 12-

item Abbreviated Dynamics Concept Inventory (aDCI) as a measure of a student’s overall conceptual understanding of

dynamics. Because of the strong relationship between the aDCI and the Force Concept Inventory, which has previously

been shown to include item-level gender biases, we examined threats to fairmeasurement across gender scores of the aDCI.

We employed an argument-based validation approach which tested: (1) the fit of a single-factor latent structure for the

aDCI scores via a confirmatory factor analysis (CFA), (2) the difficulty anddiscriminationof each itemusing item response

theory, (3) the correlation between the aDCI scores and similar measures of conceptual understanding, and (4) the

differential item functioning of the aDCI items across gender groups via a multiple-group CFA. We found that one item

had face-level construct validity concerns and two others were slightly biased against women. Possible sources of gender

bias included the question’s content and context. Our results suggest that the interpretation of a student’s total aDCI score

should consider thedifferential item functioningof two items across gender and the construct-alignment concerns of a third

item. This work highlights the importance and challenge of designing inclusive assessments and validating them with fair

psychometric models.
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1. Introduction

Research suggests that a student’s conceptual

understanding of fundamental engineering topics

directly relates to their ability to solve problems and

apply existing knowledge to new and novel situa-

tions [1–4]. Concept inventories (CIs) are increas-

ingly-popular instruments for assessing students’

conceptual understanding, as well as their miscon-
ceptions,within aparticular domain (such as statics,

dynamics, or thermodynamics) [5]. The interest in

CIs in engineering increased significantly in the

early 2000s, potentially driven by a transition of

ABET accreditation guidelines to a focus on pro-

gram outcomes [6]. Currently, the development and

assessment of conceptual understanding is still a

large endeavor; a search of the USNational Science

Foundation awards found over $7 million in active

awards with the phrase ‘‘concept inventory’’ in the

proposal abstract alone. CIs are commonly used to

evaluate pedagogical innovations [7–9], and they

have also been used to better understand how

students develop conceptual understanding [10].

Yet, despite the investment in and positive out-

comes associated with CI use, research on the
quality and fair use of these assessment instruments

is generally incomplete [5].

Researchers have used many different types of

evidence to validate the use of CIs, with varying

degrees of quality [11]. Because validity pertains to

justifying specific interpretations and uses of assess-

ment scores, evidence must be collected to test the

plausibility of the desired claims made from the
scores [12]. Generally speaking, developers and
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users of CIs have similar desired inferences from the

CI scores—the students’ conceptual understanding

of a specific topic. Therefore, in response to the need

for more consistency, researchers have begun to

develop guidelines to aid those interested in devel-

oping or using CIs for their research. Streveler et al.
[11] demonstrated how theAssessment Triangle can

be applied to the development and testing of CIs,

where evidence to support the interpretation of CI

scores was empirically gathered through studies of

item difficulty and discrimination. The Assessment

Triangle provides a framework for assessment

development that ensures the alignment between

cognitive theory, observing the students’ assessment
responses, and interpreting the responses [13].

Focusing on the interpretation corner, Jorion et

al. [5] suggested a framework to evaluate the plau-

sibility of three common claims made from CI

results: (1) students’ overall conceptual understand-

ing, (2) students’ understanding of specific concepts,

and (3) students’ propensity for misconceptions.

While these frameworks are helpful for developing
and evaluating CIs, the examples do not consider

use among diverse learners. According to the Stan-

dards for Educational and Psychological Testing,

high-quality assessments are based on evidence of

reliability, validity, and fairness [14]. Fair assess-

ment has received relatively little attention in engi-

neering education with few examples of what is

meant by ‘fair’ and how to measure it. This work
provides one example of how to operationalize and

measure fairness and, to our knowledge, represents

the first psychometric analysis of an engineering CI

to consider fairness.

Psychometric models used in the validation of

assessment instruments, such as CIs, are based on

statistics for which the responses of the demo-

graphic majority group will have the most power
in shaping the model. Given that only approxi-

mately 20% of U.S. engineering students are

women [15], any psychometric model from that

sample is essentially normed on the responses

from men. To examine how the items perform for

minority students, researchers need to purposefully

examine measurement models for minority groups.

In a recent review of assessment development arti-
cles published in engineering education journals,

only one article considered potential bias in the

assessment items themselves [16]. Yet, recent

research in engineering education assessment vali-

dation found items that had acceptable fit for the

whole student group also contained item-level bias

against English-language learners [17]. An accepta-

ble psychometric model fit for the whole group does
not guarantee that those same items are fair for all

students. The evaluation of test items is a prerequi-

site to the evaluation of the learners who responded

to those items. Score differences found between

groups cannot be justifiably interpreted as true

score differences unless bias in the measurement

model has been ruled out. It is simply unknown

whether assessment questions or answer choices are

understood in the same way by diverse groups of
students, unless the evidence is specifically sought.

Therefore, the evaluation of CIs in engineering for

fairness across all minority groups, including those

based on gender, is a prerequisite for the fair use of

the students’ scores to make decisions of personal

consequence to the students.

1.1 Purpose of the study and research questions

The overall purpose of this research is to report the

development and initial validation studies of a
shortened formof theDynamics Concept Inventory

[18], which is named the Abbreviated Dynamics

Concept Inventory (aDCI). While the DCI is an

established instrument used in engineering educa-

tion research (e.g., [19, 20]), a shortened version

would enable instructors and researchers to assess

students’ conceptual understanding of dynamics in

less time [21]. The research question that guides this
work is: to what extent does the validity, reliability,

and fairness evidence support the use of aDCI

scores as a measure of students’ overall conceptual

understanding of dynamics? Regarding the fairness

of the aDCI, we focus on gender fairness in this

paper because the aDCI is closely related to the

Force Concept Inventory (FCI) that is used in

physics education, and the FCI has been shown to
include item-level gender bias [22]. Additionally,

previous research has indicated a statistically-

significant gender gap in the students’ total scores

on the aDCI [23].

In accordance with Messick’s [24] description of

validation research as hypothesis testing andKane’s

[25] argument-based approach to validation, we

investigate the overarching research question by
testing the following hypotheses:

If a student’s total score on the aDCI can be

interpreted as a measure of their overall concep-

tual understanding of dynamics, then:

Hypothesis 1. A single-factor latent structure

would effectively model the shared variance

of the aDCI items;

Hypothesis 2. The aDCI items would be appro-

priately difficult and able to discriminate

between students with high and low overall

conceptual understanding of dynamics;
Hypothesis 3. The aDCI total score would be

correlated to similar measures of overall con-

ceptual understanding of dynamics;

Hypothesis 4. The aDCI items would function

similarly for students of equal ability regard-
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less of their background or socialization,

including gender.

The purpose of each hypothesis and the analytical

methods used to investigate the hypotheses are

summarized in Table 1. The structure of this study

will follow the order of the hypotheses. The results

of Hypotheses 1–3 provide information regarding

the reliability and construct validity of the aDCI
scores, and Hypothesis 4 targets fairness.

2. Literature Review

2.1 Reliability, validity, and fairness

The cornerstones of high-quality assessments reside

in the evidence of reliability, validity, and fairness
[14]. Reliability refers to the degree of consistency

both internal to the assessment and of the scores for

multiple administrations of the assessment [16].

