
Sustainable Approach to Teaching Embedded Systems with

Hands-On Project-Based Visible Learning*

FILIPPO SANFILIPPO1** and KOLBJØRN AUSTRENG2

1Dept. ofEngineering Sciences,UniversityofAgder (UiA), JonLilletuns vei 9,Grimstad, 4879,Norway.E-mail: filippo.sanfilippo@uia.no
2Dept. of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.

Although purchasing state-of-the-art teaching equipment may be financially demanding, substantial efforts are being

made at the Norwegian University of Science and Technology (NTNU) in Trondheim to provide students with an

enhanced hands-on embedded system design experience in a sustainable manner. In particular, an approach that consists

of adopting low-cost commercial off-the-shelf (COTS) components and tools for learning purposes is proposed in this

work. This strategy effectively combines both industry standard highly-reliable automation controllers, such as

Programmable Logic Controller (PLC) technology, as well as novel microcontrollers (i.e., the micro:bit microcontroller

based on the nRF51822 system-on-chip (SoC)) explicitly designed for use in embedded systems education. This

contributes towards a hands-on sustainable learning experience based on the applicability of Visible Learning (VL).

The objective of this paper is to propose a novel organisation of the embedded systems module for the engineering

cybernetics education curriculum. The intended outcome is to promote a novel teaching approach. This is achieved by

engaging students in both a series of organised theoretical lectures as well as practical and highly involving laboratory

group projects. Surface learning sections and deep learning sections are thoroughly alternated to stimulate understanding,

making relations, and extending the students’ knowledge. The course organisation and main topics, as well as result

analysis of student surveys are discussed. The survey results and feedback from the reference group indicate that the course

organisation and topics are effective and helpful for students.

Keywords: embedded systems, education, programming, micro:bit

1. Introduction

Engineering cybernetics education is a multidisci-

plinary field of study that involves different types of
knowledge and skills. This educational field is

closely related to control theory and systems

theory. This includes [1], among others: linear and

nonlinear control theory, mathematical modelling,

simulation, optimisation, embedded systems, real-

time computer technology, and robotics.

In this paper, a novel organisation of the

embedded systems module for the engineering
cybernetics education curriculum is presented.

The intended objective is to promote a novel way

to teach the course. This work aims at answering the

following research question: is it possible to stimu-

late understanding, trigger relations, and extend the

students’ knowledge by thoroughly alternating sur-

face learning sections and deep learning sections?

As shown in Fig. 1, the fundamental idea is to
organise the course into three parallel layers:

� Theoretical lectures with exercises. This compo-

nent of the module is systems oriented and

focuses on system specifications, modelling,
development processes, performance estimation,

verification, architecture design and control.

� Laboratory. This component of the course is

designed to be both hardware-oriented, by focus-

ing on studying the industry standard Program-

mable Logic Controller (PLC) [2] and the
advanced reduced instruction set computing

(RISC) machine (ARM)-based embedded

system micro:bit [3] jointly designed by the Brit-

ish Broadcasting Corporation (BBC), ARM and

Nordic Semiconductor, as well as software-

oriented, by focusing on programming, debug-

ging and reviewing. The laboratory is based on

group projects.
� Applications. Both the theoretical lectures as well

as the laboratory work is designed to provide the

students with an improved hands-on automation

experience for implementing industry standard

embedded systems [4].

The presented course is TTK4235 – Embedded

Systems [5]. This course is a 4th semester module

of the five years master’s degree programme in

cybernetics and robotics given at the Department

of Engineering Cybernetics, Norwegian University

of Science and Technology (NTNU), Trondheim,

Norway. Recommended previous knowledge for
the course includes basic knowledge and skills in

the fields of analog and digital electronics, informa-

tion technology and programming. Before taking

this module, all the students are required to attend

* Accepted 7 January 2021.814

** Corresponding author.

International Journal of Engineering Education Vol. 37, No. 3, pp. 814–829, 2021 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2021 TEMPUS Publications.

extensive courses on both procedural and object-

oriented programming. The overall course organi-

sation and main topics are presented in this paper.
To show the effectiveness of the course from a

pedagogical perspective, result analysis of pre-

course and after-course surveys are outlined. The

assessment of the survey results indicates that the

module design and topics are engaging, effective

and helpful for students.

The paper is organised as follows. In Section 2, an

in-depth discussion on the selected pedagogical
basis is presented. In Section 3, an overview of the

chosen pedagogical tools is outlined. The course

overview is discussed in Section 4. The laboratory

content is depicted in Section 5. The course learning

outcomes are delineated and analysed in Section 6.

A discussion is presented in Section 7. Conclusions

and future work are outlined in Section 8.

2. Pedagogical Basis

In this section, an in-depth discussion of the selected

pedagogical basis is presented. An embedded com-

puting system uses microprocessors to implement
portions of the functionality of non-general-pur-

pose computers. Early microprocessor-based

design courses, based on simple microprocessors,

emphasised input and output (I/O) interfaces.

Modern high-performance embedded processors

are capable of a great deal of computation in

addition to I/O tasks [6]. With the advent of novel

microcontrollers, such as the micro:bit or the Ardu-
ino [7], embedded systems education requires

updating the pedagogical bases and the correspond-

ing content. In the recent literature, a review of

embedded systems education in the Arduino age is

presented in [8]. First, teaching challenges in

embedded systems education are identified from

the literature. Second, various Arduino teaching

integration methodologies reported in the literature

are surveyed and analysed. Third, the question

whether Arduino successfully addresses embedded
education challenges or not is discussed taking both

surveyed findings and recent market trends into

consideration. Regarding the micro:bit, successful

education experiences are also reported in the

literature. For instance, the impressions of students

and teachers when they encountered themicro:bit in

the classroom for the first time are reported in [9].

These previous works testify the validity of teaching
with physical computing devices.

2.1 Challenges in Meeting the Needs of Diverse

Learners

All educators embrace the commitment to help

every student fulfil his or her full potential. This

goal is even more challenging when considering
technology instruction. Teachers frequently find

students in a class showing a great deal of variety

in needs and interests (i.e., enrolled in different

study programmes but joining the same module).

Students significantly vary in their motivation,

prior knowledge and skills, learning styles, multiple

intelligence, interests and backgrounds [10].

Because constructivist views of teaching and learn-
ing practices placing the learner’s thinking or sense-

making at the center of the teaching-learning pro-

cess, teachers’ attention to the incorporation of

students’ diversity of learning styles into teaching

practice has become an increasingly relevant area

for improvement [11]. Today’s university students

are diverse, not necessarily self-regulated, having

varying skills in learning strategies and need to be
deliberately taught [12].

