
Students’ Selection of Teamwork Tools in Software

Engineering Education: Lessons Learned*

RICARDO COLOMO-PALACIOS and TERJE SAMUELSEN
Østfold University College, B R A Veien 4, 1783 Halden, Norway. E-mail: ricardo.colomo-palacios@hiof.no, terje.samuelsen@hiof.no

CRISTINA CASADO-LUMBRERAS
Universidad Complutense de Madrid, Campus de Somosaguas. 28223 – Pozuelo de Alarcón Madrid, Spain. E-mail: crcasado@ucm.es

XABIER LARRUCEA
Tecnalia,ParqueTecnológicodeBizkaia.CalleGeldo,Edificio700,E-48160Derio,Bizkaia, Spain.E-mail: xabier.larrucea@tecnalia.com

Software work is normally developed in groups. As a result, there is a need to develop teamwork competence in related

activities such as, software engineering education. In higher education educational settings, courses often propose several

tools for student groups to either guide or support their work. In this paper, authors present main results and lessons

learned from courses on software engineering. Specifically, the aim of this paper is the study of the selection and the

adoption of software engineering tools by students working in teams, in the context of a software engineering course. The

purpose of the study is analysing the students’ decision making process and reasoning strategies to such selection. In this

scenario, driven by a project based learning approach, a qualitative study on the use of specific tools to support groupwork

was conducted. Results reveal that students demonstrate a rational decision making process based on logical efficient

reasoning. As consequence six lessons have been learned: everything in one place; the new over the known; freedom over

imposition; performance and freedom; social influence and secondary role of project management. In addition, these six

lessons have been compared with previous literature in the topic and backing them up with main theories in the field.

Finally, authors reflect on the implications of such lessons learned analyzing deeply aspects like freedom of choice,

performance, tools features, imposition and social influence, to bring a set of grounded argumentations to the reader.

Keywords: software engineering education; teamwork; software engineering tools; decision-making; qualitative study, freedom of choice

1. Introduction

Software is pervasive in our life. As a result, soft-

ware engineering has been highlighted as a key to

support the digitalization of society. Software pro-

duction is, in its nature, different from other pro-

duction processes and its development is highly

dependent on human factors [1]. Software is nor-

mally produced in teams [2] and more complex

structures include teams of teams [3] or distributed
teams [4], [5]. While agile approaches tried to

simplify teams [6], it is still true that team manage-

ment is a key aspect for software practitioners and

researchers alike [7].

Teamwork in software engineering scenarios

have evolved from a setup in which, team members

shared the same roomorbuilding to anewapproach

in which, bymeans of global software development,
development is distributed across cultures, time

zones and continents. Nowadays, a big portion of

the software is produced offshore or by a mix of

inshore and offshore teams.

Software engineering education is heavily based

on the use of tools [8]. However, the problem we

actually face in software engineering education, is

the wide panoply of tools available. Tools are
providing ways to automate software process [9],

but also to alleviate some of the tensions present in

software development projects. Literature, reported
the gap between the needs of industry and education

in software engineering [10, 11]. This gap is also a

fact in terms of tools used. Given the huge amount

of tools available, literature proposed ways to

measure the acceptance of software engineering

tools in academic education [8]. In this work,

authors apply the Unified Theory of Acceptance

andUseofTechnology (UTAUT) [12]model for the
analysis of the adoption process. However, this is

not the only model valid for these purposes and

alternative models include Technology Acceptance

Model (TAM) [13], TAM2 [14], TAM3 [15], Inno-

vationDiffusionTheory [16] andTheory of Planned

Behaviour [17], naming just a few of the most

important models in the area.

The aim of this paper is the study of the selection
and the adoption of software engineering tools, in

the context of a software engineering course, by

students. Results are aimed to illustrate the aspects

regarding teamwork and performance, connected

with aspects like freedom of choice and features.

Finally, a set of recommendations for instructors is

given to the reader.

The remainder of this paper is structured as
follows. Section 2 presents main curricular efforts

* Accepted 19 November 2019. 309

International Journal of Engineering Education Vol. 36, No. 1(B), pp. 309–316, 2020 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2020 TEMPUS Publications.

but also overviews scientific literature, reporting

main studies on teamwork in software engineering

education. Section 3 introduces the experience and

the case study considered to draw lessons learned

from. Furthermore, six different lessons learned are

presented by authors in Section 4, comparing also
the main results with relevant literature. Section 5

depicts main limitations of this work. Finally, sec-

tion 6 wraps-up the paper and proposes future

work.

2. The Role of Teamwork in Software
Engineering Education

Teamwork is considered as a fundamental transfer-

able skill to new undergraduate programs adapted

to the Bologna Declaration or ABET criteria.