Validation is the process of identifying multiple

sources of relevant evidence to make a judgement

about the appropriateness of using a given assess-

ment for a specific purpose [26]. Thus, validity refers

to the evidence and rationale for claiming an assess-
ment score can be interpreted and used as

intended—as a measure of the learners’ knowledge,

skill, or conceptual understanding [12, 16]. Of the

three cornerstones of high-quality assessments,

validity is overarching. Validity depends on the

evidence of reliability and fairness; for an assess-

ment to have a valid use, it must first demonstrate

reliability and fairness in assessing learners.
There is no one set of procedures for validation

because the validation process depends on the

specific interpretation and purpose of the assess-

ment [27]. In order to holistically evaluate the use of

an assessment, one would clearly articulate the

chain of reasoning involved in determining what

evidence to test [27]. In the case of concept inven-

tories used in physics or engineering education, after
the assessment is administered, validity testing

would begin with ‘‘If this assessment score truly

measures the students’ conceptual understanding,

then what else has to be true so that the reliability,

validity, and fairness evidence supports this argu-

ment?’’

Whilemost engineering education researchers are

at least aware of the terms ‘‘reliability’’ and ‘‘valid-

ity’’ in educational assessment, fairness is less

understood. Fairness was recently raised to the

same level of importance as validity in the Standards

for Educational and Psychological Testing in order
to emphasize how crucial evidence of fairness is for

ethical education assessment [14]. The term itself,

fairness, does not have one specific technical mean-

ing, as it has been used in a variety of ways in

educational assessment [14]. The Standards identify

common views of fairness to include equitable

treatment during the testing process, lack of mea-

surement bias, access to content assessed, and valid
interpretations of individual test scores. Fair and

valid interpretations of test scores can depend on,

among other factors, the content assessed and the

context of the questions [14, 28]. Measurement bias

and valid interpretation of individual test scores are

the most pertinent views of fairness for this work

because they are partially dependent on item-level

bias that can cause differential item functioning
(DIF) across student groups, which is what we

investigate in Hypothesis 4. Researchers have pre-

viously found item-level gender bias in physics CIs

(e.g., [22, 29, 30]) and physics (mechanics) is closely

related to dynamics. Therefore, we investigate

threats to the gender fairness of the aDCI stemming

from the psychometric models of evaluation and

from the content and context of the questions.

2.2 Sources of gender bias in CIs

Because of the minimal research on the fairness of

engineering CIs, we looked to the literature from

physics education research for information regard-

ing possible sources of gender bias in CIs. Madsen,

McKagan, and Sayre [31] reviewed literature on the
gender gap of physics concept inventories, and they

identified six categories of factors that had evidence

of a demonstrated impact on the gender gap: back-

ground and preparation (e.g., high school back-
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Table 1. An overview of the analytical methods used in this study and the purpose of each of the hypotheses

Hypothesis Analytical Method Purpose

1. Single Factor Latent
Structure

Confirmatory Factor
Analysis (CFA)

Determine if all items of the aDCI serve as indicators of a single latent
construct that is assumed to be a student’s overall conceptual understanding of
dynamics.

2. Appropriate Difficulty
and Discrimination

Item Response Theory
(IRT)

Investigate howwell the difficulties of the aDCI itemsmatch the latent abilities
of the students and how well the items differentiate the higher- and lower-
performing students.

3. Correlated to Similar
Measures

Correlation Evaluate the relative relationships between similar measures of students’
overall conceptual understanding of dynamics.

4. Measurement
Invariance Across
Groups

Multiple-Group
Confirmatory Factor
Analysis (MG-CFA)

Determine if the aDCI functions the same for men and women; i.e., evaluate
the aDCI for gender bias.



ground), gender gaps on other measures (e.g.,

average exam scores), differences in personal beliefs

and the answer a ‘‘scientist’’ would give, teaching

method (e.g., level of interactive engagement),
stereotype threat, and question wording.

Regarding question wording, the conclusion of

Madsen and colleagues was largely based on

McCullough’s findings [32, 33] that students chan-

ged how they answered questions on the FCI when

the question wording was revised to included every-

day and stereotypically feminine contexts (rather

than stereotypically masculine contexts of the tradi-
tional FCI). However, the way in which the context

influenced the students’ performance on individual

questions was inconsistent, meaning the gender gap

for the overall scores remained unchanged for

McCullough’s revised concept inventory. Nonethe-

less, McCullough’s findings showed that changing

the context of an individual question affects how

men and women answer the question.
McCullogh’s findings aligned with what Ding

and Caballero [28] called a context effect. A context

effect is when one group of students is more familiar

with the non-essential features of a question (such as

wording, language, or images), and this extra famil-

iarity with the context causes DIF. Alternatively,

Ding and Caballero posited that DIF could be

caused by a content effect, which is when groups of
students who have been exposed to different inter-

ventions, instruction, or experiences perform differ-

ently on an item. Unfamiliar content and contexts

can create extra cognitive load which can affect a

student’s performance because the student must

first infer the situation described in the problem

statement before they can attempt to solve the

problem [34]. Thus, content and context effects
can favor certain groups based on their background

and socialization, including gender.

To help instructors identify and eliminate gender

bias in physics questions, Rennie and Parker [34]

developed a framework, see Table 2, for assessing

the gender orientation (masculine, feminine, alleg-

edly neutral, or gender inclusive) of physics ques-

tions along four dimensions (language, portrayal of
stereotypes, appeal to background experiences, and

context). Later, McCullough [32, 33] used the same

framework to categorize the items of the FCI.

Leveraging the strong relationship between physics

and dynamics, we used this framework to qualita-

tively evaluate the aDCI items for gender bias.

3. Background

The sophomore-level dynamics course required by

many engineering majors is often challenging. It is a

gateway course to the more specialized upper-divi-

sion engineering courses, and, when paired with

statics, it creates the problem-solving and concep-

tual foundation formuch of the curriculum inmany

engineering disciplines. To be successful in
dynamics, a student must understand algebra, dif-

ferential equations, vector math, physics, and sta-

tics. The incorporation of so many fundamental

subject areas of engineering may be a partial expla-

nation of why students’ exam scores for dynamics

courses are lower than they are in statics and

thermodynamics courses [35]. Many researchers

have discussed the difficult aspects of dynamics
(e.g., [1, 36–38]), many of which involve prerequisite

material. The difficulties that the students have with

the prerequisite fundamentals support the conclu-

sion ofGray et al. [18] that ‘‘student misconceptions

are not random, but are generally the result of a

deficiency in their understanding of fundamental

principles.’’ Accordingly, Cornwell [39] noted that

when students do not understand the fundamentals
of dynamics, they struggle to identify when or why

to apply a given model or solution approach.

To help instructors assess their students’ concep-

tual understanding of the fundamental topics of
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Table 2. A gender-orientation framework for evaluating items on the aDCI for gender bias [34]

Criteria Masculine Orientation Feminine Orientation
Allegedly Neutral
Orientation

Gender-Inclusive
Orientation

Language Uses he, him, his Uses she, her, hers Uses they, them, their
Uses role (e.g., a
sprinter . . .)

Uses the name of a person
Uses ‘‘you’’

Portrayal of stereotypes Men in active roles,
women in passive roles

Women in active roles,
men in passive roles

Genderless people in
active roles (e.g., a
scientist . . .)

