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An important step in the growth of engineering education as a unique field of inquiry is to understand how theoretical

constructs manifest within different engineering contexts. Replication and reproducibility studies should be conducted to

support and ensure results are valid and generalizable across different variations of the same context, and to support and

ensure research in engineering education maintains an integral role in the development of future engineers. This study

follows the previous work of Major and Kirn to replicate and re-validate Carberry and colleagues’ work to create an

engineering design self-efficacy instrument. Exploratory and confirmatory factor analyses of data collected from students

enrolled in active learning environments reveal that students’ confidence and perceived success to complete design tasks

combine into a single factor. Additional work is needed to further explore this emergent inconsistency and refine themodel

used to assess engineering design self-efficacy.
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1. Introduction

Engineering education is a growing area of scholar-
ship around the world as demonstrated by the

emergence of doctoral programs, societies, confer-

ences, journals, and research agendas [1–7].

Research conducted within the general context of

engineering education has been described as a dis-

cipline, community, or field [8, 9]. The inability to

differentiate between how we describe engineering

education and other similar research suggests a
continual need to assess what has been done both

within and outside of engineering education

research. Available reviews and meta-analyses of

current and emerging research methods [10–13] as

well as publication patterns [14, 15] provide steps to

develop engineering education as a rigorous disci-

pline [7, 16]. Emerging from this literature is the call

for replication and reproducibility of previous find-
ings, which are actions considered central in scien-

tific research [17]. Such actions should be considered

paramount when discussing research design [18-19]

in order to ensure implications for various types of

validity evidence [20]. Replication and reproduci-

bility studies should be conducted to determine how

results established in one context might generalize

to others, and to ensure that previously established
results align with updatedmarkers of quality. Shifts

have been seen in engineering education related to

quality in qualitative research [21–23] since calls for

replicability and reproducibility studies first came

forth [24, 25], but these shifts are just beginning

within quantitative research.

The sub-community of quantitative researchers

within the engineering education research commu-
nity must advance and mature engineering educa-

tion scholarship by conducting replication and

reproducibility studies aligned with updated mar-

kers of quality. Study replication serves to prove,
disprove, or clarify earlier results reported in the

literature. Such ademonstration through replication

supports the broader need for education research

[26], which ensures research remains an important

part of the development of future engineering stu-

dents [27]. This paper provides one example to

reproduce and replicate the original findings from

the often used and well cited Engineering Design
Self-Efficacy (EDSE) scale developed by Carberry

and colleagues [28, 29]. The context for this replica-

tion and reproducibility study within active learning

environments is first outlined by the foundations of

self-efficacy and the EDSE instrument. We also

highlight the ways the instrument has been used

since its initial publication in 2009.

2. Background

2.1 Self-efficacy

Self-efficacy is a task-specific construct concerned

with an individual’s belief in their ability to execute
behaviors resulting in a desired level of performance

[30–32]. The task-specific nature of self-efficacy

reveals a need to create specific measures to assess

self-efficacy that are specific to certain domains,

because one cannot assume that someone display-

ing low confidence in one domain is automatically

inefficacious toward another domain [31]. Numer-

ous efforts have been undertaken to understand the
role of self-efficacy in engineering education [29, 33–

49]. These studies have developed a variety of

instruments to measure self-efficacy for specific

engineering-related tasks.
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2.2 The Engineering Design Self-Efficacy (EDSE)

Instrument

TheEDSE instrumentwas designed tomeasure self-

efficacy within the domain of engineering design

[28, 29]. EDSE is a student’s confidence to conduct

design activities. The EDSE was initially presented

to the engineering education community in 2009 [28]

and then later refined in 2010 [29]. The initial
impetus for development of this instrument was to

investigate the assumption that experience through

completion of engineering tasks increased self-effi-

cacy toward engineering design activities. Carberry,

Lee, and Ohland [29] designed the instrument to be

malleable to the needs of the surveyor by embedding

flexibility in the constructs and items used.Ageneric

scale question was used to rate any number of task-
specific self-concepts of interest. The primary self-