Teamwork is a traditional topic in computing

education andmore precisely in Software Engineer-

ing education. Not in vain, according to a recent

study [18], one of the main active area of software
engineering research is teamwork and collabora-

tion, being one of the central actions for Software

Engineering research [19] in several application

areas and setups [20, 21].

The study of the topic started in the morning of

the discipline in the late sixties and is present in early

literature of the topic e.g., [22]. In recent times, the

guide to the software engineering body of knowl-
edge (SWEBOK) [23] stated that software practi-

tioners must be able to interact cooperatively and

constructively with colleagues to first determine,

and then meet both needs and expectations.

Teamwork is present also in the software engi-

neering body of skills (SWEBOS) [24]. SWEBOS

states that ‘‘Software engineers are capable of

cooperating with others in a team.’’ Teamwork is
part of the competencies for the professional colla-

boration with others being then a core element of

software engineering practice.

The current andmore global initiative in comput-

ing curricula is the one leaded by the Joint Task

Force on Computing Curricula (IEEE Computer

Society & Association for Computing Machinery).

Curricular efforts include publications in four dif-
ferent sub-disciplines under the umbrella of Com-

puting, namely, Computer Science, Computer

Engineering, Information Technology and Soft-

wareEngineering.However, in computing curricula

2005 [25], the overview report of thewhole joint task

includes also the Association for Information Sys-

tems that includes also Information Systems as the

fifth volume. Lately, an in the Post-Secondary
degree, a new recommendation was issued for

Cybersecurity. Focusing on the Software Engineer-

ing recommendation, the last version of the docu-

ment was issued back in February 2015 [26]. In this

work, editors report a previous study performed

back in 2013, in which, software employers were

asked to rate the importance of candidate qualities

and results show that, after communication skills,

ability to work in teams is the second most desired

characteristic for employers. As a result of its
importance, dynamics of working in teams is one

of the Professional Practice factors, more specifi-

cally PRF.psy.1. But, apart from that, aspects on

working with teams are present in process concepts

for both software engineering process improvement

(PRO.con.3) and individual and team software

process (PRO.imp.3)

As stated before, teams in software engineering
are key in the study of the discipline, and literature

has reported a good set of studies on the topic.

Focussing just on studies that report aspects on

teamwork assessment in courses, efforts devoted

to study teamwork, by means of learning analytics,

have been reported [27, 28], artificial intelligence

based techniques to assess and predict teamwork

results in classes [29] or assign people to groups [30,
31], monitoring artefacts like reflexive weekly mon-

itoring [32] or lean techniques [33] to improve

learning experience and results, or the use of tools

(GitHub, SonarQube) to support software engi-

neering courses [34], naming just a few of the

initiatives conducted and reported in recent years

in the literature.

However, to the best of authors’ knowledge, there
is not a paper reporting the effects of freedom of

choice of tools in the software education arena,

focusing the results on the effects of these choices

on teamwork. This paper is aimed to fill the gap. To

do so, a case study will be presented and analysed in

the following sections.

3. Case Study

3.1 The Course

In this section, authors present the setup of the case

study. Experience took place in the spring semester

(January-May) in the 2017–2018 academic year at

the Faculty of Computer Sciences, Østfold Univer-
sity College, Norway. Østfold University College is

a public higher education institution that offers four

bachelor programmes in the broad field of comput-

ing, namely, Digital Media Production, Computer

Engineering, Computer Science and, finally Infor-

mation Systems. The course Software Engineering

is available for the latter two bachelor studies and

covers 10 ECTS. The requisite to enrol the subject is
a previous course on Object-oriented Program-

ming. It is programed for the second year of studies

of the three that all bachelor programs have in the

institution. The course present four hours of lec-

Ricardo Colomo-Palacios et al.310

tures and two hours devoted to group efforts and

workshops per week.

The content of the course includes aspects like

life-cycle models, software specifications, object-

oriented design using UML, development methods,

software documentation and static and dynamic
testing.

The final grade is calculated on the basis of two

partial exams. Studentsmust pass each partial exam

in order to pass the whole course.

� Partial exam 1 is a group project worth 45%.

Individual grades are awarded.

� Partial exam 2 is an individual written exam

lasting 3 hours and worth 55%. No support

materials are permitted.

As a part of the contents, there are some classes

and practices on software project management

adopting the agile approach. Aspects covered by

students include:

� Team participation.

� Effort estimation by means of agile approaches.

� User stories.

� Epics.
� Story points.

� Sprints.

� Issues.

� Retrospectives.

