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Previous work in problem-solving has been limited by lack of a framework to describe how experts solve authentic

problems, and a lack of assessments to measure authentic problem-solving. We have developed an assessment of expert

problem-solving in the context of chemical process design to measure how well undergraduate engineering students are

learning to solve authentic problems. We measured changes in students’ problem-solving over the course of two different

capstone design courses to see (1) how much students learned and (2) whether problem-solving outcomes varied between

the two courses. We find that students are learning some problem-solving in capstone design courses, but not as much as

one might hope: scores on most metrics of expertise range from 30–70%. Variations in what students learned between the

two courses can be explained by what decisions students were given an opportunity to practice making during the course.

These results suggest that undergraduate students need more deliberate practice making the decisions that expert

engineers do as they solve authentic problems.
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1. Introduction

The ability to solve complex problems is central to

engineering expertise. Indeed, recent graduates of

engineering programs cite problem-solving as one

of the most important technical skills required of

them in their work [1].While it is generally held that

we train undergraduates to be good problem-sol-
vers, there is little research to support this belief.

Some work actually suggests that graduates are not

prepared to solve the problems they encounter in

the workplace [2].

Traditionally, students’ exposure to the kind of

authentic problems they might encounter as practi-

cing engineers is limited to their experiences in the

capstone design course. Capstone design courses
provide ‘‘an experiential learning activity in which

the analytical knowledge gained from previous

courses is joined with the practice of engineering

in a final, hands-on project [3–5].’’ These courses

play a central role in accreditation of engineering

programs. ABET requires that ‘‘students must be

prepared for engineering practice through a curri-

culum culminating in a major design experience
based on the knowledge and skills acquired in

earlier course work and incorporating appropriate

engineering standards and multiple realistic con-

straints.’’ [6] The actual implementation of the

capstone design experience varies widely [7].

As described by [3], the evaluation of capstone

design courses is typically subjective and provides

little or no hard evidence of benefits, with some
exceptions [8, 9]. For example, [10] states that he is

convinced of the value of capstone design courses

only from his experiences with these courses. Gen-

erally, the continued corporate sponsorship of

many capstone design courses and positive student

surveys regarding their experience are taken as

evidence for the courses achieving their desired

outcomes [11]. Most engineering educators

involved describe the courses as successful and
worthwhile [3], though some have varying opinions

on how design should be incorporated into the

curriculum [12–14],

One difficulty in objectively measuring the out-

comes of the capstone design courses is that the

desired outcomes, e.g., problem-solving, are diffi-

cult to measure. We have been carrying out exten-

sive research on how experts solve authentic
problems and have used this to create a framework

by which to capture many elements of problem-

solving in terms of the decisions experts make.

Using this framework, we have created an assess-

ment that can be used in capstone design courses to

test how much they teach students to make deci-

sions like experts on numerous aspects of chemical

process design. In the following study, we describe
the use of an assessment of problem-solving in

chemical process design to measure changes in

problem-solving in two capstone design courses

for chemical engineers. We sought to answer two

research questions:

1. Does students’ ability to solve authentic pro-

blems increase over the course of the capstone

design experience?
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2. Does the format of the capstone design course

affect how much authentic problem-solving

that students learn?

Though this is a case study and the applicability

of the results is somewhat limited, this study reveals

particular shortcomings and strengths of capstone

design experiences. Importantly for instructors, it

informs them of things they can do to improve

students’ problem-solving skills that are often over-
looked.

2. Analytical Framework

Researchers in physics [15–21] and engineering [22–

26] education research have studied problem-sol-

ving. This has provided essential insights into

differences in how experts and novices approach

problems. For example, [27] found that novices

focus on surface features of physics problems,

while experts focus on the conceptual structure of
problems. Based on empirical and prescriptive

models of problem-solving, researchers have devel-

oped methods of teaching problem-solving to

undergraduate students [28–33].

A central limitation to the existing work in

problem-solving is that most studies focus on

experts and students as they are solving structured,

textbook-style problems. While these pose a chal-
lenge to the students, experts are often able to

determine the pathway to a solution in advance,

and these ‘‘problems’’ are thus simple exercises to

the expert [34–37]. Recently, researchers have

begun to study experts as they solve authentic

problems, such as the problems a researcher or

practicing engineer would encounter on the job.

These problems have conflicting goals, multiple
solution methods, and multiple forms of represen-

tation [2]. Solving these problems involves making

far more decisions and requires more extensive

skills than solving well-structured problems typi-

cally encountered in courses [26, 38].

Another limitation of the research on problem-

solving is that there are few, if any, agreed-upon

assessments of authentic problem-solving.
Researchers typically study problem-solving with

think-aloud interviews, which are time intensive

and impractical to implement in a classroom set-

ting. A few assessments of problem-solving that do

exist are typically done with ‘‘knowledge-lean’’

tasks such as the Tower of Hanoi problem [39].