concept of interest was self-efficacy (presented as

confidence), but also included motivation, expec-

tancy for success, and anxiety [28, 29]. These sec-

ondary self-concepts were included to test

theoretical relationships and are not limited to

those selected. Each scale consisted of a set of

items based on a chosen representation of the
engineering design process. The design process

selected for the EDSE involved eight steps, resulting

in eight items per scale. The eight items could be

modified or replaced with statements aligned with

alternative engineering design process representa-

tions. A check of effectiveness for the eight items,

written to represent the chosen design process, was

embedded in the instrument as a generic ninth item:
conduct engineering design. This single item pro-

vides a means to test any set of items written for any

given engineering design process; factor analysis

should produce a single factor representing engi-

neering design that correlates to the additional

generic item.

The results reported by Carberry, Lee, and

Ohland [29] demonstrated three important find-
ings. First, the chosen engineering design process

representation can appropriately measure task-

specific self-concepts, such as self-efficacy.

Second, EDSE is highly dependent on past

engineering experiences. Third, motivation, out-

come expectancy, and anxiety toward engineering

design correlate highly to EDSE.

2.3 Use of the EDSE Instrument

Almost a decade later, the EDSE instrument has

been used or referenced over 200 times by numer-

ous journals, conference proceedings, disserta-
tions, and engineering education educators (e.g.,

[50–54]). One relevant example to this study is a

quantitative study by Major and Kirn [55], which

sought to use the EDSE instrument [29] to explore

changes in student design self-efficacy as a result of

participation in active learning environments, such

as problem- and project-based learning. A later

study by Major and Kirn [56] also qualitatively

investigated how the active environment itself

might bring about those attitudinal changes.
Results of exploratory factor analysis (EFA) by

Major and Kirn [55] suggested that students might

see confidence and success to be the same factor,

i.e., feelings in their ability to competently com-

plete design tasks. The authors recognized that

such a combination has similarly been seen in

engineering identity analyses (performance-com-

petence) as an important part of engineering
identity development when mediated by interest

or external recognition [57], such as what might be

developed in active learning environments [58].

The model was subsequently reduced to three-

factors: (1) confidence-success, (2) motivation,

and (3) anxiety [55]. The authors followed factor

analysis with pre-post comparative analysis and

found that students had a significant increase in
confidence-success over the course of the semester.

In their discussion, it was thought that active

learning might allow students to develop attitudi-

nal feelings of confidence and success, such that it

might also be developing students’ identities as

engineering designers [56].

3. Purpose of the Study

This study re-examines the validity evidence pre-

sented for the EDSE instrument by Carberry et al.

[29] and preliminary work of Major and Kirn [55]

through a replication and reproducibility effort

within the context of active learning. New validity

evidence for the EDSE instrument was generated
using newanalyses to support the continued use and

potential modification of the instrument. The

results expand and complement the initial validity

work done to develop the instrument. This overall

effort was guided by the following research ques-

tion:RQ:How does previous validity evidence for the

Engineering Design Self-Efficacy instrument com-

pare to new emerging evidence within active learning

environments? The results provide a replication and

reproducibility study of motivational constructs

within engineering education. Insights from contin-

uous evaluation within and outside of engineering

education build a strong foundation for use of the

instrument across multiple populations.

4. Methodology

The work of Major and Kirn [55, 56] examined

changes in student EDSE due to participation in a

single project-based learning statics course. This
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study sought to replicate this earlier work, and to

expand it to three other courses using similar and

different active learning practices, to determine

whether further validity evidence in an active learn-

ing environment could be obtained. We start by

describing the courses that were used.

4.1 Research Setting

Four separate courses at the same western land-

grant university were used for this study. Courses

were chosen by solicitation to instructors of well-

known, high-enrollment, active-learning courses at

the university that would represent the breadth of
active learning courses thatmight exist.We describe

each of these courses below as we believed the

different context and style of active learning might

result in slight variations other than what we pre-

sent.