Students working in groups were asked to define

epics, sprints and break down work items into

granular pieces and estimate by means of story

points (abstract measure of effort required to imple-

ment a user story) as well as maintaining a product

backlog of the project developed in group that is

meant to gather all aspects in the course (specifica-
tions, design, development and testing). All these

aspects were related to a project defined by teachers

at the beginning of the course.

In order to support the set of tasks, teachers

recommended the use of Taiga.io. Taiga is a free

open source agile project management online tool

developed as incubator byKaleidosOpen Source. It

was awarded back in 2015 as the best agile tool in the
Agile Awards and is also a recognized tool in the

open source community. It is among the top 10 open

source projects 2014 and among top 11 project

management tools 2016 both by opensource.com.

The tool covered in a perfect way all requirements

expressed by teachers with regards of the course.

Teachers asked students to grant them view access

to their Taiga project in order to monitor the
advancement of the developments and to assess

the final work performed in groups, including team-

work aspects. Although the use of the tool was

considered somehow easy, a part of a class was

devoted to show the tool and explain the main

aspects of it. Apart from this session, another

mentoring session was scheduled to guide students

in a more personal way working in timeslots with

groups.

Two student assistants (master student in first

and second year and former students) helped the
students to compete their tasks constituting a first

line of information to them.

3.2 The Process

The course started as planned and lectures were

given to students in due time. However, after some

days, initial suggestions started to appear. Com-
plains about the mandatory use of Taiga appeared

and around half of the class putted pressure on

student assistant to inform teachers about their

will to use any tool at their will to develop their

work as intended. Theywere not complaining about

the work to be done or the amount of it, but simply

about the tool to do it. Their suggestion was using

GitHub instead.
GitHub includes a fully functionalKanbanboard

based on issues, but cannot be considered a full

project management tool as Taiga is. For instance,

epics are not covered and some of the agile concepts

present different names, that is, sprints (milestones),

tasks (issues) and boards (projects). This is the

reason why tools built on the top of GitHub

appear. For instance, ZenHub is a project manage-
ment tool that integrates natively within GitHub’s

user interface. It is a free for all open source projects

making the use of it closer to commercial tools like

Trello or Jira and implementing key aspects of the

course including epics, estimates and reports.

ZenHub was offered also to students as a valid

option for the project.

However, in spite of the suitability of the tool, no
group adopted ZenHub as a midway option, taking

advantage of GitHub as the tool they already knew

but also of the genuine implementation of agile

concepts on the top of GitHub.

From the twelve groups in the course, six of them

adopted Taiga, the recommended tool, as the plat-

form to guide their efforts in the course and the

remaining six chose GitHub for this purposes. This
paper is devoted to analyse the reasons behind these

decisions and the results in terms of final results and

teamwork.

3.3 The Method

The findings discussed in this paper are based on a

case study conducted in the course. The research

reported is a part of an exploratory study. Findings
in the form of lessons learned are reported based on

a set of semi-structured interviews conducted with

student assistants and students alike. All interviews

were conducted at Østfold University College. The

Students’ Selection of Teamwork Tools in Software Engineering Education: Lessons Learned 311

conversations were not recorded but documented

during the interview.

The analysis of the interviews was carried out

using NVIVO 11 software. This tool is used to

organize, classify and analyse information, but

also to explore and review trends in both studies.
Besides, it permits to establish connections among

content as well to extract conclusions from data.

Aspects in section 4 are derived from the analysis

performed. In spite of the exploratory nature of the

study, widely accepted guidelines for conducting

research in the area have been adopted and adapted

by authors [35].

4. The Results: Lessons Learned

In this section, authors present main conclusions

derived from the case study. Lessons learned papers
are pervasive in software engineering discipline e.g.,

[36, 37] and also in software engineering education

e.g., [38, 39]. As stated before, lessons learned are

based on the analysis of the case study. Lessons

learned are as follows:

4.1 All In One Place: Expected Performance and

Effort

GitHub is a web-based, social software develop-

ment environment and codemanagement platform.
Its popularity has been increasing in a dramatic way

in recent years. GitHub is open-source, free to use,

collaboration-oriented tool providing features like

task management, access control, bug tracking and

feature requests, focusing just on a handful of them.

In recent years, literature has reported hundreds of

initiatives to use GitHub as an educational tool. In

the case reported here, it was not intended to use
GitHub for the specific purposes of project manage-

ment, but students reported several times ‘‘It’s

better to have everything in one place’’ and ‘‘We

do not need to use a different tool to do the work, no

matterwe need toperform some tasks to support the

project management process, but this is not a

problem’’. Other aspect students underlined was

‘‘GitHub is the standard’’. Asked about the possi-
bility to use ZenHub, students agreed that ‘‘pure’’

GitHub simply works, ‘‘no need to make it diffi-

cult’’. It is worth to underline that none of the teams

adopted to mid-way ZenHub option. Students also

underlined they do not want to use two kind of

environments, ‘‘all was in GitHub including doc-

umentation, coding. . .’’. On the other hand, half of

the teams chose Taiga. Some of them simply liked it,
although others, in spite of the adoption, complain

about the set of tools they need to learn in their

studies.