Both men and women in
active and passive roles

Appeal to background
experiences

Relevant to stereotyped
experiences of men

Relevant to stereotyped
experiences of women

Not relevant to human
experiences

Relevant to men and
women equally

Context Decontextualized,
abstract

Human, social Concrete setting Human, social,
environmental

Note. Rennie and Parker used the terms male and female rather than the terms masculine, feminine, men, and women (as shown). Rennie
and Parker included the word ‘‘allegedly’’ to the Neutral Orientation category because their research indicated that students assume
plural pronouns and genderless people refer to men.



dynamics, Gray and colleagues [18] developed the

Dynamics Concept Inventory (DCI). The DCI

stemmed from the need to quantitatively assess the

efficacy of pedagogical innovations in dynamics.

Gray et al. conducted a modified Delphi process,

focus groups, student interviews, (informal) instruc-
tor interviews, and pilot tests to develop the DCI.

The final result was a 29-item instrument that

targeted 11 of the most important and difficult

concepts in dynamics [18]. Each item included five

answer choices. Psychometric analyses have found

that the DCI should be used for low-stakes assess-

ment and that the total scores could be interpreted

as the students’ overall understanding of concepts
on the DCI [5, 18]. Thus, it is plausible that a

carefully-selected subset ofDCI items could provide

a similarmeasure of the students’ conceptual under-

standing.

3.1 aDCI Development

To streamline the implementation of a dynamics CI

and to save class time [21], a shortened version of the

DCI (the aDCI) was developed and incorporated

into the final exam of a dynamics course (Jorion et

al.’s [5] suggestion of using the DCI in a low-stakes

environment was not yet published). The number of
conceptual questions on past final exams for this

dynamics course typically ranged from 5 to 13.

Therefore, the goal for the aDCI was to target as

many of the important and difficult dynamics con-

cepts as possible with fewer than 13 items.

The DCI developers did not specify which items

targeted which concepts, and very limited psycho-

metric information was available for the DCI at the
time that the aDCI was developed (early 2015).

Therefore, two of the co-authors of this paper

(both subject-matter experts in dynamics) used

their best judgement to categorize the DCI items

according to conceptual content. They then chose

11 items for inclusion in the aDCI that spanned 10

of the 11 conceptual categories and a twelfth item

that tested pre-requisite physics knowledge. The
questions were selected based on clarity and align-

ment with the material taught in the dynamics

course, which reflected the curriculum of most

undergraduate dynamics courses and included the

study of particle and rigid-body kinematics and

kinetics in two and three dimensions. The twelve

selected items for the aDCI and their targeted

concepts are listed in Table 3.

4. Methods

4.1 Participants and data collection

The aDCI data for this study were collected from

students enrolled in a sophomore-level dynamics

course at a large, public, doctoral universitywith the

highest category of research activity [40] located in

the Midwest region of the United States. The

dynamics course was focused on particle and

rigid-body kinematics and kinetics, as well as

mechanical vibration. Each year, over 500 students
enrolled in the course, often in class sections of up to

120 students. The sampling frame for this study

consisted of all of the students who enrolled in the

course from Spring 2015–Spring 2017. Of the 1,397

students in the sampling frame, 1,351 students

completed the aDCI, and 1,250 of those students

agreed to participate in the research study. The

aDCI was administered as part of the course’s
final exam, and the items were scored as correct or

incorrect (1 or 0, respectively). If an item was
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Table 3. Description of the concepts assessed by each item of the aDCI (using verbatim descriptions from Gray et al. [18])

aDCI Item # Concept Description

Q1 Newton’s third law dictates that the interaction forces between two objects must be equal and opposite.

Q2 Angular velocities and angular accelerations are properties of the body as a whole and can vary with time.

Q3 If the net external force on a body is not zero, then the mass center must have an acceleration and it must be in the same
direction as the force.

Q4 In general, the total mechanical energy is not conserved during an impact.

Q5 An object can have (a) nonzero acceleration and zero velocity or (b) nonzero velocity and no acceleration.

Q6 The direction of the friction force on a rolling rigid body is not related in a fixed way to the direction of rolling.

Q7 The angularmomentumof a rigid body involves translational and rotational components and requires using somepoint
as a reference.

Q8 If the net external force on a body is not zero, then the mass center must have an acceleration and it must be in the same
direction as the force.

Q9 The inertia of a body affects its acceleration.

Q10 A particle has acceleration when it is moving with a relative velocity on a rotating object.

Q11 Points on an object that is rolling without slip have velocities and acceleration that depend on the rolling without slip
condition.

Q12 Different points on a rigid body have different velocities and accelerations, which vary continuously.

Note. Q3 and Q8 assess the same concept.



unanswered or if multiple answers were selected
(which occurred 0.31% of the time), the response

was considered incorrect. These scoring methods

led to a sample with no missing data.

The demographic characteristics of our sample

are shown in Table 4. The institutional-research

data we used conflated race, ethnicity, and interna-

tional status into one variable and collected gender

as a binary variable (which we acknowledge is a
simplification of the gender spectrum). The propor-

tion of women in this course is representative of

many mechanical engineering courses at large

research universities in the USA, including those

at the university of this study.

4.2 Data analyses

4.2.1 Preprocessing data: descriptive and

correlation statistics

Prior to testing the four psychometric hypotheses,
the data were explored via descriptive statistics and

correlations. Because of the dichotomous nature of

the data (0 = incorrect, 1 = correct), the proportions

of students who answered an item correctly and

inter-item tetrachoric correlation coefficients were

calculated [41]. Theproportions provided ameasure

of item difficulty [42]; the tetrachoric correlations

weremeasures of internal reliability andhow related
the items were to one another [41].

4.2.2 Hypothesis 1: a single-factor latent structure

This analysis used confirmatory factor analysis

(CFA) to evaluate the hypothesis that the aDCI

scores reflect a unidimensional latent-factor struc-

ture, i.e., conceptual understanding of dynamics. To
identify the model and estimate all the factor load-

ings, the variance of the latent variable was con-

strained to be unity. A weighted least squares

estimator in the lavaan package (version 0.5-

23.109) of R (version 3.3.2) used diagonally

weighted least squares to estimate the model para-

meters, and it used the fullweightmatrix to compute

robust standard errors and a mean- and variance-

adjusted chi-squared (�2) statistic. The estimator

specified themodel parameters thatmost accurately
reproduced the tetrachoric correlation matrix for

the sample data.

We holistically evaluated the model through the

goodness of fit statistics of �2, comparative fit index
(CFI), and root-mean-square error of approxima-

tion (RMSEA) goodness of fit statistics. We gave

the statistical significance of the �2 test statistic

minimal consideration when determining overall
model fit because of its sensitivity to sample size

and non-normality [43, 44]. More weight was given

to the CFI andRMSEA values. As suggested byHu

and Bentler [45], we considered CFI values above

0.950 and RMSEA values below 0.050 to be indi-

cators of good model fit.

4.2.3 Hypothesis 2: items of appropriate difficulty

and discrimination

Item response theory (IRT) models the probability

of a student answering an item correctly as a

function of their ability level (a latent trait) and

the properties of the item that are independent of the

sample. Similar to CFA, IRT utilizes a single-factor

model to estimate each student’s latent ability,
which we again assumed to represent a student’s

overall understanding of dynamics. We used a 3-

parameter (3PL; difficulty, discrimination, and

guessing) model to characterize each item of the

aDCI. The proportion of lower-performing stu-

dents (those with an aDCI total score of 3 or less)

who answered the item correctly was used as the

initial value for the guessing parameter in the IRT
model. The M2 test statistic was used to evaluate

model fit, using p < 0.050 as the significance thresh-

old [46]. The items’ difficulty values were compared

to the students’ ability levels with a Wright map [5]

to determine if questions were too challenging or

easy for our sample. Discrimination values indi-

cated how well the item differentiated students who

knew the concept and those who did not [42].