(1) Introduction to Mechanical Engineering (1st-

year, 8 sections, n = 287): This course used a lecture
and lab split. The lecture portion of the course

involved students discussing practical engineering

topics. Students worked in and out of class on

LEGO Mindstorm-based [59] projects and other

real-world applicable engineering projects (e.g.,

helmets that protect a user from impact-related G-

Forces). Each team project was tested and required

students to document their design processes. The
lab portion of the course allowed students to learn

three-dimensional design. Students used Solid-

Works [60] and completed both in and out-of-

course modeling projects. The relevance in survey-

ing this course is its use in early pilot work to test the

original EDSE instrument [28–29].

(2) Engineering Statics (2nd-year, 1 section, n =

246): This course used both problem and project-

based learning with innovative strategies for assess-

ment. The instructor used lecture for a small portion

of each class period to discuss basic theory before

moving onto exercise problems. Studentswere given

time to attempt the problem alone and with the

assistance of students around them before the

instructor proceeded to solve the problem on an
overhead. The instructor assessed student compe-

tence in completing engineering problems using

first-to-five strategies [61] prior to solving the pro-

blem. The last three weeks of the course were

dedicated to a project requiring students to work

in teams to design, analyze, build, and test a balsa

bridge within material and size limitations. The

relevance in surveying this course is its use in earlier
work by Major and Kirn [55, 56].

(3) Dynamics (2nd-year, 1 section, n = 159): This

course primarily implemented problem-based and

experiential learning. The course provided short

lectures each day that were followed by supplemen-

tal problems, videos, or experiments. The problems

presented used real-life examples to link in-class

content to out-of-class engineering scenarios. The

experiments required students to use specific mea-
surement tools to find an unknown value (e.g., use

of a stopwatch, yardstick, and two skateboards to

design a momentum experiment that allows the

student to determine a close estimate of the profes-

sor’smass). The relevance in surveying this course is

its use in early pilot work to test the original EDSE

instrument [28–29].

(4) SolidMechanics (3rd-year, 2 sections, n = 174):

This fully flipped course typically used a small

lecture followed by completion of homework pro-

blems in groups. Instructors and supplemental

instructors were available for additional assistance

during problem-solving activities. Students were

required to attend mechanics demonstrations,

watch additional lecture videos, and complete
step-by-step problem-tutorial videos called Mec-

Movies [62] outside of class. This course was not

used for pilot work or earlier work by Major and

Kirn [55, 56].

4.2 Participant Sample and Demographics

The total unique-student population was deter-
mined by comparing rosters for all four courses to

identify students enrolled in multiple courses. The

subsequent population totaled 684 unique students,

when accounting for dual-enrolled students. A

sample of 383 students completed the pre-survey

(56.0% response rate) and 290 students completed

the post-survey (42.4% response rate). Demo-

graphics of the students who completed each
survey, including their self-reported race/ethnicity,

gender, and sexual orientation are shown inTable 1.

Participants’ self-identified demographic infor-

mation was collected to compare student groups

across courses, academic year, race/ethnicity,

gender, and sexual orientation. Some categories

were collapsed to protect the identity of our parti-

cipants. Our participant population is primarily
heterosexual, White, and male. We recognize that

this groupof participants is not representative of the

full diversity of engineering [63].

4.3 Survey Administration

A modified online version of the EDSE instrument

[29] was administered to students using Qualtrics

[64] at the beginning and end of the Spring 2016
semester. Students were offered varied course

incentives depending on the course(s) they were

enrolled in to compensate their participation

(Table 2). Students enrolled in more than one
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course did not have to take the survey more than

once to receive the benefits for each course. All

duplicate responses were removed before our

analysis took place. Participating students were
also given an extra opportunity from the research

team to receive a $10 electronic gift card for their

participation.