These are able to capture general problem-solving

heuristics, but do not adequately capture the role
that deep disciplinary knowledge plays in expert

problem-solving. Indeed, other studies have shown

that experts draw heavily on their knowledge base

to define the problem at hand [40–42]. Some

researchers in engineering education have devel-

oped rubrics that measure problem-solving [33,

43], but they are not widely used, and the theories

upon which they are based are not empirically

validated.

Our research group is involved in a large-scale
project that addresses both identified limitations of

the problem-solving literature. First, we conducted

an empirical study of expert problem-solving to

determine how experts solve authentic problems

[44]. This entailed conducting semi-structured inter-

views with experts from a range of STEM fields in

which we asked the experts to describe how they

solved a particular problem in their work. Inter-
views were based on a modification of the critical

decision method of cognitive task analysis [45].

Experts were asked to particularly focus on the

decisions they made as they solved the problem in

question. From these interviews arose a set of 29

decisions and five additional themes that were

consistent across all of the various fields. While

the decisions were consistent across fields, how the
experts made those decisions was field-specific and

guided by a mental construct called a predictive

framework which explicitly incorporates the rele-

vant disciplinary knowledge. Predictive frame-

works are mental models of a problem’s key

features and the relationships between them; these

allow the expert scientist or engineer to explain

observations, reason mechanistically about a situa-
tion, and conduct mental simulations of the pro-

blem. Harlim & Belski [46] identified some of the

decisions that we identified in our work, but their

list is not complete.

From this empirical model of expert problem-

solving, we set out to develop assessments that

capture these decision-making processes. Textbook

problems are not suitable for these assessments
because many of the expert decisions are made for

the students. For example, physics textbooks

always explicitly state assumptions for the student

instead of allowing the student to make their own

assumptions or simplifications. We have developed

these assessments for many STEM disciplines, but

will focus on the chemical process design assess-

ment in this work

2.1 Assessment Design

The basic structure of our assessments is to present

the problem-solver with a non-functioning system,

such as a flawed product design schematic or a

medical patient history. We then ask the problem-

solver general questions which require them to
make some of the expert decisions we identified

and ask increasingly more detailed questions about

the system as the assessment progresses [47]. This

allows us to capture a wider range of problem-
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solving skills: experts and more expert-like students

will notice important features and failures of the

system in the beginning in response to general

questions, whereas less expert-like students may

not until specifically prompted and weak students

will never notice. A detailed schematic of the
assessment design is illustrated in Fig. 1.

This assessment is carefully structured to probe

expert decision-making. The specific questions

posed in the chemical process design assessment

may be found in Fig. 1. In the assessment, the

problem-solver is situated as a practicing engi-

neering who has assigned an intern to design a

process to produce tetrachloroethylene, a dry-
cleaning solvent. The basic chemistry underlying

the process and a table of physical properties is

given to the problem-solver. The situation we

present the problem-solver with is reasonably

authentic: an intern has developed a block flow

diagram which you, a practicing engineer, must

read over to check for errors, etc. This requires a

fair amount of disciplinary knowledge, but also
requires the engineer to make decisions such as

how well the given solution holds, what are

particular areas of difficulty, etc. The engineer

has to worry about high-level features such as

whether mass and energy balances are obeyed,

whether the process accomplishes its goals (and

whether it does so efficiently), and importantly,
what changes are needed to improve or fix the

process.

2.2 Assessment Validation & Scoring

We have conducted several pilot studies to validate

and refine the assessment so that it could be used in
chemical engineering courses. In the first study, we

conducted think-aloud interviews with 42 students

and 3 experts (professors of practice with extensive

industry and teaching experience) from two highly-

ranked chemical engineering programs [47]. In that

study we found that the students who had com-

pleted a capstone design course noticed 3 more

errors and improvements students on average
than students who had only taken an introductory

course in design. Students with industry design

experience noticed 7more errors and improvements
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on average than the introductory students. We used

the expert responses to establish grading rubrics for

the questions regarding criteria, what information
the students requested, and how the students

ranked the various pieces of information.

We next conducted a study in the introductory

process design course at two highly selective

research universities to determine best practices as

to how to administer the assessment. We found that

making the assessment zero-stakes resulted in stu-

dents not putting an earnest effort into their
responses. As a result, we recommend making the

assessment a required assignment for the course in

question. The assignment is graded only for com-

pletion, but this makes it worth enough of a

student’s grade to get more reliable responses. We

find that students take about 45-60 minutes to

complete the assessment if putting in a reasonable

effort.
As we have conducted further validation studies

of this assessment, we have developed a grading

rubric that reflects the different dimensions of

expert problem-solving that it probes. Because of

the inherent multi-dimensionality of the assess-

ment, it does not have a single score, but rather 6

different sub-scores, summarized in Table 1. The

rubric for scoring the assessment may be found in
Ref. [48]. The first is the evaluation criteria score.

This score is the number of criteria students cite that

were also cited by at least one of our three experts,

divided by the total number of criteria the students

cite – this penalizes students who select unimpor-

tant criteria. The second score is the information

request score, which is derived in a similar manner.