4.2.4 Hypothesis 3: correlation with similar

measures of conceptual understanding

Every intermediate exam in the dynamics course in

which our participants were enrolled included con-

ceptual questions, and in aggregate, the concepts

assessed by the intermediate exams reflected the

concepts assessed by the aDCI. Strong correlations
between a student’s performance on the conceptual

questions of the three intermediate exams, their

total score on the aDCI, their latent factor score

from the CFA (from Hypothesis 1), and their
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Table 4. Demographics of the sample (N = 1250)

Variable Value

Majora 81% Mechanical Engineering
4% Nuclear Engineering
5% Agricultural Engineering
3% Multidisciplinary

Engineering
6% Other

Race/Ethnicity/
International Status 60% Domestic, White

7% Domestic, Asian
5% Domestic, URM
23% International
5% Domestic, Other

Gender 82% Male
18% Female

a The total percentages ofmajor does not sum to 100%because of
numeric rounding.



ability score from the IRT analysis (from Hypoth-

esis 2) would support the assumption that these data

were allmeasures of the students’ overall conceptual

understanding of dynamics. The exact concepts

assessed on the intermediate exams varied slightly

across semesters. To be able to compare the instruc-
tor-written questions across semesters, we standar-

dized the students’ scores for each semester

individually. Regarding format, the aDCI consisted

of multiple-choice questions only, and the inter-

mediate exams incorporated multiple-choice, true/

false, and short-answer conceptual questions.

4.2.5 Hypothesis 4: measurement invariance across

genders

If assessment items are trulymeasuring the intended

construct and not outside factors, there should be

no group level differences in item performance.

Measurement invariance refers to the assumption

that the measurement model is not significantly

different for different demographic groups [47].
Conversely, differential item functioning (DIF)

occurs when an item functions differently for differ-

ent demographic groups [48]. There are multiple

methods that can be used to detect DIF including

multiple-group confirmatory factor analysis [49],

IRT techniques [50], and non-parametric techni-

ques like the Mantel-Haenszel method [51]. We

used multiple-group confirmatory factor analysis
(MG-CFA) for this study so that we could test the

invariance of the relationships between the items

and the latent variable (the factor loadings) and the

item thresholds (the probability that a student will

answer the item correctly) independently. The test-

ing of measurement invariance with MG-CFA

involves simultaneously fitting separate measure-

ment models (with the same latent structure) to the
data frommen and women. Then, differences in the

parameter estimates (such as factor loadings and

thresholds) across the two measurement models are

investigated by sequentially adding equality con-

straints to the parameter estimates of both models

while testing for statistically significant changes in

the fit of the overall model (which includes the

measurement models of both men and women).
Brown referred to four levels of increasingly strict

measurement invariance as: equal form, equal

factor loadings, equal thresholds, and equal indica-

tor residuals [52]. We only tested equal form, equal

factor loadings, and equal thresholds because the

variances of the indicator residuals were calculated

values, not estimated parameters, for our data type.

For testing equal form, we compared the goodness
of fit statistics and factor loadings for CFA models

that used data from men only, women only, and

men and women simultaneously but in separate

factor structures (which we labeled Model 1). To

test for equal factor loadings (Model 2), we con-

strained the unstandardized factor loadings for each

item, respectively, to be equal across gender groups.

Equal factor loadings indicate that the relationships

between the items and the latent factor are the same

for men and women [43, 53, 54].
The testing of equal thresholds for all of the items

in aggregate (Model 3) incorporated the CFA

assumption that a continuous, normally-distributed

variable underlies the dichotomous score for each

indicator. The threshold corresponds to the z-score

that bisects the distribution curve such that the areas

under the curve correspond to the proportions of

students answering the questions as 0 or 1.Measure-
ment invariance at the equal-thresholds level indi-

cates that, on average, the items are not biased

against either of the gender groups [43, 53, 54].

Because the fit statistics used to judge measure-

ment invariance indicated how well the model

reproduced the variances and covariances of the

sample data overall (and in aggregate), the test of

equal thresholds for all of the items simultaneously
could hide biased thresholds for individual items.

The test for equal thresholds for individual items

was a two-phase process. First, we iteratively and

individually released the equality constraint for

each item’s threshold to determine the statistical

significance (��2 p-value) of the change in the

model fit when compared to Model 3. Second, we

sequentially incorporated as many of the unequal
thresholds as necessary into a final MG-CFA

model. The second phase used a sequential model-

improvement procedure similar to that used when

altering a model based on modification indices [55,

p. 733]; the baseline model was updated whenever a

model with a newly-released threshold constraint fit

the data better than the existing baselinemodel. Our

modification indices (values that are used to rank
model changes according to how likely the changes

are to improve the model fit) were the��2 p-values
from the first phase. The thresholds for the itemwith

the lowest ��2 p-value from the initial phase were

freely estimated first, and the resultingmodel fit was

compared to that of the baseline MG-CFA model.

Then, the same testing process was repeated for the

item with the second-lowest ��2 p-value, then the
third-lowest, and so on, identifying a new baseline

each time the release of a threshold constraint

resulted in a statistically significant model-fit

improvement.

The same goodness of fit indices (�2, CFI, and
RMSEA) and their thresholds used in the prior

CFA were used for the measurement invariance

tests. When nested models were compared, we
used a �2 difference (��2) test and the change in

CFI to judge if the model fit changed significantly.

Because the WLS estimator adjusts the test statistic
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for mean and variance, a scaled ��2 test according
to Satorra’s method [56] was utilized. If the p-value

for a scaled ��2 test was lower than 0.050, we

rejected the null hypothesis of equivalent model

fits. We considered a change in CFI greater than

0.010, as suggested by Cheung and Rensvold [43],
indicative of significantly different model fits.

5. Results

5.1 Descriptive and correlation statistics

The proportion of students answering each of the 12

items correctly, the inter-item tetrachoric correla-
tion coefficients, and the item-test correlation coeffi-

cients (a measure of discrimination) are shown in

Table 5. The low inter-item correlation coefficients

illustrated the broad, and in some cases indepen-

dent, nature of the concepts assessed on the aDCI,

but Q7 had particularly low inter-item correlations,

which was evident in our CFA as well. The lack of

groups of items with high correlations suggested

that a one-factor latent structure was the most

probable model.

5.2 Hypothesis 1: a single-factor latent structure

The goodness of fit statistics for the model with a

single-factor latent structure are included in Table 6

(which includes results fromHypothesis 4 also). The

CFI was above the threshold for considering the

model a goodfit (0.950), and theRMSEAwasbelow

its 0.050 threshold. The �2 value had an associated
p-value of less than 0.050, but thiswas not surprising

given the dependence of the �2 statistic on sample
size [43]. Therefore, the evidence suggests that a

single-factor latentmodel, as shown inFig. 1, fits the

data well and supports the hypothesis that all items

were indicators of a single latent construct—the

overall conceptual understanding of dynamics.