There is an urgent need for a robust discipline

about the scholarship of teaching and learning at

the university level to best identify what works for

the huge variety of studies on university learning.

However, only few major syntheses exist [13].

2.2 John Hattie’s ‘‘Visible Learning and Teaching’’

By taking into consideration the need of diverse

learners, John Hattie presented a unique and

ground-breaking research on the applicability of

Visible Learning (VL) to higher education in [12].

VL is a synthesis of more than 1200 meta-studies

covering more than 80 million students. The aim of

the synthesis is to place the various influences on

student achievement along an underlying achieve-
ment continuum. According to John Hattie, VL is

the result of 15 years of research. Based on John

Hattie’ experience, as nearly every intervention or

method can show some evidence of success, we need

Sustainable Approach to Teaching Embedded Systems with Hands-On Project-Based Visible Learning 815

Fig. 1. The proposed hands-on organisation of the embedded
systems course.

to ask not ‘‘What works?’’ but ‘‘What works best’’

and seek comparisons between different ways of

influencing student learning. VL is based on an

enhanced role for teachers as they become evalua-

tors of their own teaching. According to John

Hattie VL occurs when teachers see learning
through the eyes of students and help them

become their own teachers [14]. To be successful,

university teachers need to think of themselves as

evaluators and ask about the merit, worth, and

significance of the impact of their interventions –

essentially, successful educators actively practice

the Scholarship of Teaching and Learning (SoTL)

[15].

2.3 Implications on Surface and Deep Learning

The fundamental focus on impact requires ques-

tioning what ‘‘impact’’ means. To understand this

implication, it is necessary to look at the effects on

surface and deep learning [16]. According to litera-

ture, surface learning refers to students who com-
plete the minimum tasks, memorise what is needed

for an exam and nothing more. This is known as a

surface approach [17] where students see learning

tasks as enforced work. These students tend to be

passive learners, working in isolation, and see

learning as coping with tasks, so they can pass

assessments. By contrast students who adopt a

deep approach to learning will seek to understand
meaning. They have an intrinsic interest and enjoy-

ment in carrying out the learning tasks, and have a

sincere curiosity in the subject, connections with

other subjects and with building on their current

learning. These students may enjoy social learning,

including discussing different points of view. By

considering these differences, a major finding from

the VL research is that too often, surface learning is
prioritised over deep learning. Several university

teachers claim to their students that their course is

about understanding, making relations and extend-

ing previous knowledge; but students see that the

assessments in the course value knowing much and

repeating back the major claims by the textbook or

the lecturer [12]. Students are very strategic in

identifying what teachers really value, as opposed
to what they say they value. Based on these implica-

tions, the revision of the presented course

(TTK4235 – Embedded Systems [5]) is focused on

the analysis and review of the skills needed by the

student to successfully answer the assignments and

tests.

Such a review was adopted as a powerful way to

understand what impact looks like through the
‘‘eyes of students’’. Based on this impact, the

presented course is organised by modulating and

alternating surface-related teaching sections (i.e.,

exercises for the final exam) versus deep learning

processes (i.e., laboratory tasks and assignments),

as shown in Fig. 2. Surface-related sections are

adopted to comply with the module requirements

in terms of formalities, grading and examination
procedures. While, deep learning sections are

emphasised and used to stimulate understanding,

making relations, and extending the students’

knowledge.

2.4 John Hattie’s ‘‘Know Thy Impact’’

The VL research identifies different major mind

frames of successful teachers [12]. The most critical

mind frame is ‘‘Know Thy Impact’’ – when an

academic initiate a teaching session their crucial

question needs to be ‘‘how will I know my impact

today’’. This leads to the three sub-questions –

‘‘what do I mean by impact today and have I
communicated this to my students, what is the

magnitude of the impact I am seeking, and how

many students can I teach such that they attain this

magnitude on the impact I have clearly commu-

nicated’’. The other critical mind frames follow

from this first ‘‘Know Thy Impact’’. The others

include the following: ‘‘I am a change agent; I

explicitly inform students what successful impact
looks like from the outset; I see assessment as

providing feedback about my impact; I work with

other teachers to develop common conceptions of

progress; I engage in dialogue not monologue; I

strive for challenge and not ‘doing your best’; I use

the language of learning; and I see errors as

opportunities for learning’’. Based on these major

mind frames of successful teachers, the presented
course (TTK4235 – Embedded Systems [5]) is based

on a periodic feedback assessment of the impact

from students through both short term as well as

long term questionnaires and surveys (relevant

results are presented in Section 5). Moreover, to

ensure quality a reference group of students is

established for the course. The reference group is

made up of a subset of the course’s students whose
job is to constantly evaluate the course and write a

report at the end [18]. The reference group should

have an ongoing dialogue with other students

throughout the course. The reference group may

Filippo Sanfilippo and Kolbjørn Austreng816

Fig. 2. Surface-related versus deep learning processes.

also choose to take other measures such as hold

student meetings or conduct surveys before refer-

ence group meetings.

The reference group should represent all students
enrolled in the course at the reference group meet-

ings. As shown in Fig. 3, a control feedback

approach for teaching is adopted to ensure that

the desired quality of teaching is achieved. The

process to be controlled is the lecture/course. The

reference group constantly provides constructive

feedback based on the consistency between the

learning outcomes, learning activities and the
assessment. This feedback includes suggestions for

changes that might help students achieve the learn-

ing outcomes for the course. This feedback is

adopted for both an inner loop short-term iteration

within the lecture/course, as well as for a long-term

outer loop iteration with the department.

2.5 Achieving the highest possible impact through

the Visible Learning into Action

The implementation model of VL is outlined more

in detail into the Visible Learning into Action

approach [19] by aiming at achieving the highest

possible impact throughout the course. This
approach is based on the idea of Clinton and

Hattie [20] to explore much more in depth the

notion of teachers as evaluators. This notion of

educators as evaluators implies deliberate change,

directing of learning, and visibly making a differ-

ence to the experiences and outcomes for the

students (and for the teachers) – and the key
mechanism for this activation is via a mind frame

that embraces the role of evaluation. This mechan-

ism is put into practice with a series of actions, such

as factory acceptance tests (FAT) and peer review-

ing processes, as discussed in Section 5.

2.6 Coordinated Teaching

Coordinated teaching is the process of making

connections between different topics of the same

discipline or across separate courses. This is

achieved by linking elements of the curriculum

together across disciplines, but largely leaves tea-

chers independent in their planning and instruction.
A useful metaphor for the role of teachers, as

highlighted in [21], is dancers at a sock hop. The

overall theme of a curricular unit is like the music

that keeps different dancers in rhythm. While

they’re moving to the same beat, teachers are on

their own to determine the specific steps they’ll

perform. The music might also change regularly in

an effort to please all the dancers; that is, teachers
may take turns choosing the theme that best suits

their subject goals. This idea is shown in Fig. 4. The

presented course (TTK4235 – Embedded Systems

Sustainable Approach to Teaching Embedded Systems with Hands-On Project-Based Visible Learning 817

Fig. 3. To ensure quality a reference group of students is established for the course. A control feedback approach for teaching is adopted.