Students were asked to rate their confidence to

design, motivation to design, perceived outcome of

success doing design, and anxiety to complete vary-

ing design tasks on a 11-point scale from 0 to 100

(Fig. 1). Responses were analyzed by converting the
11-point scale from 0 to 100 to 0 to 10 as was done in

the earlier work ofMajor and Kirn [55]. Additional

open-ended questions were included to provide in

depth qualitative insights and demographic infor-
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Table 1. Demographics of pre- and post-survey responses to the EDSE instrument are shown by course enrollment, year of academic
enrollment, self-identifying race/ethnicity, self-identifying gender, and self-identifying sexual orientation

Pre-Survey Post-Survey

Total Response 381 297

Course

Intro to Mech. Engr. 118 (31%) 75 (25%)

Engineering Statics 162 (43%) 122 (41%)

Engineering Dynamics 111 (29%) 117 (39%)

Solid Mechanics 130 (34%) 131 (44%)

Year

1st Year 86 (23%) 48 (16%)

2nd Year 177 (46%) 158 (53%)

3rd Year 102 (27%) 81 (27%)

4th Year or more 16 (4%) 10 (3%)

Self-Identifying Race/Ethnicity

American Indian or Alaskan Native 10 (3%) 5 (2%)

Asian 53 (14%) 39 (13%)

Black/African American 14 (4%) 7 (2%)

Hawaiian or Pacific Islander 17 (4%) 12 (4%)

Hispanic, Latinx, or Spanish 54 (14%) 40 (13%)

Middle Eastern or North African 3 (1%) 0 (0%)

White/Caucasian 279 (73%) 224 (75%)

Another Race/Ethnicity 6 (2%) 4 (1%)

Self-Identifying Gender

Female 67 (18%) 55 (19%)

Male 305 (80%) 239 (80%)

Transgender or Another Non-binary 19 (5%) 10 (3%)

Self-Identifying Sexual Orientation

Heterosexual/Straight 357 (94%) 278 (94%)

Another Orientation 16 (4%) 15 (5%)

Table 2. Students could receive one or more incentives from different course instructors and the research group for their participation in
completing pre- and/or post-surveys

Course Course-Offered Incentive

Engineering Statics 5 points of extra credit (on a 1000-point scale) to complete each survey outside of class
time.

Introduction to Mechanical Engineering Nocourse-offered incentivewas provided. Studentswere given 20-minutes of in-class time
to complete the survey.

Dynamics 5 points of extra credit (equivalent to one homework assignment) to complete each survey
outside of class time.

Engineering Solid Mechanics 1% bonus to final semester grades for completion of both surveys outside of class time.



mation. This article focuses only on the quantitative

findings.

4.4 Factor Analysis and Structural Equation Model

Fit

Previous EFA and correlation testing suggested
that students saw confidence toward design and

perceived outcome of success designing as a single

construct [55]. Additionally, earlier pairwise t-test-

ing of a combined confidence-success model

revealed that students had a significant increase in

the combined construct over the course of a seme-

ster [55]. The current study completed EFA again,

using parallel analysis for both the pre and post data
using R Statistical Software [65]; Promax rotation

[66]; and 0.50 factor loading cutoffs [67]. Items

within the confidence and success factors were

averaged (i.e., confidence item 1 with success item

1, etc.) to create a combined confidence-success

factor prior to analysis (see previous work by

Major and Kirn [55]). Pre- and post-survey factor

scores were checked for construct reliability using a
recommended value of 0.70 for Cronbach’s �
[68, 71]. Individual confidence and success factors

were also tested to ensure that consistency was

sufficient before and after averaging. Finally, result-

ing factor scores were created by averaging items

within the factor, according to the EFA, which were

later checked for correlations.

The idealized model was then modeled using
confirmatory factor analysis (CFA) using the R

statistical software package, lavaan [70]. The

recommended sample size for CFA is 10 partici-

pants per item; a total of 360 participants for this

study [71]. Since our total sample was near or

below the desired 360 responses, a Kaiser-Meyer-

Olkin (KMO) Test was run to check for sample

adequacy [72]. Further, to abide by homogeneity of
variance, a Bartlett Sphericity Test was run [73].

Steps were undertaken before each iteration of fit

to ensure that items continued to correlate to the

model’s main three factors found during the EFA.