Additionally, all of the factor loadings for the

model shown in Fig.1 were statistically significant
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Table 5.Low correlation coefficients (lower diagonalwith standard errors in the upper diagonal) between items of the aDCI illustrated the
broad nature of the concepts assessed by the aDCI

Correlation Coefficients
Proportion

Item # Correct Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Q1 0.91 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07
Q2 0.80 0.40 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06
Q3 0.83 0.22 0.35 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06
Q4 0.63 0.18 0.28 0.29 0.04 0.04 0.05 0.04 0.05 0.05 0.04 0.05
Q5 0.63 0.21 0.38 0.27 0.27 0.04 0.05 0.04 0.05 0.04 0.04 0.05
Q6 0.45 0.23 0.27 0.38 0.21 0.24 0.05 0.04 0.05 0.04 0.04 0.05
Q7 0.67 0.07 0.12 0.18 0.06 0.13 0.18 0.05 0.05 0.05 0.05 0.06
Q8 0.41 0.18 0.19 0.07 0.25 0.26 0.14 0.08 0.04 0.04 0.04 0.05
Q9 0.36 0.26 0.23 0.07 0.21 0.21 0.12 0.17 0.28 0.04 0.04 0.05
Q10 0.42 0.13 0.25 0.08 0.13 0.26 0.21 0.19 0.18 0.20 0.04 0.05
Q11 0.66 0.22 0.36 0.20 0.28 0.22 0.24 0.15 0.26 0.32 0.38 0.05
Q12 0.84 0.12 0.24 0.22 0.22 0.22 0.18 0.09 0.10 0.15 0.13 0.23

Total Score 0.63 0.32 0.49 0.40 0.47 0.50 0.47 0.36 0.44 0.45 0.46 0.52 0.34

Fig. 1.The single-factor structuralmodel fit the aggregated data frommenandwomenwell, as tested inHypothesis
1. The numbers on the arrows from the latent construct (conceptual understanding of dynamics) to the items (Q1–
Q12) represent factor loadings, which in this study are equivalent to correlation coefficients. The numbers below
the items indicate the proportion of unexplained variance in each item.



(p<0.001). The factor loading forQ7, however, was

nearly half that of the factor loadings for the other

items. This low factor loading indicates thatQ7may

be measuring a different construct than that mea-

sured by the other 11 items, and potential causes of

the psychometric properties of Q7 are explored in

the Discussion section.

5.3 Hypothesis 2: items of appropriate difficulty

and discrimination

TheM2 test statistic for the 3PLmodel (M2=55.79,

df = 42, p = 0.075) indicated that there was no

statistically significant difference between the

observed data and the model-fitted data. Three
conclusions can be drawn from the item character-

istic curves in Fig. 2 and the parameter values in

Table 7.

First, all items (except for Q7) had a positive and

relatively high discrimination (maximum slope

steepness) between the ability levels of –2 and 2,

which was the ability range of the students in our

sample. The lower discrimination value of Q7
(which is represented by the shallower slope in

Fig. 2)means thatQ7 did not efficiently differentiate

the high- and low-ability students based on their

response.

Second, Q1 and Q3 had difficulty values near

negative two, which were considerably lower than

most of the other questions. As shown in Fig. 3, Q1

and Q3 were most suited to differentiate students at
a low ability level (near –2), and our sample had very

few students with such low ability. The y-axis of Fig.

3 shows the logit transformations of the item

difficulties and the students’ abilities on the same

scale [58]. It is preferable to have the question

difficulties in the ability range with the highest

density. While the power to differentiate students

in our sample would have improved with higher

difficulty levels for Q1 and Q3, it was expected that

the students would perform well on these items

because these items assessed less-challenging, pre-

requisite content.
Third, most of the items had non-zero guessing

parameters, and many were above what would be

expected for random guessing (0.20) on items with

five possible answers. Therefore, the results likely

indicate that students reduced the list of possible

correct answers from the full set of answer choices

(i.e., they eliminated poor distractors), but low-

ability students still struggled to identify the correct
answer from that reduced set of answers.

For example, Q12 had a guessing parameter that

was considerably higher than the other items. Table

7 includes the answer distributions of lower-ability

students (aDCI total score of three or lower) for all

items. The answer distribution for Q12 suggests

that answers A, C, and (to a lesser extent) E were

poor distractors. The probability of randomly
selecting the correct answer out of the two remain-

ing choices is 50% which is close to the guessing

parameter for Q12. Therefore, we are not overly

concerned with the high guessing parameter of Q12

because the lack of effective distractors likely

explains its high value.

Overall, these three conclusions from the IRT

analysis supportHypothesis 2, except forQ7, in that
the aDCI items have appropriate difficulty and

discrimination for the students in our sample.
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Table 6. Goodness of fit and model comparison statistics for testing measurement invariance of the aDCI across men and women

Overall Model Fit Indices Change in Fit Indices

Model
# Model Description df �2

�2 p-
value

RMSEA
(90% Conf.
Interval)a CFI Comparison

Scaled
��2

Scaled
df

Scaled
��2 p-
value �CFI

CFA for All Participants in Aggregate (12 items)
– Men and Women 54 90.08 0.002 0.028 (0.021, 0.036) 0.954 –

Overall Measurement Invariance (11 items, Q7 removed)
– Men 44 70.37 0.007 0.030 (0.020, 0.039) 0.950 –
– Women 44 39.52 0.664 0.023 (0.000, 0.052) 0.974 –
1 Equal Form 88 109.89 0.057 0.028 (0.018, 0.038) 0.954 –
2 Equal Factor Loadings 99 124.91 0.040 0.023 (0.011, 0.033) 0.965 1 vs. 2 1.80 2.34 0.482 0.011
3 Equal Thresholds 109 143.74 0.014 0.025 (0.015, 0.034) 0.954 2 vs. 3 4.13 2.40 0.172 –0.011

Evaluation of Equal-Threshold Invariance for Selected Items
4 Q3 Thresh. Est. 108 137.16 0.030 0.023 (0.000,0.052) 0.960 4 vs. 3 2.42 0.34 0.032 0.006
5 Q3, Q6 Thresh. Est. 107 131.58 0.054 0.028 (0.018,0.038) 0.965 5 vs. 4 1.66 0.27 0.044 0.005
6 Q3, Q6, Q4Thresh. Est. 106 130.31 0.055 0.023 (0.011,0.033) 0.966 6 vs. 5 0.47 0.30 0.164 0.001

Note. nmen = 1031, nwomen = 219. ‘‘Thresh. Est.’’ indicates that an item’s threshold was freely estimated across gender groups. �2 = chi-
squared fit statistic with robust errors; df = degrees of freedom;RMSEA= root mean square error of approximation; CFI = comparative
fit index. Chi-squared difference tests for nested model utilized Satorra’s method [56] for scaling the chi-squared statistic and df.
a The p-values for allRMSEAvalues listed in this tablewere greater than 0.990, except for theCFA forwomenonlywhichwas greater than
0.930.



5.4 Hypothesis 3: correlation with similar measures

of conceptual understanding

The correlation coefficients between the students’

overall performance answering conceptual ques-

tions on the three intermediate exams for the

dynamics course, their factor scores (from the

CFA analysis), their ability scores (from the IRT

analysis), and their total aDCI score are shown in

Table 8. All of the correlation coefficients were
statistically significant (p < 0.050), and their magni-
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Fig. 2. A 3PL IRT model was used to fit each aDCI item to determine the discrimination, difficulty, and guessing
parameters. The difficulty (inflection point of the curve and the latent ability level that bisects the sample) and
discrimination (slope at the inflection point) are indicated forQ01, and the guessing parameter is illustrated forQ12.
The random-guessing probability is 0.2 because all items have five answer choices.