Fig. 4. Coordinated instruction within a single discipline versus coordinated instruction across disciplines.

[5]), is developed by considering coordinated teach-

ing across the entire engineering programme in

cybernetics and robotics [1], as shown in Table 1.

2.7 Educating for Innovation

On top of the necessary methodology for teaching

efficiently and effectively, it is also necessary to

contextualise and orient teaching activities from a

socio-economic perspective. In the last several dec-

ades many of the world’s most developed countries
have shifted from an industrial economy to a

knowledge economy, which is based on the creation

of knowledge, information, and innovation.

Educational researchers have paid very little

scholarly attention to this economic shift, although

it has substantial implications [22]. In today’s

knowledge society, creativity always occurs in com-

plex collaborative and organisational settings. For
this reason, Sawyer [23] argues that education

should be structured around disciplined improvisa-

tion, and he advocate the use of situated, collabora-

tive knowledge-building activities. Sawyer also

argues that creative collaboration in classrooms

aligns with the social nature of innovation in

today’s economy. In line with this strategy, students

of the course TTK4235 – Embedded Systems are
divided into groups that stimulate their teamwork

skills and critical thinking abilities.

3. Pedagogical Tools

The unified modelling language (UML) [24] is
adopted as a foundation for the proposed module.

This choice is motivated by the fact that UML can

potentially be utilised to build a solid educational

and scientific base with embedded systems design as

the cornerstone, which will ensure a systematic and

even-handed integration of concepts from both

computer science and electrical engineering [25].

The choice of the BBC micro:bit platform [3] is

motivated by a variety of reasons. Firstly, it is

desirable to use an ARM-based architecture, as

NTNU already has courses focusing on other
architectures [26]. This requirement is met by the

Nordic Semiconductor nRF51822 System on Chip

[27], which is the main component of the BBC

micro:bit platform. Furthermore, for practical

and logistical reasons, it is desirable to use a

more or less ‘‘self-contained’’ board that would

limit the need for the students to do extensive

manual setup before the lab work could begin.
The ‘‘plug-and-play’’ aspect of the BBC micro:bit

proved excellent for this. Lastly, the assumption

that students learn best by tinkering with systems

on their own, made it desirable that each student

would get to keep their lab equipment after the lab

sessions and after the course all together. The

micro:bit is an inexpensive piece of equipment; as

well as being easy to extend outside of a lab setting.
These characteristics make the BBC micro:bit the

ideal platform for teaching embedded systems in a

practical way. It should be noted that there are

many programming languages available for the

micro:bit, including Python, Touch Develop, Java-

script and C++ [3]. However, the C language has

been selected for the proposed course as the main

programming language to be used. This choice
forces the students to code their applications with-

out relying on extra support from existing software

libraries. This fact exposes them to a much deeper

understating of what is happening at a lower level

from a software/hardware perspective, highlighting

important aspects and challenges that are typical of

embedded systems.

Filippo Sanfilippo and Kolbjørn Austreng818

Table 1. Engineering programme in cybernetics and robotics [1]

Semester Modules

10th semester (spring) Thesis

9th semester (fall) Complementary topic Specialisation course Specialisation project

8th semester (spring) Experts in Teamwork
(EiT)

Selective topic Selective topic Selective topic

7th semester (fall) Complementary topic Selective topic Selective topic Selective topic

6th semester (spring) Selective topic Real-time
Programming

Modelling and
Simulation

Optimisation and
Control

5th semester (fall) Selective topic Technology
Management

Algorithms and
Data Structures

Linear System
Theory

4th semester (spring) Statistics Exam for Science and
Technology

Control Systems Embedded Systems

3rd semester (fall) Mathematics 4 Physics Computers and
Digital Design

Industrial
Electrotechnics

2nd semester (spring) Mathematics 2 Mathematics 3 Procedural and Object-
Oriented Programming

Instrumentation
and Measurements

1st semester (fall) Mathematics 1 Information
Technology,
Introduction

Electrical Circuits and
Digital Design

Cybernetics
Introduction

The selection of PLC-based developing plat-

forms for the proposed course is motivated by the

fact that this is an effective way of providing

students with a real industry-like experience. In

[28], a cost-effective approach for the design of

educational projects in a PLC course for electrical
engineering education is presented. In [29], a PLC

platform is used to recycle a discarded robotic arm

for automation engineering education. These works

show that engineering students improve their prac-

tical problem-solving abilities by working on an

extensive design project using PLC-based technol-

ogy.

4. Course Overview

In this section, the proposed course organisation

and main topics are presented [30]. As shown in

Table 2, the course content includes 8 theoretical

lectures, laboratory classes and 3 course projects.

The content of the theoretical lectures is depicted in

Table 3. Each weekly lecture lasts 6 hours. The
topics of each lecture are presented hereafter.

Lecture 1: Introduction on Embedded Systems and

UML, Nordic Semiconductor Seminar

Lecture 1 presents the course overview, expecta-

tions, logistics, processes, syllabus and a session of

questions and answers related to the course and to

the corresponding prerequisite material [5]. Succes-

sively, an introduction of embedded systemwith the

most relevant descriptions, definitions and vocabu-
lary is considered [31]. Following, a review of

microprocessor/microcontroller architectures is

discussed. To engage the students and introduce

Sustainable Approach to Teaching Embedded Systems with Hands-On Project-Based Visible Learning 819

Table 2. The organization of the course content

Lectures Laboratory Projects

8 lectures 15 laboratories elevator project (PLC) elevator
project (C-programming)
micro:bit (C-programming)

Table 3. The organisation of the course theoretical lectures.