The lesson learned by teachers was clear: Inte-

grated tools present higher acceptation rates in

software academic education. Agreeing with [8],

behavioural intention to use the tool is depending

directly on factors like performance expectancy,

effort expectancy and diffusion. Here first two

factors combined lead to the conclusion that

higher performance and less effort is expected in
integrated tools compared to isolated options.

4.2 The New over the Known: it is about Features

GitHub was not a new tool for the students. In fact,

both ZebHub and Taiga were new to students.

Classic acceptance models include experience as

one of the main factors to consider in technology

acceptation [40]. This aspect was also reported by

students in an extensive way. Although it is not

surprising, it is interesting to note that ZenHub is a
tool that covers both worlds, on the one hand, agile

projectmanagement andon theother hand,GitHub

as ecosystem. The acceptance of the tool was zero.

Authors connect this fact with the lack of impor-

tance that students give to project management

(lesson learned 6). This can be the reason behind

the low acceptance of ZenHub. In this case, the

lesson learned is the necessity to justify the need to
adopt new tools bymeans of their features. This will

increase performance expectancy and decrease

effort expectancy compared to generic tools

making.

4.3 Freedom over Imposition

In spite educational programmesmust be accredited

and supervised by educational authorities, the tools

that support students’ learning are not normally

coded in syllabus. Literature reported the trend
among students to choose tools they normally use

over imposed options [41]. Although no respondent

reported any comment on this topic, during the

course, several comments to teachers from student

assistants were demanding more autonomy. This

case has also been reported in the case of practi-

tioners by literature [42]. This need for freedom can

be linked to modern approaches of personalised
learning environments that can be connected also

to tool selection e.g., [43, 44].

Main lesson learned here is the need to embrace

an open approach in teaching activities: focus on

concepts and not on tools.

4.4 Performance and Freedom

Maybe the most important finding in this explora-

tory study is the fact that groups who chose GitHub

performed better than the ones who used Taiga in
the course as a whole. However, in the specific

aspects of project management, that are not the

only ones present in the course, there are not

important differences among groups. There is a

need to isolate factors that leaded to these differ-

Ricardo Colomo-Palacios et al.312

ences in performance, studying, for instance, pre-

vious work together and preceding performance,

but initially and, in our case, freedom leads to higher

performance. As it was reported by students, there

was not a need to learn internals for Taiga and aside

tasks not included in GitHub (e.g., story points and
epics) were easy going for them to implement in

GitHub settings. This is the only reported factor on

the connection of performance and tools by stu-

dents.

Freedom avoids unnecessary friction in agile

scenarios as reported widely in the traditional

agile literature. This is backed up with several

papers highlighting the aspiration to freedom by
software developers in their work [45]. Team per-

formance in software teams is depending on a set of

factors [46] namely, team coordination, goal orien-

tation, team cohesion, shared mental models and

team learning. However, clan control in the group

level and self-control in the individual are defined

over freedom [42] and they influence previous listed

factors in a direct way. Again, authors are unable to
isolate factors, but it is reasonable to think that

freedom is affecting group performance in a positive

way. Other possibility to think about is the positive

connection of overall performance with GitHub

proficiency. One can think that mastery in GitHub

can be associated with a good competence in other

professional aspects present in the course, analysis

and design, for instance. Finally, there are argu-
ments that could suggest that the students who

chose GitHub took more time in other tasks and

less time in learning new tools, therefore increasing

their overall efficiency.

Taking all these reasons into account,main lesson

learned in this aspect is that, in choosing software

tools, one size does not fit all.Adoption is depending

in a set of circumstances and previous knowledge is
the key. Tool selection can harm final performance

comparing in some cases.

4.5 The Helping Hand: Social Influence

Student assistants were crucial in the course. They

provide mentoring to groups and guide them in the

use of tools. According to the information provided
by them, students proposed GitHub almost the first

day of the course as the projectmanagement tool. In

spite of this, student assistants tried initially to

convince students to use Taiga. After two weeks of

pale results in their duties, they escalated the pro-

blem to teachers. Student assistants agreed that

their influence was very limited in tool selection.

One even reported that, hewas using alsoGitHub as
a projectmanagement tool in his previous industrial

experience, exactly what students were doing in the

course. Although there is no reported evidence in

the literature, working habits in industry by stu-

dents could also lead to this situation. There is no

evidence on the influence of student assistants on the

students, however, it seems reasonable to infer that

such influence on this aspect could be limited.