Table 7. Summary of the IRT parameters and the answer distributions for lower-ability students who answered three or fewer questions
correctly on the aDCI. Correct answers are bolded

IRT (3PLModel) Answer Distribution for Lower-Ability Students

Question
Discrimi-
nation Difficulty Guessing A B C D E

Multiple
Selected

None
Selected

Q1 1.13 –1.94 0.36 15 1 2 1 33 0 0
Q2 1.49 –1.26 0.00 25 8 17 1 1 0 0
Q3 1.02 –1.84 0.00 6 16 0 20 9 0 1
Q4 0.92 –0.69 0.00 17 7 1 20 6 0 1
Q5 1.72 0.05 0.29 25 6 8 11 2 0 0
Q6 0.83 0.27 0.00 24 16 4 7 1 0 0
Q7 0.55 –0.46 0.26 14 13 24 0 1 0 0
Q8 1.89 1.09 0.25 5 23 7 15 2 0 0
Q9 1.87 1.20 0.21 1 20 1 0 29 1 0
Q10 1.48 0.92 0.20 13 10 15 6 8 0 0
Q11 3.43 0.22 0.42 0 7 30 14 1 0 0
Q12 1.24 –0.52 0.59 2 15 3 23 8 0 1



tudes with the instructor-written questions corre-

spondwith amedium effect size [59], suggesting that
theymeasured similar (if not the same) constructs as

proposed in Hypothesis 3.

Fig. 4 shows that the relationship between the

students’ total aDCI scores and the CFA factor

scores (which were highly correlated with the IRT

ability levels) was linear and highly correlated. This
relationship allows for the aDCI total scores to be

used as a proxy measurement of the students’ over-

all conceptual understanding of dynamics without

having to conduct a CFA or IRT analysis.

5.5 Hypothesis 4: measurement invariance across

genders

The tetrachoric correlation coefficients used in the

MG-CFA are shown in Table 9 (Q7 was not

included in this analysis because of poor psycho-

metrics inHypotheses 1–3).On average, the correla-

tion coefficients for women exceeded those for men,

foreshadowing that a single-factor latent structure
will fit the data from women better than it will for

the aggregated or men-only data.

Table 6 shows the results from theMG-CFA that

was used to investigate the invariance of the mea-
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Fig. 3.An item-personmap (orWrightmap) of the ability scores of theparticipants and thedifficulty values for the 12
items of the aDCI. A logit (vertical axis) is the natural log transformation of (1) the odds ratio for answering an item
correctly, or (2) the ratio of a students ability divided by one minus their ability [58]. An item for which a student, in
general, would have a 50% chance of answering correctly would have a logit of zero, and an average-performing
student with an ability of zero would have a logit of zero.

Table 8. Strong correlations (coefficients in the lower diagonal
with standard errors in the upper diagonal) between different
measures of the students’ conceptual understanding suggest that
they all may be measuring the same construct

Exam
Questions

CFA
Scores

IRT
Abilities

aDCI
Total
Score

Exam Questions 0.03 0.03 0.03
CFA Scores 0.46 0.03 0.03
IRT Abilities 0.44 0.99 0.03
aDCI Total Score 0.46 0.99 0.97

Fig. 4. The students’ total aDCI scores can be used as a measure of conceptual understanding because the aDCI
scores are linearly related and highly correlated with the latent factor score from the CFA.



surement models for men and women. The change

in fit statistics for Models 1–3 indicated that the

CFA models for men and women had equal form,

equal factor loadings, and equal thresholds when

considering all of the items in aggregate. ForModel
1 (equal form), the significant �2 p-value was likely
an artifact of a large sample size. ForModel 2 (equal

factor loadings), the positive change in CFI was

likely an artifact of the CFI calculation incorporat-

ing model complexity [60,61], and Model 2 was less

complex than Model 1 because of the constraints

imposed on the factor loadings. Model 3 (equal

thresholds—overall) had a scaled ��2 p-value that
was much higher than the 0.050 criterion and a

negative change in CFI (indicating a worse fit)

that was only slightly outside of the recommended

threshold of 0.01. Overall, the evidence suggested

that the aDCI scores weremeasurement invariant at

the threshold level when considering all of the items

simultaneously.

In the first phase of our testing for equal thresh-
olds for individual items, Q3 was identified as the

item with the lowest ��2 p-value (p = 0.032),

followed by Q6 (p = 0.057), Q4 (p = 0.091), and

the rest of the items. Accordingly, Model 4 freely

estimated the threshold for Q3 and was compared

to Model 3. The lower �2 value, a ��2 p-value of
less than 0.050, and the positive change in CFI
indicated that Model 4 fit the data better than

Model 3. The change in CFI of less than 0.010,

however, illustrated only a small improvement in

model fit. When considered together, the two

model-difference statistics suggested that item Q3

was biased against women, but the magnitude of

the bias was relatively small. The comparison of

Model 5 (with the thresholds for Q3 and Q6 freely
estimated) to Model 4 yielded a similar conclusion:

Q6 was biased against women, but the bias was

small.

The analysis continued in a similar fashion forQ4

(Models 6) and the rest of the items (not shown), but

the change in fit indices suggested that none of these

models statistically improved the goodness of fit

when compared to Model 5. Thus, only Q3 and Q6
exhibited statistically-significant measurement bias

across genders.
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Table 9. The correlations coefficients between the aDCI items for men (below the diagonal) and women (above the diagonal).

Item # Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12

Q1 0.54 0.27 0.20 0.03 –0.08 0.15 0.34 –0.08 0.18 0.13
Q2 0.32 0.34 0.41 0.35 0.26 0.30 0.27 0.16 0.35 0.15
Q3 0.14 0.32 0.27 0.14 0.27 0.08 0.16 0.10 0.21 0.30
Q4 0.16 0.24 0.29 0.38 0.26 0.20 0.31 0.03 0.32 0.24
Q5 0.25 0.37 0.29 0.24 0.12 0.26 0.24 0.11 0.11 0.35
Q6 0.29 0.25 0.38 0.19 0.24 0.10 0.24 0.14 0.26 0.12
Q8 0.18 0.15 0.05 0.26 0.24 0.12 0.22 0.03 0.26 0.20
Q9 0.22 0.21 0.02 0.19 0.19 0.09 0.28 0.32 0.40 0.18
Q10 0.19 0.27 0.06 0.15 0.28 0.22 0.20 0.18 0.39 0.06
Q11 0.21 0.35 0.17 0.26 0.24 0.22 0.25 0.29 0.38 0.18
Q12 0.08 0.25 0.15 0.20 0.17 0.17 0.07 0.13 0.14 0.22

Note. The correlations coefficients greater than 0.30 are bolded. The shaded cells indicate a correlation coefficient less than 0.30 for one
gender with a corresponding coefficient greater than 0.30 for the other gender. nmen = 1031, nwomen = 219.

Fig. 5. The test results of Hypothesis 4 showed the aDCI scores to have invariant form, factor loadings, and
thresholds across men and women. All of the factor loadings were statistically significant with p-values < 0.001.



In summary, the statistical evidence suggested

that the aDCI scores were measurement invariant

at the threshold level when considering all of the

items in aggregate. At the item level, two items, Q3
and Q6, exhibited DIF with a slight bias against

women. Fig. 5 summarizes the final measurement

model, and Table 10 lists the thresholds for the

eleven indicators.

6. Gender bias in the aDCI

The measurement invariance analysis suggested

that Q3 and Q6 may be slightly biased against

women, but the analysis does not tell why the

items may favor men. To better understand the

DIF of Q3 and Q6, we qualitatively evaluated Q3

and Q6 for content and context bias, as informed

by our review of the physics education literature.