We considered items to be highly correlated if they

had a factor loading of above 0.60 [74]; those items

below this threshold were removed. Modindices

[70] were additionally inspected throughout for

items considered to be largely affecting the model

Chi-Square (X 2).

We determined model fit by comparing lavaan fit

values [71] to those recommended in the literature,

including a Normed Fit Index above 0.9 or 0.95

(NFI) [75, 76], Goodness of Fit Index above 0.90

(GFI) [75], Comparative Fit Index above 0.93 (CFI)
[75], Root Mean Square Error Approximation

under 0.06 (RMSEA) [77] with the upper confidence

level of the RMSEA lying under 0.08 [77], and a

Relative Chi-Square Value under 2 or 3 [74, 79].

Modindices [70] were then used based on findings

and consideration of the theoretical models to

determine and create covarying pathways to better

achieve model fit values. Updated models were
compared to the model without the update using a

Vuong’s Test [80] to test for significant improve-

ment. Our process of model improvement ceased

when we no longer found significant improvement

(determined by absence of a significant Vuong’s

Test p-value) using the largest sensical modindices

recommendation [70].

5. Results

5.1 Exploratory Factor Analysis

Parallel analysis, shown in Fig. 2a and 2b, suggested

that the model should contain three factors in both

the pre- and post-versions, respectively. Following

these recommendations, we used a three-factor

model for continued EFA.

The EFAs of both pre- and post-data, shown in

Table 3, present identical factor structures: a con-
fidence-success (CS) factor made of all the confi-

dence-success items, a motivation (M) factor made

of all motivation items, and an anxiety (A) factor

made of all the anxiety items. Within item number-

ing is still identical to that found above in Fig. 1.
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(a) (b)

Fig. 2.Like inMajor andKirn [55], results of parallel analysis suggest that therewere three latent factors in both the pre- andpost-versions,
respectively.

Table 3. Through exploratory factor analysis, we found EDSE items in the pre- and post-survey each cleanly loaded into a three-factor
model

Item Code Pre-Survey EFA Post-Survey EFA

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor

CS1 0.928 0.902

CS2 0.901 0.863

CS3 0.808 0.743

CS4 0.936 0.894

CS5 0.898 0.904

CS6 0.755 0.769

CS7 0.815 0.840

CS8 0.707 0.596

CS9 0.851 0.849

M1 0.820 0.838

M2 0.852 0.890

M3 0.833 0.779

M4 0.924 0.896

M5 0.897 0.886

M6 0.844 0.692

M7 0.878 0.834

M8 0.721 0.783

M9 0.756 0.640

A1 0.884 0.952

A2 0.924 0.945

A3 0.891 0.911

A4 0.939 0.957

A5 0.916 0.898

A6 0.885 0.877

A7 0.899 0.887

A8 0.687 0.742

A9 0.885 0.899



These findings are similar to those found in our

earlier work [55].

5.2 Construct Reliability

Construct reliability using Cronbach’s � showed

that the respective reliability for pre- and post-test

self-efficacy (0.96; 0.96), motivation (0.95; 0.95),

outcome expectancy (0.96; 0.96), and anxiety
(0.97; 0.97) were sufficiently above the suggested

0.70 loading [69]. The combined confidence-success

factor was also sufficiently above the threshold

(0.96; 0.95). In combination, these results suggest

that the EDSE factors were very reliably measured

by the items used in the survey.

5.3 Correlation

A test for inter-factor correlation confirmed that the

combined confidence-success and motivation fac-
tors were highly correlated for both the pre- and

post-survey data (0.597; 0.716). Additionally, we

found that confidence (0.361; –0.209) and motiva-

tion (–0.242; –0.256) were not highly correlatedwith

anxiety. This finding is in opposition with original

findings from Carberry, Lee, and Ohland [29],

which suggests a high negative correlation should

exist. The overall results support a three-factor
grouping of results as our exploratory factor ana-

lysis showed.