Finally, another aspect to take into account is the

fact that one of the student assistants reported the
fact that GitHub was his project management tool.

Maybe his belief on the need to adopt a different

perspective was not too high, and as a consequence

of this, his credibility and influence as also scarce.

Authors want to link social influence with the

existing gap between software engineering educa-

tion and industrial needs underlined pervasively in

the literature [47]. Students may detect this gap (in
their studies overall and not just in the course) and

the influence of the student assistant with relevant

and recent experience in the industry is givingway to

question tool suggestion. In this case, the relevant

experience in industry presented by instructors is

not compensating the influence of the student

assistant.

Counting on with student assistants is of great
help in courses, however, authors underline the need

to ensure the proper knowledge on methods and

concepts and their mapping on available tools.

4.6 Project Management is the Cinderella

Although in general, students value the importance

and benefits of project management activities in

software development initiatives, they see project

management activities as secondary. Although pro-

ject management community agreed on the need to
invest in project management training and educa-

tion [48], literature reported the vision of project

management as secondary among students [34], in

spite of its importance [49]. In our case, students

were concentrated on core tasks of software devel-

opment and project management was seen just as a

support activity. Authors, as a lesson learned,

believe academics must underline the importance
of monitoring and control activities to support

activities in software development projects. This

must be done specially in first courses in under-

graduate level. As the student progresses in the

bachelor path, aspects like project management

becomes crucial in capstone projects [50, 51] as

well as in the professional practice.

5. Limitations

The approach adopted to study the phenomenon

was qualitative. That is the reason why validity
threats are analysed from this viewpoint. Validation

in qualitative research is rather ambiguous and

contentious compared to quantitative approaches

[52]. Authors, following the works by [53], analysed

different types of validity threats, namely, credibil-

Students’ Selection of Teamwork Tools in Software Engineering Education: Lessons Learned 313

ity, transferability and confirmability. Authors

believe this set of limitations are enough to justify

threats of validity in an exploratory study.

Concerning credibility, this involves establishing

that the results are believable from the perspective

of the participants in the research to convincingly
rule out alternative explanations. Authors ponder

that, this is amain limitation of theworkperformed.

In order to improve this aspect, a holistic approach

must be adopted including a wide variety of data

sources and a mixture of data collection techniques

(e.g., triangulating data) to build sound results.

However, it is also true that the nature of this

work is just exploratory.
Regarding transferability, which is related to the

generalisability of research findings, two threats are

anticipated. The first is the limited number of

subjects. Although this threat exists, making diffi-

cult the generalization of results, it is also true that

the case study is representative enough for an

exploratory study. The second threat is entrenched

in the circumstance that the sample was not taken in
a random way. It is assumed that generalisation of

results is not guaranteed, however replication is also

possible in similar circumstances.

To conclude, confirmability can be defined as the

degree towhich the results could be corroborated by

others. Authors adopted the guidelines provided by

[54] to improve summaries and notes to bring

transparency to the overall process. However, it is
also true that this paper can be seen as an inter-

pretive research, and because the presupposition of

relative objectivity, this aspect is limited by nature.

To improve this factor, reflexibility (relative trans-

parency of the researcher) has been maximized by

means of reflexion and bias disclosure.

6. Conclusions and Future Works

Teamwork is a main aspect for software practi-

tioners. Software is normally developed in teams

and students must be encouraged to work in teams

to produce software. In this paper, an initiative to

analyse the effects of choice of tools on performance

and team work within software engineering educa-
tion is presented. Adopting a qualitative approach,

authors present a set of lessons learned, classified

into six different groups, namely, integration of

tools, imposition over freedom, knowledge of the

tool, freedom and performance, the role of student

assistants and, finally, the importance of software

project management. This set of lessons learned

could not only be of software engineering teacher’s
interest in the definition of syllabi and in the design

of course tools, but also to provide guidelines to

student assistants in their duties. Results show the

need to adopt integrated tools in teaching and in

professional environments, the necessity to justify

tools adoption by means of their features, the

requirement to focus in concepts and not in tools

no matter how accurate they are, the need to
consider previous knowledge on tool selection,

select student assistants and other teachers ensuring

they present previous knowledge on the set of tools,

and, finally, the necessity to underline to students

the need to monitor and control their activities.

Future works will be twofold. Firstly, a first

branch of studies could be devoted to the study of

the phenomenon by means of a cultural perspective
to compare results in different countries and cul-

tures. Secondly, it is aimed to perform a comparison

between practitioners and students’ views in the

election of software engineering tools and its effects

on performance and team work.