We used Rennie and Parker’s [34] gender-orienta-
tion framework, see Table 2, to identify possible

content and context effects (as defined by Ding and

Caballero [28]). We also consulted three gender-

studies experts to aid in this gender-orientation

analysis.

6.1 Description of the biased items

Tomaintain question security, we donot include the

full copies of Q3 or Q6. Q3 originates from the FCI

and involves a hockey puck sliding at a constant

velocity across frictionless ice. The puck is kicked

with a force perpendicular to the direction of its

current motion, and the students are asked to
identify the path of the puck after the kick. Five

paths are pictorially provided as answer choices. Q6

describes a rear-wheel-drive car that is accelerating

forward, and an image of a sports car is used to

illustrate the scenario. The tires do not slip on the

road, and students are asked to find the magnitude

and direction of the friction force acting on the front

tires. Five answer choices are provided, each with a
symbolic equation for the magnitude of the friction

force and a direction for the force (‘‘to the left’’ or

‘‘to the right’’).

6.2 Bias in Q3

The categorization of Q3 according to Rennie and

Parker’s gender orientation framework identified

the hockey context of Q3 as potentially appealing to

the background experiences of men more than

women. Previous FCI researchers have also advised

that the hockey context of Q3 favors men [29, 32].

However, some of our experts suggested that the

biasmay bemore geographical (favoring those from
colder and Northern climates) than gender related.

Overall, we concluded that the hockey context is a

possible source of bias, but not a definitive source of

bias for Q3.

Q3 of the aDCI was originally copied from the

FCI (#8 in version 95 [62]), and research on the

gender fairness of the FCI has not identified Q3 as

having statistically-significant gender bias [22, 29,
30]. While it is true that some of the FCI studies do

not have comparable samples to the engineering

students of this study, at least two of the FCI

studies ([22] and [33]) have samples from univer-

sity-level, calculus-based physics courses that typi-

cally enroll science and engineering majors. We

would expect students in these calculus-based

physics classes to perform similarly on #8 of the
FCI as the engineers in our sample do on Q3 of the

aDCI.

Our results regarding the DIF of Q3 could differ

from FCI research because of different analysis

methods. We utilized MG-CFA to investigate mea-

surement invariance across gender, but Traxler and

colleagues [22] (who have published one of the most

complete studies of gender bias in the FCI) used the
Mantel-Haenszel and Lord’s statistic (an IRT-

based method). Because our results suggested that

Q3 (and Q6) were only slightly biased against

women, the differences in samples and methods

could explain the contradictions between our results

and those published for the FCI.

6.3 Bias in Q6

Q6 was categorized by some of our experts as
appealing to the background experiences stereoty-

pically more common for men than women because

it may be more likely that men understand the

meaning of ‘‘rear-wheel-drive,’’ a phrase used to

indicate that the rear tires provide the traction force

required to accelerate the car forward. This opinion

aligns with Ding and Caballero’s [28] content effect

because it reflects the perspective that boys in the
USA are often socialized to know more about how

automobiles work than girls [63]. However, some of

our experts argued that this generalization about

girls’ relative knowledge of automobiles may not
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Table 10. The thresholds for nine of the eleven items were invariant across gender; Q3 and Q6 had unequal thresholds (bolded) that
suggested potential bias against women

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12

Men –1.38 –0.89 –1.05 –0.39 –0.39 0.04 0.19 0.31 0.17 –0.48 –1.05
Women –1.38 –0.89 –0.76 –0.39 –0.39 0.29 0.19 0.31 0.17 –0.48 –1.05



hold true for women in engineering because women

in engineering have self-selected into a masculine-

oriented field that centers on understanding how

systems andmachines work. Even though there was

disagreement regarding the gender bias related to

the phrase ‘‘rear-wheel-drive,’’ all of the experts
agreed that the sports-car image used in Q6 would

be stereotypically associated with men more than

women. This image could be contributing to a

context effect.

Q11 and Q12 also involved a rear-wheel-drive

sports car, but these two questions did not display

DIF. One explanation for this difference is that Q6

requires students to understand how a rear-wheel-
drive carworks, butQ11andQ12donot require this

specialized knowledge. Q11 and Q12 pertain to the

kinematics of a wheel that rolls without slipping,

and the question prompt only uses a rear-wheel-

drive car as the structure to which the wheel is

attached. Furthermore, the primary image of Q11

and Q12 is that of a wheel and tire, not the sports

car. Therefore, the likelihood of the sports-car
image causing a context effect favoring men in

Q11 and Q12 may have been less than that for Q6

because the students’ focus was on the wheel (a

gender-neutral image) and not the sports car.

7. Discussion

7.1 Review of purpose and results

The purpose of this study was to evaluate the extent

to which aDCI scores can be used as a reliable, fair,

and valid measure of undergraduate students’ over-

all conceptual understanding of dynamics. We

organized our inquiry around four hypotheses

that focused on the evidence of the aDCI’s latent
structure, difficulty, discrimination, correlation

with similar measures, and gender fairness (in

terms ofmeasurement bias).We review the evidence

for each hypothesis below.

For Hypothesis 1, the results of the CFA sug-

gested that a single-factor latent model fit the aDCI

scores well. This unidimensional latent structure

reflects the intentionality of the aDCI developers
to select items from the DCI that assessed a broad

range of topics to approximate the students’ overall

understanding of dynamics. The fit of the IRT

model further supports the unidimensionality of

the aDCI. The correlation of the students’ factor

scores with their performance on instructor-written

conceptual questions provides evidence for the

argument that the single latent factor (of the CFA
or IRT models) represents the students’ overall

conceptual understanding of dynamics. Therefore,

the evidence for Hypothesis 1 suggests that the

students’ total aDCI score can be interpreted as a

measure of their overall conceptual understanding

of dynamics.

The results of the IRT analysis used to test

Hypothesis 2 indicated that most of the items on

the aDCI have appropriate difficulty and discrimi-

nation values for the sample tested. Two items were
identified as especially easy (they had high difficulty

values), but high performance on these items was

expected because the items targeted fundamental,

particle-mechanics knowledge that the students

likely learned in a prerequisite physics class. All of

the items, exceptQ7, had high discrimination values

(maximum slope steepness), meaning they reliably

differentiated the higher-performing students from
the lower-performing students.

In addition to a low discrimination value, Q7 also

had low correlationswith other items and low factor

loading in the CFA, indicating it might be measur-

ing a different construct than the other items on the

aDCI. Q7 was one of the DCI items Jorion et al. [5]

identified as having poor psychometric character-

istics.Upon closer inspection,we found thewording
of Q7 to be imprecise with multiple correct answers,

depending on how the question was interpreted.

Thus, multiple pieces of evidence suggest that the

modification or replacement of Q7 could improve

the utility of the aDCI, and a clarification of the

question wording so that only one answer is correct

may be all that is needed.

The results of testing Hypothesis 3 indicated that
the aDCI total scores positively correlated with the

students’ performance on similar, instructor-writ-

ten questions. The relationship between the aDCI

total scores and the factor scores (from the CFA

which were highly correlated to the IRT ability

levels) was linear and had a high coefficient of

determination. These two results provide evidence

in support of the aDCI scores measuring one latent
factor, and the latent factor can be interpreted as the

students’ overall conceptual understanding of

dynamics. Wang and Bao [64] made a similar

conclusion regarding their students’ conceptual

understanding of physics based on the linear rela-

tionship between the students’ FCI scores and their

IRT abilities.