Week Lectures Description References Time

1 1 � Course overview, expectations, logistics, processes, syllabus, FAQ, and
prerequisite material

� Embedded systems descriptions, definitions and vocabulary
� Microprocessor/microcontroller architectures
� micro:bit introduction: Nordic Semiconductor Seminar

� UML introduction; paradigms and models (development process):
prototyping, incremental, waterfall

� UML: Class Diagrams

[5]

[3, 31, 50]

[24, 32]

2 hours

2 hours

2 hours

3 2 � Flipped class on C-programming review: introduction, how C works,
types, operators and expressions, control flow, functions and program
structure, pointers and arrays, structures, input and output

� PLC introduction: ‘‘Programming of a FESTO production line’’

� C-programming: coding style, making the best use of C

[33]

[2]

[36]

5 hours

0.5 hour

0.5 hour

5 3 � UML Sequence Diagrams, Use cases, Class Diagrams, advanced
concepts

� Class exercise:Use cases, ClassDiagram and SequenceDiagrams for the
Elevator project

[24, 37, 38] 4 hours

2 hours

7 4 � UML: State Machines, activity, communication and Timing Diagrams

� Class exercises: State Machines and Timing Diagrams for the Elevator
project

[24] 4 hours

2 hours

9 5 � Analog and digital signals

� Communication protocols: serial, UART, SPI, I2C

� C-programming: code verification

[39, 40]

[41, 50]

[42]

1 hour

4 hours

1 hour

11 6 � ADC and DAC, aliasing
� Modulation (AM, FM, PWM)
� Software Development Cycle: non-functional Vs functional
requirements, Waterfall Vs Iterative V Model

� Class exercises: UMLmodelling of an automated teller machine (ATM)

[40]
[40]
[24]

1 hour
2 hours
1 hour

2 hours

14 7 � Industrial instrumentation and control
� Temperature control
� Error in measurements
� Class exercises: UML modelling of a Vending Machine

[48]
2 hours
1 hour
1 hour
2 hours

16 8 � Reading research papers
� Exam simulation: requirements analysis, development process selection,
system design, sensors

[49] 2 hours
4 hours

them to the forthcoming laboratory work, a short

seminar is organised by the company Nordic Semi-

conductor. During this seminar, each student

receives a micro:bit starter kit consisting of a

micro:bit microcontroller, a micro:bit breakout

board, a servo motor, a trimmable potentiometer
that has a small knob built right in and it is bread-

board friendly, a breadboard and a set of jumper

wires. According to a formal agreement between

Nordic Semiconductor and NTNU, the company

provides the microcontrollers while all the other

components are provided by the university. This

arrangement contributes towards a hands-on sus-

tainable learning experience and it enables students
to use low-cost, course-specific hardware to com-

plete lab exercises at home. This represents an

extension of the university laboratory and gives

students the possibility of improving their learning

involvement. Lecture 1 is additionally complemen-

ted with an introduction of UML. An overview of

different paradigms and models regarding the

development process of embedded systems is also
given with particular emphasis on designing tech-

niques, such as incremental and waterfall,

approaches [32]. Finally, an introduction of UML

class diagrams is given [24].

Lecture 2: Flipped Class on C-programming, PLC

Introduction

Lecture 2 consists of a review of the main topics of

theC programming language [33].Motivated by the

fact that the presented course is a 4th semester

module of the five yearsmaster’s degree programme

in cybernetics and robotics, and that all the students

have already attended extensive courses on both

procedural and object-oriented programming, this

class is organised as a flipped classroom [34] cover-
ing the following topics: programming introduc-

tion, overview of how the C language works, types,

operators and expressions, control flow, functions

and program structure, pointers and arrays, struc-

tures, input and output. A flipped classroom is an

instructional strategy and a type of blended learn-

ing that reverses the traditional learning environ-

ment. This is achieved within this course by
delivering instructional content and describing the

main guidelines for each considered topic of the

lecture beforehand through the on-line Blackboard

[35], a virtual learning environment and course

management system. In this way, the students are

divided in groups and can prepare their assigned

topics so that the class becomes the place to work

through problems, advance concepts, and engage in
collaborative learning. Lecture 2 is additionally

complemented with an introduction to Program-

mable Logic Controller (PLC) [2] programming to

introduce the students to the forthcoming labora-

tory work. Finally, a discussion on C programming

and coding style is given to enable student making

the best use of the C language [36].

Lecture 3: UML Concepts and Class Exercise

Lecture 3 introduces the fundamental concepts of

UML sequence diagrams [24, 37, 38] with particular

emphasis on embedded systems. These diagrams

allow for getting clear visual clues to possible flows

of control over time, for emphasising time ordering,

for showing object lifelines, for illustrating the focus

of control. The notion of message (or stimulus) and

of lifeline is discussed by highlighting the observa-
tion of time, temporal constraints and object acti-

vations. The concepts of suspension, interaction,

duration constraints are also outlined. Successively,

the UML use case diagrams are presented as an

essential tool for identifying services offered by the

system to be designed and its main functionalities.

The different concepts of inclusion, extension and

generalisation are analysed. Further, advanced
concepts related to UML class diagrams are out-

lined, such as keywords, multiple and dynamic

classification, associations, enumerations, respon-

sibilities, static operations and attributes, aggrega-

tion and composition, derived properties, qualified

associations. To introduce the students to the forth-

coming laboratory work, a class exercise is finally

considered focusing on the development of use
cases, class and sequence diagrams for an elevator

system.

Lecture 4: UML Concepts and Class Exercise

Lecture 4 depicts the essential concepts of UML

state machine diagrams [24]. A finite state machine

is a popular technique to describe the behaviour of a

system and it is also one of the most relevant design
patterns in embedded systems. Many applications

from simple home appliances to complex commu-

nication systems implement event-based state

machines. Different aspects are discussed within

this lecture, including internal activities, activity

states, and superstates. With particular emphasis

on embedded systems, the design of concurrent

states is discussed allowing the students to antici-
pate both the benefits and challenges of concurrent

programming. Guidelines for implementing state

machines with the C-programming language are

successively outlined by highlighting the use of

nested switches to handle the state transitions.

Further, UML activity diagrams are introduced

as a technique to describe procedural logic, business

process, and workflow. These diagrams present
several similarities to flowcharts, but the principal

difference between them and the flowchart notation

is that they support parallel behaviour [24]. Addi-

tionally, UML communication diagrams are pre-

Filippo Sanfilippo and Kolbjørn Austreng820

sented as a tool to identify interactions between

objects and/or components (represented as lifelines)

of the system to be modelled using sequenced

messages in a free-form arrangement. Successively,

UML timing diagrams are described as another

form of interaction diagrams, where the focus is
on timing constraints.When considering embedded

systems, UML timing diagrams are extremely rele-

vant to identify time constraints and deadlines.

Finally, a class exercise is considered to prepare

the students to the forthcoming laboratory work by

focusing on the development of UML state

machine and timing diagrams for an elevator

system.

Lecture 5: Analog and Digital Signals,

Communication, Code Verification

Lecture 5 presents an introduction and review of

analog and digital signals [39–41]. The difference

between analog and digital signals is described

outlining their most important properties. Defini-
tions about certain elementary signals are pro-

vided. The basic notions involved in the

characterisation of communication systems are

outlined. With respect to embedded systems, it is

highlighted in this lecture that working with elec-

tronics means dealing with both analog and digital

signals, inputs and outputs. Electronics systems

have to interact with the real, analog world in
some way, but most of our microprocessors,

computers, and logic units are purely digital com-

ponents. These two types of signals are like differ-

ent electronic languages. Signals are passed

between devices in order to send and receive

information. To achieve this, different basic

notions of communication protocols are presented.