We divide the number of pieces of information the
students request that at least one of our experts

requested by the total number of pieces of informa-

tion the students’ request. The third score is the

information ranking score. When we administered

the assessment to our experts, we found that 2 of 3

experts agreed on how important all pieces of

information were, but all three experts cited three

specific pieces of information that were essential.
The information ranking score is the fraction of

these three pieces of information that students rank

as essential. The fourth score, design errors, is the

fraction of errors the students notice in the original
design – note that this is derived from the students’

answers to the first four questions, before they are

shown the corrected design. The fifth score, design

improvements, is the fraction of material and

energy inefficiencies that students notice and correct

in their answers to questions 5–7. The final score is

the safety score, which is derived in the same way as

the evaluation criteria and information ranking
scores. All scores range from 0–100%.

We note that this scoring scheme does not

capture all of the student decision-making. For

example, it does not allow us to identify which

criteria or information students cite most often

and how that compares with the evaluation criteria

and information. It does not capture the results of

question 11, where students have the opportunity to
make further changes to the design based on the

information provided to them. It also does not

capture their reasoning as to whether or not they

accept the optimized design presented to them.

Capturing these dimensions of student reasoning

requires an analysis of students’ open-ended

responses. While such an analysis is highly infor-

mative, and we would recommend that individual
instructors do so, this is not the focus of this study.

This scoring scheme captures how expert-like stu-

dent reasoning is along several dimensions and is a

reasonable proxy of how expert like their thinking is

in general, and thus provides valuable information

to instructors as to areas where instruction may be

improved. This scheme is discriminating in that we

see a wide range of scores on the assessment from a
variety of students [49]. Furthermore, the scores

that we collect are valid in that they represent how

expert-like the students are in their reasoning about

the process.

3. Methods

We administered the chemical process design

assessment as a pre- and post-test (via Qualtrics)
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Table 1. Summary of various sub-scores for the chemical process design assessment. All scores range from 0 to 100%.

Score Description

Evaluation Criteria Number of student-identified criteria that were also cited by experts divided by the total number of
student-identified criteria.

Information Request Number of student-requested pieces of information thatwere also requested by experts divided by the total
number of student-requested pieces of information.

Information Ranking Experts cited three pieces of information as most important. This score is the fraction of those pieces that
students rank as most important.

Design Errors Fraction of errors that students notice in the design.

Design Improvements Fraction of improvements that students suggest to the design.

Safety Number of student-identified safety considerations that were also cited by experts divided by the total
number of student-identified safety considerations.



in two capstone design courses in the chemical

engineering department at an elite private research

university in the northeastern United States. We

chose this particular department for our study

because the students choose between two capstone

design courses to take in their final semester, but the
core chemical engineering curriculum up to that

point is otherwise exactly the same for all students

enrolled in either course. Thus, differences between

students can be attributed to differences between

the two capstone design courses with greater con-

fidence.

All participants were senior undergraduate stu-

dents majoring in chemical engineering. The parti-
cipants were 66% female, 8% URM and 8%

international students. At pre-test, we also collected

data on students’ undergraduate research experi-

ence, teaching (TA) experience, the number of

project-based courses they had taken, whether

they had industry design experience, whether they

had participated in a project team, and whether

they had any leadership experience. Descriptive
statistics for these additional measures are pre-

sented in Table 2. The participants were divided

between two courses: product design and plant

design. 22 of the 24 students enrolled in product

design completed the pre- and post-test compared

with 30 of the 38 students enrolled in plant design.

We did not analyze responses from students who

did not complete both the pre – and post-test.
We find that students in plant design have sig-

nificantly more research experience (p ¼ 0:02) and
TA experience (p ¼ 0:05) than students in product

design. We tested for significance using the Mann-

Whitney U-test. A larger proportion of students in

product design reported industry design experience

(Fisher’s exact test, p ¼ 0:10) when compared with

plant design. There were no significant differences
on any of the other metrics.

3.1 Course Context

These capstone design courses are both taught by

experienced engineers and share many educational

objectives. These courses are the first opportunity

students have to think holistically about a chemical

product or plant. A primary goal of these courses is

to introduce students to ambiguous and open-

ended problems where there is no single correct

solution. The problems have a clear goal but are

otherwise vaguely defined so students need to do
some investigation to determine how to achieve the

goal in question. Another primary goal is to encou-

rage students to reflect on their answers – e.g., check

whether the size of a distillation column is possible

or makes sense – something that is typically not

emphasized in other courses in the curriculum.

There are other shared goals between the two

courses. Students should becomemore comfortable
making estimates of quantities that they need,

asking questions, consulting with outside experts

and many other sources to obtain information

needed, using simulation software, and should

develop teamwork and presentation skills. Consis-

tent with industry standards, students are expected

to think about the financial implications of all the

decisions they make regarding the product or plant
design.

3.2 Instruction in the Product Design Course

Product design is a 5-unit, project-based capstone

design experience that simulates an industry work

environment. Students work in teams of 4 to apply

chemical product design principles, combined with

hands-on prototyping, to advance a product con-

cept through a Technology Readiness Level phase.