References

1. R. Colomo-Palacios, C. Casado-Lumbreras, P. Soto-Acosta, S. Misra and F. J. Garcı́a-Peñalvo, Analyzing human resource

management practices within the GSD context, J. Glob. Inf. Technol. Manag., 15(3), pp. 30–54, 2012.

2. S.Kudaravalli, S. Faraj and S. L. Johnson,AConfiguralApproach toCoordinatingExpertise in SoftwareDevelopment Teams,MIS

Q, 41(1), pp. 43–64, Mar. 2017.

3. D. Šmite,N.B.Moe,A. Šāblis andC.Wohlin, Software teams and their knowledge networks in large-scale softwaredevelopment, Inf.

Softw. Technol., 86(Supplement C), pp. 71–86, Jun. 2017.

4. J. Kroll, I. Richardson, R. Prikladnicki and J. L. N. Audy, Empirical evidence in follow the Sun software development: A systematic

mapping study, Inf. Softw. Technol., 93, pp. 30–44, Jan. 2018.

5. N. Rashid and S. U. Khan, Agile practices for global software development vendors in the development of green and sustainable

software, J. Softw. Evol. Process, 30(10), p. e1964, Oct. 2018.

6. R.Hoda,N. Salleh and J.Grundy, TheRise andEvolution ofAgile SoftwareDevelopment, IEEESoftw., 35(5), pp. 58–63, Sep. 2018.

7. A. Heredia, R. Colomo-Palacios, and P. Soto-Acosta, Tool-supported continuous business process innovation: a case study in

globally distributed software teams, Eur. J. Int. Manag., 11(4), pp. 388–406, 2017.

8. S. Wrycza, B. Marcinkowski and D. Gajda, The Enriched UTAUT Model for the Acceptance of Software Engineering Tools in

Academic Education, Inf. Syst. Manag., 34(1), pp. 38–49, Jan. 2017.

9. R. V. O’Connor, P. Elger and P. M. Clarke, Continuous software engineering – A microservices architecture perspective, J. Softw.

Evol. Process, 29(11), p. e1866, 2017.

10. G. Subrahmanyam, A Dynamic Framework for Software Engineering Education Curriculum to Reduce the Gap between the

Software Organizations and Software Educational Institutions, in 2009 22nd Conference on Software Engineering Education and

Training, pp. 248–254, 2009.

Ricardo Colomo-Palacios et al.314

11. D. M. C. Nascimento, R. A. Bittencourt and C. Chavez, Open source projects in software engineering education: a mapping study,

Comput. Sci. Educ., 25(1), pp. 67–114, Jan. 2015.

12. V.Venkatesh,M.G.Morris,G.B.Davis andF.D.Davis,UserAcceptanceof InformationTechnology: Toward aUnifiedView,MIS

Q., 27(3), pp. 425–478, 2003.

13. F. D. Davis, R. P. Bagozzi and P. R. Warshaw, User Acceptance of Computer Technology: A Comparison of Two Theoretical

Models,Manag. Sci., 35(8), pp. 982–1003, Aug. 1989.

14. V. Venkatesh and F. D. Davis, A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies,

Manag. Sci., 46(2), pp. 186–204, Feb. 2000.

15. V. Venkatesh andH. Bala, TechnologyAcceptanceModel 3 and aResearchAgenda on Interventions,Decis. Sci., 39(2), pp. 273–315,

May 2008.

16. G. C. Moore and I. Benbasat, Development of an Instrument to Measure the Perceptions of Adopting an Information Technology

Innovation, Inf. Syst. Res., 2(3), pp. 192–222, Sep. 1991.

17. I. Ajzen, The theory of planned behavior, Organ. Behav. Hum. Decis. Process., 50(2), pp. 179–211, Dec. 1991.

18. J. DeFranco and P. Laplante, A software engineering team researchmapping study, TeamPerform.Manag. Int. J., 24(3–4), pp. 203–

248, Mar. 2018.

19. K.-J. Stol and B. Fitzgerald, The ABC of Software Engineering Research, ACMTrans. Softw. Eng.Methodol. TOSEM, 27(3), p. 11,

Aug. 2018.

20. E.Klotins,M.Unterkalmsteiner andT.Gorschek, Software EngineeringAnti-patterns in start-ups, IEEESoftw., 36(2), pp. 118–126,

2019.

21. D. Lopez-Fernandez, L. Raya, F. Ortega and J. Jesus Garcia, Project Based Learning Meets Service Learning on Software

Development Education, Int. J. Eng. Educ., 35(5), pp. 1436–1445, 2019.

22. S. Smith,M.Mannion and C. Hastie, Encouraging the development of transferable skills through effective group project work,WIT

Trans. Inf. Commun. Technol., 12, 1970.