In particular, the two main properties of data
exchange are discussed: message-based data

exchange and shared memory-based data

exchange. The definition of the most essential

communication parameters is depicted, such as

latency, jitter, fault handling and redundancy.

Based on these fundamental concepts, it is high-

lighted in this lecture that embedded electronics is

based on interlinking circuits (processors or other
integrated circuits) that are integrated to create a

symbiotic system [41]. Individual circuits must

share a common communication protocol to

swap their information. Hundreds of communica-

tion protocols exist, and, in general, each can be

separated into one of two categories: parallel and

serial. Based on this classification, the following

communication protocols are presented in the
class: serial, universal asynchronous receiver trans-

mitter (UART), serial peripheral interface (SPI),

inter-integrated circuit (I2C) [40, 41]. To prepare

the students to the forthcoming laboratory work, a

review of code verification techniques for C-pro-

gramming is finally presented [42].

Lecture 6: ADC/DAC, Modulation, SDLC, Class

Exercise

Lecture 6 introduces a review of the fundamental

notions for converting a signal from analog (con-

tinuous) to digital (discrete) form [40]. This conver-

sion, which is achieved by adopting analog-to-

digital converters (ADC), is especially relevant for

embedded systems because it provides a link

between the analog world of transducers/sensors

and the digital world of signal processing and data
handling. The main steps of the conversion process

are described in detail, including the phases of

sampling and holding, as well as quantisation and

encoding. Relevant sampling considerations are

discussed by highlighting the importance of the

sampling frequency in terms of reconstructing the

transmitted signal. In this perspective, the sampling

theorem is outlined as a fundamental bridge
between continuous-time signals and discrete-time

signals [40]. As a direct consequence of this theo-

rem, the phenomenon of aliasing is described as an

effect that causes different signals to become indis-

tinguishable (or aliases of one another) when

sampled with an improper frequency. The defini-

tions of workspace, scope, dynamic range and

resolutions are successively introduced and sup-
ported with various class exercises. Further, the

necessity of designing communication strategies

for interconnecting remote embedded systems is

discussed by highlighting that the objective of a

communication system is to transmit information

signals (baseband signals) through a communica-

tion channel [40]. Since this baseband signal must

be transmitted through a communication channel,
an appropriate procedure is required to shift the

range of baseband frequencies to other frequency

ranges suitable for transmission, and a correspond-

ing shift back to the original frequency range after

reception. This is known as the process of modula-

tion and demodulation. Based on these concepts, a

review of different modulation techniques is pre-

sented, including amplitude modulation (AM),
frequency modulation (FM) and pulse width mod-

ulation (PWM). To support the students with the

forthcoming laboratory work and projects that are

run in parallel, a discussion on the software devel-

opment cycle is presented by highlighting the differ-

ences between non-functional and functional

requirements and by introducing the V-model [43]

software development life cycle (SDLC) as an
extension of the previously introduced waterfall

model. Finally, a class exercise is considered by

focusing on the UML modelling of an automated

teller machine (ATM).

Sustainable Approach to Teaching Embedded Systems with Hands-On Project-Based Visible Learning 821

Lecture 7: Industrial Instrumentation and Control,

Errors, Class Exercise

Lecture 7 presents a review on control theory.

Embedded systems traditionally follow the para-

digm sense-think-act [44]. This requires the use of

sensors to monitor the environment, a decision-

making approach to take a decision based on a

predefined task and the sensed environment, and
finally an acting mechanism, to perform the pre-

defined task by adapting to the environment.

Focusing on the thinking/decision-making neces-

sity of embedded systems, fundamental notions of

control theory are presented [45]. It is highlighted

the fact that the majority of embedded designs are

closed loop control systems, as opposed to open

loop control. These concepts are especially relevant
for students of engineering cybernetics. From this

perspective, a review of essential notions for design-

ing controllers for embedded systems is presented,

including design guidelines for implementing a

proportional–integral–derivative (PID) controller

[46] and a bang–bang controller (2 step or on–off

controller) [47], with practical applications to tem-

perature control for smart-buildings. Emphasising
the fact that control and instrumentation are inter-

disciplinary fields, the basic concepts and principles

that govern the operation of industrial plants and

processes are successively discussed. In particular,

the need for accurate measuring/sensing devices to

achieve robust control of embedded systems is out-

lined. In this regard, the different types of error in

measurements [48] is discussed from a qualitative
point of view. Finally, a class exercise is considered

by focusing on the UML modelling of an auto-

mated vending machine.

Lecture 8: Reading Research Papers, Exam

Simulation

Lecture 8 introduces some useful guidelines for

reading research papers related to embedded sys-

tems. This is motivated by the fact that reading

research articles is fundamental to stay up to date

with the latest developments in embedded systems

technology. This is additionally supported by the
fact that more and more researchers recognise a

mutual relationship between a student’s academic

reading skills and academic success [49]. Therefore,

to provide the students with a hands-on reading and

learning experience, the design and implementation

of embedded systems is considered starting from

their description through scientific papers. The

design process includes the identification of the
system requirement specifications, the selection of

an appropriate development approach, the imple-

mentation of UML diagrams and the implementa-

tion of different aspects for sensors or

communication protocols. Based on this methodol-

ogy, a class simulation of the final exam is per-

formed to prepare the students.

5. Laboratories Overview

In this section, the proposed laboratory organisa-

tion and main topics are presented, as shown in

Table 4. The laboratory content is run in parallel
with the theoretical lectures presented in Section 4.

In the following of this section, the main laboratory

topics are presented referring to Table 4.

5.1 PLC programming

The PLC laboratory is in many ways intended to

prime the students with the necessary mindset of

solving the more complex task of programming an

elevator controller in C. The PLC implementation
is not as ‘‘fully fledged’’ as the C implementation –

but it is useful for understanding the needs of the

system overall; something that student feedback

has confirmed. The PLC lab setup consists of a

Siemens SIMATIC S7-300 for each desk – con-

nected to both a computer, as well as a model

elevator seen in Fig. 5. The PLC is then pro-

grammed using the SIMATIC STEP-7 software
[55]. As there are good manuals available for this

[55], the students are left to discover the basics on

their own – while being able to ask the on-lab

student assistants for guidance where needed. The

end goal of this exercise is to be able to control the

model elevator to a specified floor by use of an

accompanying order panel. This is a simplified

version of the successive elevator C-programming
project, in the sense that concurrent orders and a

queue system is not expected from the students. The

effectiveness of this lab module is demonstrated by

the feedback collected from the students, both

regarding understanding of the topic, as shown in

Fig. 6, as well as in terms of further engagement, as

shown in Fig. 7. After the PLC lab, students feel like

they have amuch better understanding of this topic.