5.4 Confirmatory Factor Analysis

5.4.1 Kaiser-Meyer-Olkin (KMO) Sampling

Adequacy Test

Our use of aKMO test suggested that the number of

participants is adequate for the number of items to

be tested in CFA (above 0.50) [72]. We found that
measured sample adequacy for both pre- and post-

survey datawas 0.94,which based onKaiser’s work,

would be thought of as sample adequacy that is

‘‘superb’’.

5.4.2 Bartlett’s Sphericity Test

Our use of Bartlett’s Test for both pre and post-

survey data resulted in a p-value of 0.000, and Chi-

squared values of 17,073.01 and 13,066.27, respec-

tively. Significant p-value results reject the null

hypothesis that the data’s correlation matrix is

similar to an identity matrix, which suggests that

the data has a structure for factor analysis. We used

these combined results to move forward with con-
firmatory factor analysis.

5.4.3 Pre-survey and Post-survey: Model 1

A confirmatory model was tested for both pre- and

post-surveys, which used the theoretical structure

from the EFA (Table 4). Factor one consisted of all

confidence and success items. Factor two consisted

of all motivation items. Factor three consisted of all
anxiety items. A test of Model 1 for the pre-survey

did not result in adequatemodel fit; however, model

summaries suggested that all items were highly

correlated to the model. The largest modindices

still fit theoretical constructs, which suggested that

we create a pathway between items C1 and C2 to

improve model fit.

We observed similar results for the post-survey
Model 1.We found itemswere still highly correlated

to the model and fit measures were very low, except

for the GFI which was above the recommendation

of 0.9. Modindices within theoretical constructs

recommended we create a covarying path between

items C8 and S8. Both modifications were made

within Model 2 for the pre- and post-survey.

5.4.4 Pre-survey: Model 2

The modindices for pre-survey Model 1 suggested

additional paths between item C1 and C2 be added.

Table 4 provides the fit indices that resulted from

these changes. We found that small improvements

were present, but there was no indication of large fit

improvement. We found that data summaries still

suggested that all itemswere highly correlated to the
model.

Further, Vuong testing for significant changes

between pre-survey Model 1 and pre-survey

Model 2 suggest that the addition of the path

resulted in no significant change in fit (p = 1).
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Table 4. The model of EDSE could not be confirmed using confirmatory factor analysis, even when we attempted to improve model fit

Model 1 Model 2

Indicator Suggested Value Pre-Survey Post-Survey Pre-Survey Post-Survey

X 2 p-value > 0.05 0.000 0.000 0.000 0.000

X 2 / df < 2 or 3 > 7 > 5 > 7 > 5

NFI > 0.90 0.73 0.77 0.74 0.77

GFI > 0.90 0.75 0.91 0.84 0.91

CFI > 0.93 0.75 0.81 0.77 0.81

RMSEA < 0.06 0.13 0.12 0.13 0.12

RMSEA-Upper Tail < 0.08 0.13 0.12 0.13 0.12



Testing of the alternative null hypothesis that

Model 2 was better than Model 1 displayed that

Model 1 was significantly better than Model 2 (p =

9.65 � 10–6). These results suggest that model fit

improvement using the addition of covarying paths

need not continue because the modindices recom-
mendation should have resulted in the largest

increase in fit and did not end up being significant.

5.4.5 Post-survey: Model 2

The recommendation of modindices of post-survey
Model 1 suggested an additional path between item

C8 and S8 be added. Table 4 provides results of the

changes. We found that the addition of a path did

not result in significant increases in fit, which was

confirmed using Vuong testing (p = 1). We also

found testing of the alternative null hypothesis

confirmed the same results as the pre-survey

hypothesis (p = 9.62 � 10–6). These results, like the
pre-survey, suggest that model fit improvement

using the addition of covarying paths need not

continue. It is with these results that we conclude

that the theoretical model of design self-efficacy

tested through EFA cannot be confirmed using

CFA.