The design teams apply stage-gate chemical pro-

duct design principles including market and eco-
nomic analysis, patent search, environmental,

regulatory, and safety issues. Students provide

weekly reports covering economic analysis, product

specifications, experimental design, process model-

ing, and regulatory analysis.

The course has two one-hour lectures per week in

which instructors review concepts related to the

weekly deliverables. The design teams meet with
their ‘‘managers’’ (instructor and teaching assis-

tant) weekly to present key milestones in product

development. At themid-point and end-point of the
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Table 2.Backgrounddata on the study participants. For project-based courses, research experience, TA experience, internships, problem-
based interviews, and project team experience we report the median value of the distribution. For design experience and leadership
experience, we report the number of students who reported these experiences

Course

Project-
Based
Courses

Research
(months)

TA
(semesters) Internships

Problem-
Based
Interviews

Design
Experience
(students)

Project
Team
(semesters)

Leadership
(students)

Product
Design
(N = 22)

1 6 0 1.5 1 10 0 19

Plant
Design
(N = 30)

1 10.5 1 1 1 9 0 24



semester, students present a ‘‘fresh-eyes review’’ in

the form of a presentation and report to industrial

collaborators and sponsors. All deliverables for this

course are presented as a group, there were no

individual assignments outside of this assessment.

The deliverables for this course cover both the
technical and economic aspects of product design.

Students first identify customer needs, market/data

trends, and information about the competitive

landscape to inform the feasibility; they write

memos and give presentations summarizing this

information. The students evaluate what the most

important customer attributes for the design that

they will be addressing and address these during
prototyping. Students produce a product design

that, in addition to customer attributes, accounts

for engineering constraints, product packaging,

supply chain, and regulatory issues. Students con-

duct a series of experiments to help them arrive at a

prototype product design. Students conduct an

economic analysis which includes market demand,

raw materials cost, product costs, product price,
investment and cash flow analyses, and determina-

tion of the payback period. After these studies,

students design a process from scratch for how

they will produce their product at scale, highlight-

ing any unique operations/procedures and basic

equipment sizing. They develop a quality control

plan, production schedule, and do some prelimin-

ary modeling of their pilot-scale model to make
recommendations for what needs to be done for

large scale production. The students summarize all

of this work with a recommendation as to the

viability of their product and its large-scale produc-

tion.

3.3 Instruction in the Plant Design Course

Plant design is a 5-unit, project based capstone

design course that simulates an industry work

environment. Students work in teams of 4 to pre-

pare a full-scale feasibility study of a chemical

process. This includes product supply and demand

forecasts, development of mass and energy bal-

ances, and a process flow sheet sufficient for esti-

mating the capital and operating costs of the
facilities. Students also define all off plot support

facilities and estimate associated costs. Ultimately

students develop an economic analysis and provide

a recommendation as to the viability of the project.

The course has two one-hour lectures per week in

which instructors review concepts related to the

weekly deliverables. The design teams meet with

their ‘‘managers’’ (instructor and teaching assis-
tant) weekly to present key milestones in process

development. At themid-point and end-point of the

semester, students present a ‘‘fresh-eyes review’’ in

the form of a presentation and report to industry

experts. All deliverables for this course are pre-

sented as a group, there were no individual assign-

ments outside of this assessment.

Deliverables in plant design address technical,

logistical, and economic aspects of designing a

chemical plant based on a pilot scale process
design. Students start by developing a project

execution plan, design basis memorandum, quality

plan, and initial market analysis. They then analyze

the current condition process flow and initial pro-

cess capacity and constraints based on the pilot-

scale process they are working with (they do not

design the process from scratch). They analyze the

economics, utility energy balances, and develop a
preliminary plot plan for their chemical plant. They

then work on preliminary design and sizing of

equipment based on physical constraints (e.g.,

kinetic and thermodynamics data). They then con-

duct a full simulation of their process based on the

equipment designs. At this stage students consider

regulatory constraints (Safety, environmental,

security, etc.) and optimize their simulation to
minimize energy use and waste. They develop a

product packaging scheme and material storage/

supply chain plan, before producing a final plant

layout, quality systems analysis, start-up and shut-

down plan, and final economic analysis.

3.4 Quantitative Analysis

The first author scored all of the pre- and post-tests

according to the scoring scheme described in the

Analytical Framework. To simultaneously examine

differences between courses and changes in scores

between pre and post, we used a robust linear

mixed-effects model. The basis of the model is:

Score ¼ �0 þ �1 Timeþ �2 Courseþ �3 Course �
Timeþ Student; ð1Þ

where Score is the score of interest, Time is a binary

variable that is 0 at pre-test and 1 at post-test,

Course is a binary variable that is 0 for plant

design and 1 for product design, and Student is

the random effect of student. The pre-scores for

students in plant design are �0, and the pre-scores
for students in product design are �0 þ �2. The
post-scores for students in plant design are

�0 þ �1, and the post-scores for students in product
design are �0 þ �1 þ �2 þ �3. There is a significant
change in scores for plant design students if �1 is
significant. There is a significant change in scores

for product design students if �1 þ �3 is significant.
There is a significant difference in pre-scores
between the two courses if �2 is significant.
In addition to this base model, we also controlled

for the effects of undergraduate research experi-

ence, TA experience, and industry design experi-
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ence on pre-scores. We selected these variables

because there were significant differences between

the two courses, and thus wanted to see if any of the

difference between pre-scores in the two courses

could be explained by these differences. The final

model is:

Score ¼ �0 þ �1 Timeþ �2 Course þ �3 Course �
Times þ �4 Research þ �5TAþ
�6 Industryþ Student; ð2Þ

whereResearch is the number ofmonths of research

experience, TA is the number of semesters of TA

experience, and Industry is a binary variable that is 1

when a student reports industry design experience

and 0 otherwise. Using the robust lmm package in

R, we estimated the regression coefficients in Equa-

tion 2 above, as well as the size of the random effect

of student and the correlations between all of the
fixed effects. We used robust estimation methods

due to our small sample size of 52 students.

For the purposes of this paper, we define an effect

to be significant if the coefficient �i is larger than its
associated standard error. There are two reasons

for this definition instead of looking at p-values.

First, whether p-values for fixed effects coefficients

in mixed-effects models are appropriate is a subject
of debate. Some suggest that instead of p-values,

one should use likelihood ratio tests or look at

changes in the Akaike Information Criterion

(AIC) as fixed effects are added to or removed

from the model [48]. Second, our statistical power

is limited here by our small sample size and the

relatively large number of variables in the model.

Thus, it is difficult to determine whether our effect

sizes are different from zero using traditional t-tests,

particularly if the effect size is small. In any case, the

American Statistical Association recommends

against using p-values as go/no-go tests of signifi-

cance [50]. By using this modified definition of

significance, we believe we will identify the most
educationally significant effects.

4. Results

The mean and standard error for each score in each
course and pre-test and post-test are reported in

Table 3. The coefficients for themixed-effectsmodel

may be found in Table 4. We first discuss the

changes in scores and differences between courses,

before discussing the correlations between pre-

scores and research experience, TA experience,

and industry experience at the end.

4.1 Evaluation Criteria Scores

Students in product design have lower evaluation

criteria scores than students in plant design at both
pre- and post-test. At pre-test, the difference is 0.52

standard deviations. Students in plant design see a

0.46 standard deviation (15 percent) decrease in

evaluation criteria scores from pre- to post-test.

Students in product design see a comparable

decrease of 0.41 standard deviations (11%) from

pre- to post-test.

Students’ criteria scores are decreasing not
because they are mentioning fewer expert-identified

evaluation criteria (pre/post difference is �0:0031�
0:21), but because they arementioningmore criteria
overall (0:81� 0:28 more criteria). Because scores

reflect the fraction of criteria mentioned which were
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Table 3. Descriptive statistics for results of the assessment for both courses. Numbers reported are averages plus or minus the standard
error

Course/Time
Evaluation
Criteria

Information
Request

Information
Ranking

Design Errors Design
Improvements Safety

Product Design (Pre-test) 42�5.8% 51�8.9% 61�7.2% 24�5.0% 24�4.5% 67�9.5%
Product Design (Post-test) 31�4.3% 58�8.3% 65�4.1% 26�6.6% 31�3.3% 92�5.0%
Plant Design (Pre-test) 55�4.0% 58�7.9% 64�5.0% 32�6.1% 39�3.7% 61�7.9%
Plant Design (Post-test) 40�3.9% 71�6.1% 66�4.4% 40�5.2% 42�3.2% 87�5.8%

Table 4. Table of coefficients and standard errors (in parentheses) for the linear mixed-effects models of assessment scores. The scores are
scaled such that coefficients are in units of standard deviations of scores

Variable

Evaluation

Criteria

Information

Request

Information

Ranking Design Errors

Design

Improvements Safety

Intercept 0.55 (0.24) –0.35 (0.29) –0.011 (0.27) –0.44 (0.25) 0.20 (0.28) –0.46 (0.21)

Time (1 = Post) –0.46 (0.24) 0.33 (0.30) 0.064 (0.28) 0.39 (0.26) 0.14 (0.19) 0.60 (0.22)

Course (1 = Product Design) –0.52 (0.27) –0.12 (0.34) –0.057 (0.31) –0.15 (0.29) –0.87 (0.30) 0.26 (0.24)

Time � Course 0.046 (0.38) –0.11 (0.46) –0.016 (0.43) –0.35 (0.40) 0.23 (0.29) –0.11 (0.33)

Research Experience (months) –0.0040 (0.0088) 0.013 (0.011) –0.0077 (0.010) 0.0075 (0.0093) –0.0097 (0.011) 0.012 (0.0078)

Teaching Experience (semesters) –0.043 (0.056) 0.066 (0.068) 0.078 (0.063) 0.045 (0.059) 0.039 (0.071) 0.025 (0.049)

Industry Design Experience –0.045 (0.21) 0.10 (0.24) 0.10 (0.24) 0.49 (0.22) 0.28 (0.27) 0.14 (0.19)



also mentioned by experts, this causes the scores to

decrease from pre to post-test. Essentially, we are

penalizing them for knowing more criteria but

without acquiring judgement as to the relevance

of those criteria.