23. A. Abran and D. Fairley, SWEBOK: Guide to the software engineering Body of Knowledge Version 3. IEEE Computer Society, 2014.

24. Y. Sedelmaier andD.Landes, Software engineeringbodyof skills (SWEBOS), in 2014 IEEEGlobalEngineeringEducationConference

(EDUCON), pp. 395–401, 2014.

25. R. Shackelford et al., Computing Curricula 2005: The OverviewReport, in Proceedings of the 37th SIGCSETechnical Symposium on

Computer Science Education, New York, NY, USA, pp. 456–457, 2006.

26. M. Ardis, D. Budgen, G.W. Hislop, J. Offutt,M. Sebern andW. Visser, SE 2014: CurriculumGuidelines for Undergraduate Degree

Programs in Software Engineering, Computer, 48(11), pp. 106–109, Nov. 2015.

27. M. A. Conde, R. Colomo-Palacios, F. J. Garcı́a-Peñalvo and X. Larrucea, Teamwork assessment in the educational web of data: A

learning analytics approach towards ISO 10018, Telemat. Inform., 35(3), pp. 551–563, Jun. 2018.

28. Á. Hernández-Garcı́a, E. Acquila-Natale, J. Chaparro-Peláez and M. Á. Conde, Predicting teamwork group assessment using log

data-based learning analytics, Comput. Hum. Behav., 89, pp. 373–384, Dec. 2018.

29. D. Petkovic et al.,Using the randomforest classifier to assess andpredict student learningof SoftwareEngineeringTeamwork, in 2016

IEEE Frontiers in Education Conference (FIE), pp. 1–7, 2016.

30. M. A. Paredes-Valverde, M. del P. Salas-Zárate, R. Colomo-Palacios, J. M. Gómez-Berbı́s and R. Valencia-Garcı́a, An ontology-

based approach with which to assign human resources to software projects, Sci. Comput. Program., 156, pp. 90–103, May 2018.

31. D.Dzvonyar,D.Henze,L.Alperowitz andB.Bruegge,Algorithmically supported teamcomposition for software engineeringproject

courses, in 2018 IEEE Global Engineering Education Conference (EDUCON), pp. 1753–1760, 2018.

32. M.Marques, S. F. Ochoa,M.C. Bastarrica andF. J. Gutierrez, Enhancing the Student Learning Experience in Software Engineering

Project Courses, IEEE Trans. Educ., 61(1), pp. 63–73, Feb. 2018.

33. R. Chatley and T. Field, Lean Learning – Applying Lean Techniques to Improve Software Engineering Education, in 2017 IEEE/

ACM 39th International Conference on Software Engineering: Software Engineering Education and Training Track (ICSE-SEET),

2017, pp. 117–126.

34. C. Raibulet and F. Arcelli Fontana, Collaborative and teamwork software development in an undergraduate software engineering

course, J. Syst. Softw., 144, pp. 409–422, Oct. 2018.

35. P. Runeson and M. Höst, Guidelines for conducting and reporting case study research in software engineering, Empir. Softw. Eng.,

14(2), pp. 131–164, Dec. 2008.

36. A. Nowak and H. J. Schünemann, Toward Evidence-Based Software Engineering: Lessons Learned in Healthcare Application

Development, IEEE Softw., 34(5), pp. 67–71, 2017.

37. J. G. Guzmán, A. F. del Carpio, R. Colomo-Palacios and M. V. de Diego, Living Labs for User-Driven Innovation: A Process

Reference Model, Res.-Technol. Manag., 56(3), pp. 29–39, May 2013.

38. M. V. Palacin-Silva, A. Seffah and J. Porras, Infusing sustainability into software engineering education: Lessons learned from

capstone projects, J. Clean. Prod., 172, pp. 4338–4347, Jan. 2018.

39. M. Niazi, Teaching global software engineering: experiences and lessons learned, IET Softw., 9(4), pp. 95–102, 2015.

40. V.Venkatesh, J.Y.L.ThongandX.Xu,ConsumerAcceptanceandUseof InformationTechnology:Extending theUnifiedTheoryof

Acceptance and Use of Technology,MIS Q., 36(1), pp. 157–178, 2012.

41. V. Stantchev, R. Colomo-Palacios, P. Soto-Acosta and S. Misra, Learning management systems and cloud file hosting services: A

study on students’ acceptance, Comput. Hum. Behav., 31, pp. 612–619, Feb. 2014.

42. T.Dreesen andT. Schmid,DoAsYouWantOrDoAsYouAreTold?Control vs. Autonomy inAgile SoftwareDevelopment Teams,

Hawaii Int. Conf. Syst. Sci. 2018 HICSS-51, Jan. 2018.