5.2 Version Control (Git)

The main project of the course is programming the

elevator setup in the C programming language (see

Section 5). As this design is much more complex

than the PLC implementation, version control is

necessary. Within this lab assignment, the students

are introduced to the Git version control system

[51]. The students are not forced to use Git over any

other version control schemes, but it is expected
that they can demonstrate that their code is under

some version control. This is to encourage good,

industry-proven approaches to manageable source

code [56].

Filippo Sanfilippo and Kolbjørn Austreng822

5.3 Debugging (GDB)

With the increasing complexity of the systems to be

developed, software bugs are a fact of life. When

entering this course, the students are already famil-

iar with a ‘‘printf-style’’ of debugging. In this

course, they are encouraged to use more systematic,

and less time-consuming, approaches [56]. To this
end, they are introduced to the GNU Debugger

(GDB) [52]. Students are also introduced to Val-

grind [57] for memory-related issues such as seg-

mentation faults and memory leaks, which GDB is

not as well suited for. Valgrind is an instrumenta-

tion framework for building dynamic analysis

tools. There are Valgrind tools that can automati-

cally detect many memory management and
threading bugs, and profile programs in detail.

5.4 Elevator C Programming

The objective of the laboratory ‘‘Elevator C Pro-

ject’’ is to program all the necessary control soft-

ware to run the same elevator model as described in

the PLC programming assignment. The model

Sustainable Approach to Teaching Embedded Systems with Hands-On Project-Based Visible Learning 823

Table 4. The organization of the laboratory course work.

WeekLab Content Description References

1 Group formation Students form groups, either by choosing a lab partner, or by being assigned
one.

2 PLC programming Introduction to PLCs in general. Implementing simple logic to get the first bit
of hands-on experience.

3 PLC programming Students apply what they learned the previous week to implement a
rudimentary elevator controller, that makes a model elevator go to a selected
floor.

4 Version control
(Git)

Students are exposed to the most commonly used version control scheme
today; git. At this stage, they learn what they will later need to know to
effectivelymanage their own source code in the coming elevator project of the
course.

[51]

5 Debugging (GDB) Students already knowhow to do ‘‘print debugging’’ when taking this course.
However, they lack knowledge of more structured tools, such as the GNU
Debugger (GDB). Here, they are introduced to tools they will need to use for
debugging their own code in the elevator project.

[52]

6 Elevator project This is the beginning of the course elevator project. The project culminates in
a fully functional elevator control software suite, that is capable of handling
arbitrary orders. In this first week, the students focus mainly on overall
system design.

[5]

7 Elevator project The students now have a decent understanding of the system requirements of
the elevator controller. They have structured their ideas using UML
diagrams to help communicate their design choices, and they are ready to
start implementing.

[5]

8 Elevator project The students begin coding their solutions. This is done in theC programming
language,which is running on a computer connected to amodel elevatorwith
four floors, and buttons for ‘‘cab orders’’ as well as ‘‘external orders’’.

[5]

9 Elevator project The students freely use this time to code. Student assistants are present on the
lab, to provide guidance to students who might need some input.

[5]

10 Elevator project This is the last ‘‘dedicated week’’ of the elevator project. The students are free
to continue work on their solution until the Factory Acceptance Test (FAT)
in week 12, but this must be done outside of the normal lab hours.

[5]

11 micro:bit, build
systems (make)

The students get acquainted with embedded systems by using the micro:bit
platform. This week is dedicated to learning about General Purpose Input/
Output (GPIO) in the form of buttons and LEDs. In addition to this, the
students are introduced to automatic build systems, in this case GNUmake,
which is used further in the micro:bit labs.

[53]

12 micro:bit, Elevator
FAT

This week is dedicated for full-duplex communication between embedded
systems and host computers, by using UART (Universal Asynchronous
Receiver Transmitter) peripherals. They also demonstrate their elevator
implementation, which counts toward their final course score.

[54]

13 micro:bit In this week, the students learn about low-power applications, by using the
micro:bit nRF51822 ‘‘programmable peripheral interconnect’’ to directly
couple buttons to tasks, such that the CPU does not have to be on.

[27]

14 micro:bit Here, they learn about extending a one-chip system by using the I2C (a.k.a.
TWI) protocol to communicate with an accelerometer, and a magnetometer,
present on the micro:bit platform.

[54]

15 micro:bit This week, they use they accelerometer from last week to generate a pulse
width modulated (PWM) signal, which drives a servomotor, based on what
angle the students hold their micro:bit.

[54]

closely simulates an industry standard elevator, and

it consists of four floors, and an accompanying

button panel for ‘‘cab orders’’ as well as ‘‘external
orders’’. This setup is connected to a controlling

computer, where the students write their software.

The setup is shown inFig. 5. This laboratory project

enables the students to get the most hands-on

experience with programming a logical control

system. At this stage, they already have an under-

standing of the basic needs of the system, thanks to

both the design methodology and the UML intro-
duction from the theoretical lectures as well as the

two-weeks PLC lab revolving around the same

model. This understanding is further reinforced by

having the students first document a suggested

approach and the overall system architecture,

before jumping headfirst into uncharted territories.

When the students begin coding their solution, they

quickly see the benefit of version control and

debugging, which they have already been intro-

duced to in weeks 4 and 5, as shown in Table 4.

Learning version control systems for the sake of

version control and learning systematic debugging
in a purely theoretical setting wouldmake it difficult

for the students to approach these concepts. How-

ever, being able to apply these concepts first-hand in

a laboratory project where they are needed, it is very

beneficial for the retention of the material – as the

class feedback has shown.

5.5 Elevator Factory Acceptance Test (FAT) and

Peer Reviewing Process

The elevator project culminates in a factory accep-
tance test (FAT), that is held 7 weeks after the

beginning of the project, as shown in Table 4.

This acceptance test is graded and counts toward

the final grade the students achieve in the course.

This way, the laboratory work feels meaningful,

and the students have an extra incentive to fully

absorb the concepts in the lab – rather than treating

the lab work as something merely required to take
the exam. To encourage a code quality standard

[58], the students conducted a peer review of other

groups’ code. The feedback collected suggests that

this was one of the most beneficial aspects of the

course, and it prompted increased awareness in

code readability among the students, as shown in

Fig. 8.