4.2 Information Request Scores

Students in plant design see a significant increase in

information request scores from pre to post-test

(0.33 standard deviations, 13%). Students in Pro-

duct design see a somewhat smaller increase in
scores (0.22 standard deviations, 7%).

4.3 Information Ranking Scores

Information ranking scores at both pre-test and

post-test are comparable in both the plant design
and product design courses. There is no significant

change in information ranking scores from pre to

post-test in either plant design (0.064 standard

deviations, 1%) or product design (0.048 standard

deviations, 3%). The scores range from 61–65%, so

this lack of change is not due to a ceiling or floor

effect.

4.4 Design Errors

Students in plant design see a 0.39 standard devia-

tion (8%) increase in the number of design errors

they notice from pre- to post-test, while students in

product design do not change frompre- to post-test.

4.5 Design Improvements

Students in product design suggested fewer

improvements to the design than students in plant

design (0.87 standard deviations at pre-test, 12%).
Students in plant design did not change from pre- to

post-test. Students in product design saw a 0.37

standard deviation (8%) increase in scores, which is

significant.

4.6 Safety

Students in product design were more expert-like in

their safety concerns about the process than pro-

duct design students at pre-test (0.26 standard

deviations). Plant design students saw a 0.60 stan-

dard deviation increase in safety scores, while

product design students say a 0.49 standard devia-

tion increase in scores.

4.7 Correlation between Prior Experience and Pre-

score

Research experience, TA experience, and industry

experience are not significantly correlated with
students’ pre-scores for evaluation criteria or infor-

mation request. There is a small correlation

between students’ pre-scores and their undergrad-

uate research experience (0.013 standard deviations

per month of research experience). There is a small

correlation between teaching experience and infor-

mation ranking score: 0.078 standard deviation

increase in scores per semester of TA experience.

Students with industry design experience have sig-

nificantly higher Design Errors pre-scores (0.49

standard deviations). We see that design experience
is correlated with higher pre-scores on design

improvements as well (0.28 standard deviations).

Finally, there is a small correlation between

research experience and safety scores: students see

a 0.012 standard deviation increase in pre-scores

per month of research experience.

5. Discussion

The most notable results indicated by Tables 3 and

4 is that students are generally receiving low scores

on the assessment, and see only small improvements

from pre- to post-test. Indeed the design errors and

design improvements scores range from 24–42%,

despite the students having significant practice in
analyzing designs during the course. This suggests

that students are not getting sufficient practice with

reflecting on their solutions in this course, as decid-

ing how well the chosen solution holds is a decision

common to all questions regarding the design. One

reason for these small gains is that this is team-

based course and students frequently use a ‘‘divide

and conquer’’ approach. This means that not all
students get practice making all of the decisions

necessary to complete the project. For example, a

student may become an expert in safety issues, but

not learn about the economic modeling aspects

because a teammate was handling those issues.

Furthermore, effect sizes measuring the change

over time were, with the exception of Safety, small.

Though the students are improving in areas where
they receive significant practice (see below), these

changes are smaller than one might hope. As we

discuss below, changes in students’ scores and

differences between the two courses are largely

explained by what decisions the students were able

to practice making in their respective capstone

design courses. Students saw gains when given the

opportunity to practice making decisions and saw
no improvement when they did not get the chance

to make certain decisions.

The small effect sizes suggest that students are not

developing expert-level problem-solving from just

one capstone design course and are far from expert

problem-solvers at the end of the undergraduate

curriculum. While disheartening, the results also

point to a solution: for students to become better
problem-solvers, they simply need more practice

making the set of decisions that comprise expert

problem-solving. One way to achieve this would be

to restructure capstone design courses such that
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students are able to make more expert decisions

with feedback and opportunities to revisit and

improve decisions. For example, instead of being

given the specific goals for their project, students

should have to spend time choosing their own goals.

Instead of being given a weekly schedule that
chooses students’ priorities for them, the students

may need amore open-ended experience where they

decide what to work on in a given week.

We note that we are not criticizing the instruction

in these particular courses. Indeed with so few

objective measures of capstone design courses, it

is not immediately obvious what the problem-sol-

ving outcomes after a single authentic course should
be. Developing expert problem-solving is not the

only goal of the capstone design experience. Other

outcomes of these courses include teamwork, being

able to synthesize technical knowledge to solve a

real-world problem and being able to deal with

ambiguity. Thus, while the gains we see are small,

they may be quite reasonable for a single course.

However, significant changes to the undergraduate
experience may be necessary if students are to

become more expert-like by the end of the curricu-

lum.

We suggest that, to improve students’ problem-

solving further, a different philosophical approach

must be taken toward teaching problem-solving in

the undergraduate curriculum. Rather than worry-

ing about specific forms of pedagogy in the cap-
stone design course, or whether the projects are

simulated or industry sponsored, focus should be

placed on whether students are being allowed

deliberate practice in making the same decisions

as an expert engineer would. Such practice would

ideally be distributed throughout the curriculum,

such that students more closely resemble expert

engineers by the end of the undergraduate curricu-
lum. This requires a fundamental change to the way

we teach engineering science courses like thermo-

dynamics and fluid mechanics. Rather than focus-

ing solely on content, students must be given the

opportunity to use that content knowledge to make

expert decisions so that they can become more

expert-like by the end of their undergraduate

careers. Indeed other researchers have seen such
results in courses such as heat transfer [51].