6. Discussion

To our knowledge, none of the over 200 journal

articles or conference proceedings using and/or

citing the original instrument by Carberry and

colleagues [28, 29] has attempted to provide validity

evidence to support their use of the EDSE instru-

ment. These works have primarily focused on

practical use of the instrument or its theoretical

basis in the creation of new scales. This work is the
first of its kind to further examine the reliability and

validity of previously collected and analyzed data

using the EDSE instrument. Initial reliability evi-

dence for the instrument [28, 29] indicated that the

factors held together internally. Our reevaluation of

this work, considering new standards for quality in

quantitative research [25, 81–83], indicated that

there is insufficient evidence to extend the original
claims of reliability and validity to other contexts.

The new reliability and validity approaches applied

to the EDSE instrument within this work (e.g.,

CFA) represent exploration of not only the internal

consistency of the items, but also the uniqueness of

each factor from one another. It is due to the lack of

a reliable structure of the instrument that we call for

additional efforts in establishing an instrument with
improved accuracy toward measuring students’

EDSE. We use the remainder of the discussion to

highlight the potential reasons that may have

caused these findings to emerge when the EDSE

instrument was designed to mimic established mea-

sures of motivation in other disciplines.

6.1 Inconsistencies in Measuring Motivation in

Engineering

The results of our study that question the use of an

existing motivation measure in engineering are not

unique. Multiple studies have demonstrated that

engineering students do not behave the same, or

embody the same motivational beliefs, as other

students in similar courses. Nelson, Shell,

Husman, Fishman, and Soh [84] found that non-

engineering students better connected their futures
with their current course, had greater perceived

instrumentality for the course content, and

espoused more learning-oriented goals for their

academics, than engineering students enrolled in

the same technical course. Similarly, leading moti-

vation researcher and social psychologist, Judith

Harackiewicz, noted that engineering students

enrolled in a technical course with other non-
engineering majors demonstrate significantly less

interest [85]. Kirn and Benson [86] found that

engineering students’ conceptualizations of grit

differed from the theoretical definition of persis-

tence toward long-term goals [87]. The engineers’

conceptualized grit as persistence on short-term

tasks which differs from Duckworth, Peterson,

Matthew, and Kelly’s [87] traditional focus on
long-term goals. The inconsistencies in student

expression may begin to explain why the engineer-

ing education research community has struggled to

consistently use motivation frameworks in their

studies of student motivation [88].

6.2 The Limitations of Transferring Motivation

Measures across Cultural Boundaries

We note that the lack of continuity of findings

between different survey administrations is not

unique to engineering. Universal application of

educational psychology theories has been called

into question [89], especially in the context of race/

ethnicity and culture [90–92]. Artelt [93] found that

different cultures have different meanings for intrin-

sic and extrinsic motivation. Schunk, Meece, and
Pintrich [91] described how expectancy-value

theory is constrained by the social and cultural

beliefs of the culture; what one person from one

culture values is likely different from what another

person from another culture values. Zusho and

Clayton [92] found that achievement goal theory

was especially bound by culture because the

achievement goal framework had only been
researched in Western cultural contexts. These

cultural-values are embedded in this and other

similar theories. Further, there is a growing body

of evidence indicating that motivational constructs
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as designed are not robust when transferred into

unique cultural domains such as engineering. It is

not surprising then that the EDSE instrument has

limited reliability and validity when considering this

body of work.

6.3 The Uniqueness of Engineering Culture

Work has noted that motivation theories have

limited generalizability across cultural boundaries.

Significant work in engineering has described the

unique culture of engineering [94]. The field has

been described as having an engineering way of

thinking, engineering way of doing, being an engi-
neer, acceptance of difference, and relationships

[95]. Additionally, engineering is perceived as an

industry-driven field (in other words, practical solu-

tions must be generated) that divides the technical

from the social aspects. The socio-technical divide

manifests in the valuing of technical skills (e.g.,

problem solving and differential equations) over

professional skills (e.g., communication and inter-
personal skills) [95, 96]. This divide, described as the

depoliticization of engineering, manifests in educa-

tional environments that celebrate the perceived

removal of the social components that drive the

need for engineers in the first place [95-96]. The

prioritization of the technical leads to the continued

reconstruction of a culture rooted in technical

meritocracy, i.e., reward based on technical ability.
Such technical meritocracy has been prioritized by

the engineering community, but has also been

shown to stifle creativity [97], disproportionately

reward those who fit the traditional engineering

mold, and exclude potential new members to the

engineering profession [98, 99]. These cultural

values and priorities drive the development of com-

munities of practice, accreditation processes, and
individual level priorities that directly impact engi-

neering students and serve to shape students’ moti-

vations [95, 96, 98].