For Hypothesis 4, the analysis of measurement
invariance found the aDCI to have equal form,

equal factor loadings, and equal thresholds for

men and women when considering all of the items

in aggregate. These results suggest that, on average,

the aDCI functions similarly for men and women in

measuring the students’ overall conceptual under-

standing of dynamics.When considering all items in

aggregate, the aDCI scores of men and women
display: the same single-factor latent structure, the

same relationships between the items and the latent

factor, and the same probabilities of answering a
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given question correctly. However, at the item level,

the analysis identified two items, Q3 and Q6, that

exhibited slight bias against women. The bias of

these items indicates that when considering a man

and a woman with equal overall understanding of

dynamics, the man has a higher likelihood of
answering Q3 and Q6 correctly than the woman.

To understand why these items may favor men, we

evaluated them for content and context bias.

The supporting and contradicting evidence for

the possible sources of gender bias in Q3 and Q6

make it difficult to definitively say why these two

items favor men. For Q3, the hockey context may

disadvantage women. For Q6, the need to know
how a rear-wheel-drive car works and/or the image

of a sports car may differentially affect students’

performance based on gender. The uncertainty in

the sources of bias supports the need for further

validation and fairness studies of the aDCI, DCI,

and concept inventories in engineering more

broadly.

7.2 Fairness implications

The investigation of DIF identified two items that

favored men, but this bias was not evident in the

psychometric models that used aggregated data.

Based on the lack of research regarding the fairness

of engineering education assessments [16], it is

highly likely that many researchers would have
found the psychometric evidence (fromHypotheses

1–3) satisfactory for their use of the aDCI scores as

measures of the students’ overall conceptual under-

standing. However, our results suggest that instruc-

tors and researchers must consider the gender bias

in at least two of the aDCI items (Q7 was not tested

for DIF) when interpreting women’s total scores.

Two additional incorrect responses (corresponding
to the two biased items) yields an almost 17

percentage-point reduction in a student’s total

aDCI score. While our results indicate that the

bias of Q3 and Q6 is small, it undoubtedly con-

tributes to the gender gap in the aDCI scores that

has been previously reported [23]. Thus, decisions

made based on a student’s overall aDCI perfor-

mance, including the assignment of points toward
their grade in a course, unfairly disadvantage

women.

7.3 Limitations and future work

One limitation of this study is that it was conducted

with students from a single institution. As Madsen

et al. [31] determined, many findings from research

on the gender gaps of physics CIs are not consistent
across studies; thus, future research should consider

how the aDCI functions at other institutions.

Future work should also incorporate fairness stu-

dies for using the aDCI across other subgroups of

students, including race/ethnicity, social economic

status, academic major, and international status.

Content and context effects could be especially

relevant to English-as-a-second-language learners

[17] and to students who have lived in cultures

different than those present in theUSA. An analysis
of fairness for some of these subgroups (e.g., sub-

groups based on race/ethnicity) would especially

benefit from more data because of their small

sample sizes in engineering.

A second limitation of this study is the small

number of women in the sample compared to

men. This unbalanced sample could be hiding DIF

that the measurement invariance analysis cannot
detect because the fit of the model for the men’s

covariancematrixmayhave overshadowed a lackof

fit for the women’s covariance matrix. The sample

sizes of men and women could be made equal by

randomly subsampling from the pool of men, but

the statistical power to detectDIF across the groups

greatly decreases with this technique because of the

small number of women in the sample. Given that
women students are a small fraction of the overall

student population in engineering, defining new

norms for fair statistical models while maintaining

sufficient power is a challenge for the engineering

education research community.

A qualitative study of how women in the course

experience the gender bias of the aDCI, as illu-

strated here, or other course assignments could
help contextualize our findings. For example, do

students (women or men) recognize gender bias in

the course materials (including assessments), and

does the content or context of these materials cause

students to feel disadvantaged or uncomfortable? If

so, in what ways do students articulate this dis-

comfort, and what suggestions do they have for

addressing it? A qualitative study, potentially
including interviews with both women and men,

would inform our understanding of students’

experiences and could inspire changes to course

materials to make them more inclusive and fair.

8. Conclusions

This study investigates the extent to which a stu-

dent’s aDCI total score can be interpreted as a

reliable, valid, and fair measure of their overall

conceptual understanding of dynamics. To our

knowledge, this study is the first to implement an

argument-based approach for the validation study

of a CI and the first to investigate the fairness of an

engineering CI. The results of our study suggest that
aDCI scores, excluding Q7 which should be mod-

ified or replaced, for the men in our sample can be

interpreted as measures of the students’ overall

conceptual understanding in dynamics with evi-
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dence of: (1) broad content coverage and instruc-

tional relevancy, (2) appropriate interpretation of

scores with regard to their underlying, single-factor

latent construct, (3) appropriately difficult items

that discriminate students based on their level of

conceptual understanding, and (4) strong correla-
tions between aDCI total scores and othermeasures

of dynamics conceptual understanding. The total

aDCI scores for women, however, incorporate two

items with slight gender biases against women and,

therefore, do not accurately reflect women’s overall

conceptual understanding of dynamics.

Unless further research refutes our results and

supports the aDCI as a fair assessment tool for all
students, or until the aDCI is modified to be gender

inclusive and fair, we do not support its use in high-

stakes testing, including its use on a final exam (as

was done for our sample). Instead, we suggest that

the aDCI, in its current form, be used as a low-stakes

assessment instrument for measuring students’

overall conceptual understanding of dynamics,

and instructors and researchers should account for
the DIF of Q3 and Q6 and the validity concerns of

Q7 when making inferences from the aDCI scores.

Alternatively, instructors could administer a shor-

tened aDCI that excludes Q3, Q6, and Q7, knowing

that the number of concepts assessed by a shortened

aDCI would be less than the 12-item aDCI.

This work highlights the importance of designing

inclusive assessments and validating their use with
psychometric models that do not unfairly dis-

advantage certain subgroups of students—such as

women.When assessments utilize validation studies

that are dominated by one group of students, such

as men, it is often unknown whether group differ-

ences in scores are artifacts of the assessment

questions themselves, or truly representative of

differences in the learners’ understanding. Without
evidence that the assessments themselves are truly

fair for all engineering students, there is a very

strong risk of educational inequity. Thus, more

fairness studies of engineering education assess-

ments are needed to better inform the academic

community on what factors should be considered

when designing an assessment that does not unfairly

disadvantage students based on their background
or socialization.
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Appendix A. List of acronyms

Acronym Definition Description

aDCI Abbreviated Dynamics Concept Inventory Selection of 12 items from the DCI

CFA Confirmatory factor analysis Method for testing latent structures

CFI Comparative fit index Goodness of fit statistic

CI Concept inventory Usually multiple-choice tests that require little or no calculations

DCI Dynamics Concept Inventory 29-item dynamics concept inventory

df Degrees of freedom Measure of howmuch data is available relative to howmanymodel
parameters are being estimated

DIF Differential item functioning Scenario of an item functioning differently for distinct groups

FCI Force Concept Inventory Physic concept inventory

IRT Item response theory Method of modeling latent ability and item characteristics

MG-CFA Multiple-group confirmatory factor analysis Method for testing the invariance of a measurement model across
multiple groups

RMSEA Root-mean square error of approximation Goodness of fit statistic

�2 Chi-squared test statistic Goodness of fit statistic

3PL Three parameter model IRT method that models an items difficulty, discrimination, and
guessing parameter
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