5.1 Population Differences Reflected in Pre-Scores

From inspection of Table 3, one can see that

product design pre-scores (and thus, post-scores)

are lower than plant design pre-scores across all

metrics. From the mixed-effects modeling in Table
4, we see that this difference is not explained by

differences in industry, research, or teaching experi-

ence. We posit that this difference in pre-scores may

be explained by a difference in GPA. Students in

plant design have higherGPAs on average (Cohen’s

d ¼ 0:40, p ¼ 0:06). While GPA is not expected to

be a perfect predictor of how well students perform

on this assessment of real-world problem-solving, it

seems plausible that there would be a correlation

between GPA at this level, as it reflects many
engineering courses, most of which are common

to both groups, and problem-solving performance.

In analyzing the data we also noticed two weak,

but significant, correlations: a correlation between

information request scores and research experi-

ence, and a correlation between information rank-

ing scores and teaching experience. We cannot say

with certainty what the cause of these correlations
is, but it seems plausible that students engaged in

research and teaching get more practice making

the respective decisions required to answer the two

questions. For example, ranking information

requires students to decide upon priorities,

decide whether information is valid/reliable, and

decide whether information matches their expecta-

tions. These are all decisions involved in the
grading process. A TA must make a rubric for a

given problem (decide upon priorities through

points allocation), decide whether information

matches their expectations (whether the student

solutions match their solutions), and decide upon

the quality of the information presented to them

(how good a student’s solution is). Meanwhile,

students with substantial research experience may
get more practice deciding what information is

needed to solve the problem, whether they have

enough information, and whether their problem-

solving approach is working. An analysis of

decision making by students engaged in under-

graduate research would be needed to confirm this

explanation. Indeed, [52] find that undergraduate

research experiences require students to engage in
decision making regarding criteria for suitable

experimental evidence, designing of experiments

and testing the experimental design, and analyzing

and presenting data. Deciding upon criteria for

suitable evidence requires students to identify

what information is needed to solve the problem

and whether they need more information, and

troubleshooting an experimental design requires
students to decide how well their problem-solving

approach is working.

The correlations between undergraduate

research experience and TA experience also suggest

ways instructors might improve problem-solving.

For example, having students create rubrics to

assess each other’s deliverables and grade those

deliverables would involve them in the same kind
of decisionmaking as a TA. The results suggest that

their information ranking scores would improve if

they practiced making those decisions.
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5.2 Changes that are Consistent across the Two

Courses

There are several notable consistencies across the

two courses. The first is that we see evaluation

criteria scores decrease over time. This decrease
occurs not because students are mentioning fewer

evaluation criteria (1.5 on average at pre- and post-

test), but because they are mentioning more criteria

overall (0.81 more at post-test), making the fraction

of evaluation criteria decrease. This is a reflection of

the students’ uneven progression toward expertise.

During the capstone design course they learn about

all the elements that go into doing a feasibility study
for a chemical process or product, and all the

criteria on which feasibility is determined. How-

ever, they have not learned to judge the importance

of appropriate criteria. Similar results have been

seen in the medical clinical reasoning assessment

our group has developed and applied to medical

students. When given a list of tests to order for a

patient, experienced physicians choose tests spar-
ingly and deliberately, while students list everything

they know is possible [53].

The second notable finding is that there was no

change in information ranking scores for either

course over time: scores range from 61–65% so

this is not due to a ceiling or floor effect on scores.

We expect that this is because students are not

engaged in deliberate practice in making the
expert decisions necessary to decide which informa-

tion is most important. As outlined in the methods

section, deciding which information is most impor-

tant relies upon three decisions: (1) deciding upon

priorities, (2) deciding if information is valid, reli-

able, etc., and (3) deciding how information col-

lected compares with expectations derived from the

predictive framework. In both of these courses,
students do not have to spend much time deciding

upon priorities. Which aspects of the product or

process design they work on from week-to-week is

determined by the instructors, thus students do not

get to make that decision.

It is interesting that, despite the fact that students

in both courses need to seek out substantial

amounts of information from online and text
sources, students do not seem to get practice decid-

ing whether information is valid/reliable and com-

paring information to expectations. We suspect

that this reflects deficiencies in students’ predictive

frameworks. Their predictive frameworks are not

sophisticated enough for them to make predictions

about what the information they gather will look

like. Because they do not have well-developed
expectations, they also don’t spend much time

thinking about whether the information they

gather is valid or reliable. Most students will be

able to do some superficial evaluation of whether a

specific source of information is reliable, but not the

specific pieces of information. This is consistent

with their broad failure to reflect on their solutions

during the assessment.