These values fortified by cultural structures

become embedded in students’ epistemological

understanding of engineering, i.e., what counts as

legitimate engineering knowledge, tools, and prac-

tices [98]. Student motivations, goals, and actions
are all influenced by their desire to become a part of

or enter specific communities of practice and be

rewarded by those who hold access to the engineer-

ing profession [57, 84, 86, 96, 99, 101–103]. Training

students in a technically driven culture that does not

favor socio-cultural components shapes how stu-

dents aremotivated in engineering andmotivated to

be engineers. Student motivation then becomes
filtered due to the culture of engineering and its

inherent value system, which shapes how students

interpret and respond to motivational research that

is in itself shaped by the culture. It is therefore not at

all surprising that the EDSE instrument did not

hold together when tested for reliability and valid-

ity.

7. Limitations

There are several limitations to this replication

study beginning with our sample. We acknowledge

that our sample size is not ideal even though KMO

testing indicated we had a large enough sample size

to model EDSE effectively using factor analysis.

Our sample is also acknowledged as predominantly

White, male, and heterosexual, and may not be
representative of the current engineering commu-

nity or the diversity goals of the engineering educa-

tion community [63].

Further limitations come by way of the differ-

ences between the methodological approaches used

in this study compared to those used by Carberry

and colleagues’ [28, 29] original work creating the

EDSE instrument. The original approach taken
was to provide content, criterion-related, and con-

struct validity evidence using an available engineer-

ing design process, past engineering experience of

participants, and Bandura’s Self-efficacy Theory

[30–32] as validity sources. The items and scales

were consistent between studies; however, factor

analysis to determine item inclusion was conducted

quite differently. The original work examined each
scale individually and concluded after exploratory

factor analysis. The results suggested one factor for

each scale – self-efficacy, motivation, expectancy

for success, and anxiety. The current article did not

differentiate between scales or constructs, which

revealed a three-factor model. The discrepancy

between studies was that one factor emerged for

confidence and expectancy for success during
exploratory factor analysis. This study attempted

to confirm these findings with confirmatory factor

analysis. Results did not converge, which suggests

more work is needed. A preliminary comparison of

fits between a three and four-factor model showed

that a three-factor model still maintained a higher

level of fit. We do not present these differences in

this study as neither model met thresholds for
quality. Correlations between factors and tests for

reliability were conducted for both studies with an

additional step taken in the original work to

examine the relationship between the factor con-

sisting of multiple items, i.e., engineering design

process steps, and a single item referring to engi-

neering design. The studies continue to diverge in

terms of how the original work expanded its
analysis by grouping participants based on engi-

neering experience – high, intermediate, and low

self-efficacy [29]. Such groupings were used because

the sample included more than just engineering
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students. One-way ANOVAs complemented by

Tukey HSD post hoc comparisons were used to

compare group scores for self-efficacy, motivation,

outcome expectancy, and anxiety toward engineer-

ing design to examine and confirm criterion-related

validity. Group scores were not compared in this
study because our model does not hold as initially

theorized.

8. Conclusion and Future Work

This study set out to explore students’ EDSE in

active learning environments. We administered the

EDSE in four classes using active learning methods

to gather additional validity evidence. Results of

this testing indicated that the survey does not meet
reliability and validity standards for the population

in our study. We believe potential explanations for

this finding are supported throughout ongoing

conversations in the educational psychology litera-

ture, that suggest motivation measures do not

transfer well across contexts. Our findings indicate

that further work is needed to establish the EDSE

instrument (or another measure) before using the

EDSE instrument again to ensure that the measure
accurately reflects students’ self-efficacy toward

engineering design.
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