5.6 Micro:bit C Programming

The micro:bit section of the laboratory is where the

students get practical experience working with
embedded devices – in this case the ARM

Cortex1-M0 based nRF51822 system on chip

Filippo Sanfilippo and Kolbjørn Austreng824

Fig. 5. The elevator model setup used in the course project.
Courtesy of the Dept. of Engineering Cybernetics, Norwegian
University of Science and Technology (NTNU), Trondheim,
Norway.

Fig. 6.Feedback collected from students regarding the helpfulness of conducting the PLC programming lab concerning understanding of
the topic (on a scale from 1 to 10).

(SoC) fromNordic Semiconductor [27]. This chip is

embedded in the BBC micro:bit [3] platform. The

micro:bit can be programmed in several ways. Out

of the box it already supports an online JavaScript

programming environment, as well as a version of

microPython [3]. As this abstracts away a lot of the

low-level details necessary for understanding the

platform, the C programming language is selected
instead for the proposed lab project. This approach

allows the students to program the board

nRF51822 SoC directly, while adding minimal

overhead compared to the JavaScript and micro-

Python approaches.

The labs occurring in the weeks 11–15 (see Table

4) are first opened with an introduction to auto-

matic build systems - in this case GNUMake [53] –

which is used throughout the micro:bit labs. From

there, the students’ progress through a number of

common embedded systems applications, including

General Purpose Input/Output (GPIO), Universal

Asynchronous Transmitter-Receiver (UART), low-

power considerations with extended CPU sleep, the
Inter-Integrated-Circuit (I2C) bus protocol, and

Pulse Width Modulation (PWM) generation. All

these tasks are supported by the content provided in

parallel during the theoretical lectures of the course,

as described in Section 4.

These labs are organised in such a way that the

Sustainable Approach to Teaching Embedded Systems with Hands-On Project-Based Visible Learning 825

Fig. 7. Feedback collected from students regarding the helpfulness of conducting the PLC
programming lab concerning further engagement (on a scale from 1 to 10).

Fig. 8. Feedback collected from students regarding the helpfulness of conducting a code peer-review to evaluate code quality.

Fig. 9. Feedback from the students regarding the logical progression through the micro:bit exercises.

later labs build on the previous ones. For example,

the PWM lab in week 15 (see Table 4) uses the I2C-

connected micro:bit accelerometer from week 14

(see Table 4) to determine the desired pulse width.
In this way, it is possible to avoid creating disjoint

tasks that may feel meaningless on their own for the

students. Based on the feedback from the students,

this approach has been a good way to organise the

lab content, as shown in Fig. 9.

At the end of the course, the students are free to

keep their micro:bit, and encouraged to experiment

with them on their own. It remains to be seen how
this will impact the retention of the course lab

curriculum.

6. Course Learning Outcomes and
Feedback from the Reference Group

Portfolio evaluation is the basis for the final grade.
Parts of the portfolio are final written exam (70%)

and exercise and laboratory work (30%). The result

for each part is given in percentage units, while

evaluation of the entire portfolio (the final grade) is

given as a letter. The grades are A, B, C, D, and F,

with A being the highest and F, short for failed, the

lowest. The student grades distribution is shown in

Fig. 10. On a total number of 157 students, 3.2%
achieved grade A, 7.6% concluded with grade B,

69,4% obtained grade C, 10.8% received grade D,

1.9% achieved grade E and 7% failed the exam.

The reference group provided a detailed report

regarding the course outcomes. The following

aspects were described:

� During the course, logical connections for coor-

dinated instruction across disciplines were

provided to the students, i.e., modelling, pro-

gramming, design, physics, research methods

and mathematics. In the future, more effort

shall be put on acquiring a more accurate knowl-
edge of the entire study programme so that

instruction across disciplines can be tailored

even more effectively through more accurate

coordinated teaching actions.

� During the course, the students really appre-

ciated the laboratory work as being educational,

challenging and fun. In the future, the lecture

time dedicated to deep learning processes (i.e.,
laboratory work and assignments) shall be

increased even more.

� The assignments were setup to be done during lab

hours and they felt connected to the labs, accord-

ing to the students’ feedback.

� To improve the students’ involvement, the inter-

action between the teacher and the students shall

be maximised in the future. This interaction has
an important role in the teaching and learning

process and, therefore, it is vital for the classroom

activities.

� The dialogue with industrial partners should also

be maximised to promote a lifelong learning

curricula based on university-industry synergic

approach [59].

7. Discussion

Based on the presented results, this work contri-
butes towards filling up the major gap in under-

standing the benefits of applying a hands-on

sustainable learning experience based on the prin-

ciple of Visible Learning (VL) for embedded

systems education. The proposed novel organisa-

tion of the embedded systems module considers a

balanced combination of theoretical lectures, prac-

tical laboratories and applications. From a peda-
gogical perspective, the presented approach takes

into account the need of diverse learners by enga-

ging students in highly involving group projects.

The overall methodology outlined in this work

may also be applicable to other field of studies.

The adopted methodology to studying the gap is

based on surveys and feedback received from

students. The results presented are in line with
similar studies in the field. Potential limitations

in the design of the presented study may concerns

the sample size as well as the distribution and

diversity of students.

Filippo Sanfilippo and Kolbjørn Austreng826

Fig. 10. The grade distribution for the students of the proposed embedded systems course.

8. Conclusions and Future Work

A comprehensive syllabus of the embedded systems

module for the curriculum of engineering cyber-
netics education was introduced in this work. The

following research question was considered: is it

possible to stimulate understanding, trigger rela-

tions, and extend the students’ knowledge by thor-

oughly alternating surface learning sections and

deep learning sections? The presented module com-

bines both a series of structured theoretical classes

as well as practical and highly engaging laboratory
assignments with group works. The students are

engaged in a highly interconnected organisation of

the course, which incorporates system-oriented,

hardware-oriented, software oriented and applica-

tion-oriented aspects of embedded systems. Surface

learning sections and deep learning sections are

systematically alternated to promote comprehen-

sion, interaction and broadening of the students’
knowledge. To achieve this, theoretical principles

are accompanied with hands-on experience for

implementing both industry standard embedded

systems, such as Programmable Logic Controller

(PLC) technology, as well as low-cost microcon-

trollers purposely designed for use in embedded

systems education, such as the micro:bit microcon-

troller. Throughout the course, logical connections

for coordinated instruction across disciplines are

provided to the students, i.e., modelling, program-

ming, design, physics, researchmethods andmathe-
matics. These choices contribute towards a hands-

on sustainable learning experience based on the

applicability of Visible Learning (VL). The analysis

of results from student surveys and feedback from

the reference group indicates that the course orga-

nisation and topics are compelling and helpful.