Another notable result is the substantial increase
in safety scores for students in both courses. The

capstone design course is the first experience stu-

dents have considering issues of safety in engineer-

ing design; thus this result is not unexpected. What

is surprising is that the safety scores are so high at

pre-test (67% and 60% in product and plant design,

respectively) given the fact that students typically

don’t spend much time considering issues of safety
before the capstone design experience. This may be

because the range of possible answers as to safety

concerns is more limited than the range of possible

criteria or information. Generally respondents

(including experts) were concerned only with

issues related to toxicity and environmental impacts

of reactants and high temperatures or runaway

reactions.

5.3 Changes that are Different in the Two Courses

Students in plant design become more expert like in

the information that they request during the assess-

ment, whereas product design students do not

change. Students in both courses are given the

opportunity to practice deciding what information
is needed and whether they have enough informa-

tion to solve the problem. One plausible explana-

tion is that how these decisions are made is highly

context-dependent – i.e. dependent on having the

appropriate predictive frameworks. Students in

plant design spend time developing predictive

frameworks that allow them to assess and design

processes, whereas student in product design spend
time developing frameworks that allow them to

think about the feasibility of chemical products.

Students in plant design thus get more specific

practice in deciding what information is relevant

to the design of a process, whereas students in

product design get less practice in this area.

On a related note, students in plant design get

significantly better at noticing errors in the original
design presented to them, whereas students in

product design do not. We expect that this is

because students in plant design spend significantly

more time working with process flow diagrams

compared with the product design students. But

curiously, this does not also result in plant design

students becoming better at suggesting improve-

ments to the design, while product design students
do.We expect that this is an idiosyncrasy associated

with the projects the students complete. In the plant

design course, while students have to develop a full

process flow diagram, the design of the process itself
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is often known in advance – indeed, in industry

processes are often developed and then licensed,

rather than being redesigned by each company

which wants to make a certain product. Thus,

students do not spend much time thinking about

conceptual ways to improve the design, they are
only concerned with numerical optimization. Pro-

duct design students, on the other hand, are con-

ceiving of a novel chemical product, for which a

design may not exist. They may thus get more

practice thinking about conceptual building

blocks of the process and focus less on the numer-

ical optimization.

5.4 Limitations and Future Work

There are several notable limitations to this work.

The first concerns the reliability of students’ written

answers to the assessment. It is known that think-

aloud interviews provide far more detail into stu-

dent and expert reasoning than what is written

down. We may therefore be missing certain aspects

of student reasoning that would affect the response
coding and assessment scoring. However, from the

think aloud interviews that we conducted, students’

thoughts about the process were generally not any

more revealing than their written responses [47].

The second limitation is that we had a small,

relatively select sample population. Whether pat-

terns in decision-making are similar across capstone

design courses at other institutions is largely
unknown. We are currently analyzing student

responses from a public, teaching-intensive institu-

tion to compare with the results from this private,

research-intensive institution. Preliminary results

suggest only minor differences between the institu-

tions. Furthermore, the small number of students

(22 in product design and 30 in plant design), limit

our statistical power. However, we have enough
students to show that these courses are not making

a large impact on students’ preparation to be expert

problem solvers, despite this being the central focus

of those courses. Furthermore, we have enough

data to show specifically where the two courses

can be improved.

The primary focus of this work was to investigate

(1) whether students’ problem-solving improved
during the capstone design courses and (2) whether

this improvement was different for different types of

capstone design courses. To do this, we converted

qualitative data (student responses) into quantita-

tive variables so that we could determine the sig-

nificance of various differences between courses and

over time. We specifically investigate how students’

criteria, information requested, etc. differs from an

expert engineer in order to better assess the pre-

dictive frameworks that students graduating from
an undergraduate chemical engineering program

have.

One area related to both limitations and future

work concerns the open-response nature of the

assessment. In past work, we found that students

needed significant motivation to put an earnest

effort into completing our assessment, particularly

at the end of the course. This resulted in our
decision to make the assessment a required assign-

ment in the capstone design courses. It is possible

that we did not see greater increases in students’

problem-solving skills because students did not put

their full effort into the post-assessment. That being

said, from the written responses, it does not seem as

though students put any less effort into the post-test

compared to the pre-test. Students wrote approxi-
mately the same amount for their responses at pre –

and post-test. Furthermore, we found no significant

correlation between time spent on the assessment

and any of the assessment sub-scores.

We are currently consulting a wider range of

students and experts in order to develop a closed-

response assessment. A closed-response version

would be simpler to score and more easily used in
courses where time is already a limited resources.

Once the closed response version is developed and

widely distributed, further analysis such as item

response modeling can be conducted to empirically

verify the central decisions probed by each ques-

tion.

6. Conclusions

Our research questions concerned whether stu-

dents’ problem-solving improved during the cap-

stone design course, and whether the format of the

course affected how much students did or did not

learn.We found that students saw gains in problem-

solving when they were given the opportunity to

practice making key decisions and saw no improve-
ment when they did not get the chance to make a

certain decisions. Indeed, the differences between

courses also stemmed from students getting prac-

tice making different decisions in the two courses.
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