43. K. Kuusinen and S. Albertsen, Industry-academy Collaboration in Teaching DevOps and Continuous Delivery to Software

Engineering Students: Towards Improved Industrial Relevance in Higher Education, in Proceedings of the 41st International

Conference on Software Engineering: Software Engineering Education and Training, Piscataway, NJ, USA, 2019, pp. 23–27.

44. P. Melzer, A conceptual framework for task and tool personalisation in IS education, in A Conceptual Framework for Personalised

Learning, Springer, 2019, pp. 47–76.

Students’ Selection of Teamwork Tools in Software Engineering Education: Lessons Learned 315

45. B. Schatz and I. Abdelshafi, Primavera gets agile: a successful transition to agile development, IEEE Softw., 22(3), pp. 36–42, May

2005.

46. T. Dingsøyr, T. E. Fægri, T. Dybå, B. Haugset and Y. Lindsjørn, Team Performance in Software Development: Research Results

versus Agile Principles, IEEE Softw., 33(4), pp. 106–110, Jul. 2016.

47. V. Garousi, G.Giray, E. Tuzun, C. Catal andM. Felderer, Closing the GapBetween Software Engineering Education and Industrial

Needs, IEEE Softw., pp. 1–1, 2019.

48. J. Ramazani andG. Jergeas, Project managers and the journey from good to great: The benefits of investment in projectmanagement

training and education, Int. J. Proj. Manag., 33(1), pp. 41–52, Jan. 2015.

49. J. Varajão, R. Colomo-Palacios andH. Silva, ISO 21500:2012 and PMBoK 5 processes in information systems project management,

Comput. Stand. Interfaces, 50, pp. 216–222, Feb. 2017.

50. P. Laplante, J. F. Defranco and E. Guimaraes, Evolution of a Graduate Software Engineering Capstone Course – ACourse Review,

Int. J. Eng. Educ., 35(4), pp. 999–1007, 2019.

51. M. Pozenel and T. Hovelja, A comparison of the planning poker and team estimation game: a case study in software development

capstone project course, Int. J. Eng. Educ., 35(1), pp. 195–208, 2019.

52. C. S. Ridenour and Newman,Mixed Methods Research: Exploring the Interactive Continuum, SIU Press, 2008.

53. Y. S. Lincoln, S. A. Lynham and E. G. Guba, Paradigmatic controversies, contradictions, and emerging confluences, revisited, Sage

Handb. Qual. Res., 4, pp. 97–128, 2011.

54. K. L. Wester, Publishing Ethical Research: A Step-by-Step Overview, J. Couns. Dev., 89(3), pp. 301–307, Jul. 2011.

RicardoColomo-Palacios, Full Professor at theComputer ScienceDepartment of theØstfoldUniversityCollege,Norway.

Formerly he worked at Universidad Carlos III de Madrid, Spain. His research interests include applied research in

information systems, software project management, people in software projects, business software, software and services

process improvement and web science. He received his PhD in Computer Science from the Universidad Politécnica of

Madrid (2005). He also holds a MBA from the Instituto de Empresa (2002). He worked as Software Engineer, Project

Manager and Software Engineering Consultant in several companies including Spanish IT leader INDRA.

Cristina Casado-Lumbreras is working at Educational Psychology Department, Universidad Complutense de Madrid,

Spain. She received her PhD in Psychology from the Universidad Autónoma of Madrid (2003). She has been working in

educational and psychological consulting, and in several research institutions and Universities since 1990s. Her research

interests include the study of emotions from different approaches and contexts, such as the study of emotions and values

from a cross cultural perspective, or the analysis of emotions in the workplace. Likewise, her research production has also

focused on the study of mentoring and coaching processes in educational and organizational contexts, or on the study of

the influence of technology on education, learning and performance.

Terje Samuelsen, Assistant Professor at theComputer ScienceDepartment of theØstfoldUniversityCollege,Norway.His

research interests include information systems, didactic in IT education, guidance as a tool for learning and people studies

within projects. Apart from his teaching and research duties, he worked as Software Engineer for Kongsberg Gruppen,

Norway.

Xabier Larrucea is currently project leader at Tecnalia and has mainly been involved in European projects (more than 25

research projects). Since January 2017 he is leading the SHIELD project related with cybersecurity in national health

systems. His research interests cover all aspects of the software engineering discipline including cybersecurity. He is also

part time lecturer at theUniversity of Basque Country (EHU-UPV) on Software Engineering subjects. He is serving in the

board of IEEE Software and IET Software. He is an IEEE Senior member and PMP certified.

Ricardo Colomo-Palacios et al.316