In the future, the amount of PLC coverage might

be reduced, as they are reaching end-of-life, and
students have no difficulties grasping the concepts

either way. Field programmable gate arrays

(FPGAs) might be introduced instead, as the indus-

try is becoming ‘‘more embedded’’. Hence, the

course should reflect this market trend. From a

pedagogical perspective, the feedback received by

the students can be considered to improve their

learning experience and the quality of the provided
teaching offer. Further, this same educational

approach can be applied to new modules for the

engineering cybernetics education curriculum.

References

1. Norwegian University of Science and Technology (NTNU), Master engineering programme in cybernetics and robotics, February

2019. [Online]. Available: https://www.ntnu.no/studier/mttk/oppbygning.

2. K. Collins, PLC programming for industrial automation, Exposure, 2007.

3. G. Halfacree, Getting started with the bbc micro: bit, The Official BBC micro: bit1 User Guide, pp. 17–26, 2019.

4. W. Rekdalsbakken and F. Sanfilippo, Enhancing undergraduate research and learning methods on real-time processes by

cooperating with maritime industries. in Proc. of the 28th European Conference on Modelling and Simulation (ECMS), Brescia,

Italy, pp. 108–114, 2014.

5. Norwegian University of Science and Technology (NTNU), Course Embedded Systems – TTK4235 – NTNU, June 2018. [Online].

Available: https://www.ntnu.edu/studies/courses/TTK4235.

6. W. Wolf and J. Madsen, Embedded systems education for the future, Proceedings of the IEEE, 88(1), pp. 23–30, 2000.

7. Arduino, Arduino, an open-source electronics prototyping platform, December 2020. [Online]. Available: http://arduino.cc/.

8. M. El-Abd, A review of embedded systems education in the Arduino age: lessons learned and future directions, 2017.

9. M. Videnovik, E. Zdravevski, P. Lameski and V. Trajkovik, The BBCmicro: bit in the international classroom: learning experiences

and first impressions, in Proc. of the IEEE 17th International Conference on Information Technology Based Higher Education and

Training (ITHET), pp. 1–5, 2018.

10. O. N. Ukpokodu, Meeting the needs of diverse learners, Social Studies and the Young Learner, 16(1), pp. 31–32, 2003.

11. J. Biggs, Constructive alignment in university teaching, HERDSA Review of higher education, 1(5), pp. 5–22, 2014.

12. J. Hattie, The applicability of visible learning to higher education, Scholarship of Teaching and Learning in Psychology, 1(1), p. 79,

2015.

13. E. T. Pascarella and P. T. Terenzini, How college affects students: A third decade of research (vol. 2), 2005.

14. Sebastian Waack, Visible Learning, December 2020. [Online]. Available: https://visible-learning.org/

15. M. T. Huber, The advancement of learning: Building the teaching commons, Wiley, 2005.

16. T. W. Smith and S. A. Colby, Teaching for deep learning, The Clearing House: A Journal of Educational Strategies, Issues and Ideas,

80(5), pp. 205–210, 2007.

17. D. H. Dolmans, S. M. Loyens, H. Marcq and D. Gijbels, Deep and surface learning in problem-based learning: a review of the

literature, Advances in health sciences education, 21(5), pp. 1087–1112, 2016.

18. Norwegian University of Science and Technology (NTNU), Reference groups - quality assurance of education, February 2019.

[Online]. Available: https://innsida.ntnu.no/wiki/-/wiki/English/Reference+groups+-+ quality+assurance+of+education

19. D. Masters, K. Birch and J. Hattie, Visible learning into action: International case studies of impact, Routledge, 2015.

20. J. Hattie and J. Clinton, School leaders as evaluators, Activate: A leader’s guide to people, practices and processes, pp. 93–118, 2011.

21. Discovery Education,KnowYour Education: Conceptual Differences Between Integrated and Coordinated Instruction, February 2019.

[Online]. Available: http://frontandcentral.com/teaching-and-learning/know-educonceptual-differences-integrated-coordinated-

instruction/

22. R. K. Sawyer, Educating for innovation, Thinking skills and creativity, 1(1), pp. 41–48, 2006.

Sustainable Approach to Teaching Embedded Systems with Hands-On Project-Based Visible Learning 827

23. R. K. Sawyer, Explaining creativity: The science of human innovation, Oxford university press, 2011.

24. M. Fowler, UML distilled: a brief guide to the standard object modeling language, Addison-Wesley Professional, 2004.

25. T. A. Henzinger and J. Sifakis, The discipline of embedded systems design, Computer, 40(10), 2007.

26. TTK4155 – Embedded and Industrial Computer Systems Design, June 2018. [Online]. Available: https://www.ntnu.edu/studies/

courses/TTK4155tab=omEmnet

27. Nordic Semiconductor, Nordic Semiconductor, December 2020. [Online]. Available: www.nordicsemi.com/.

28. L. Guo and R. Pecen, Design projects in a programmable logic controller (PLC) course in electrical engineering technology, in Proc.

of the American Society for Engineering Education. Citeseer, pp. 1–10, 2008.

29. F. Sanfilippo, O. L. Osen, and S. Alaliyat, Recycling a discarded robotic arm for automation engineering education. in Proc. of the

28th European Conference on Modelling and Simulation (ECMS), Brescia, Italy, pp. 81–86, 2014.

30. F. Sanfilippo and K. Austreng, Enhancing teaching methods on embedded systems with project-based learning, in Proc. of the IEEE

International Conference on Teaching, Assessment, and Learning for Engineering (TALE), pp. 169–176, 2018.

31. P. Marwedel, Embedded system design. Springer, 1, 2006.

32. C. Larman and V. R. Basili, Iterative and incremental developments. a brief history, Computer, 36(6), pp. 47–56, 2003.

33. B. Kernighan and D. M. Ritchie, The C programming language. Prentice hall, 2017.

34. B. Tucker, The flipped classroom, Education next, 12(1), pp. 82–83, 2012.

35. P. Bradford, M. Porciello, N. Balkon and D. Backus, The blackboard learning system: The be all and end all in educational

instruction? Journal of Educational Technology Systems, 35(3), pp. 301–314, 2007.

36. GNUOperating System,Making the Best Use of C, April 2020. [Online]. Available: https://www.gnu.org/prep/standards/html node/

Writing-C.html.

37. G. Martin, UML for embedded systems specification and design: motivation and overview, in Proc. of the Design, Automation and

Test in Europe Conference and Exhibition. IEEE, pp. 773–775, 2002.

38. R. Ahmadi, E. Posse and J. Dingel, Slicing uml-based models of real-time embedded systems, in Proc. of the 21th ACM/IEEE

International Conference on Model Driven Engineering Languages and Systems, pp. 346–356, 2018.

39. R. R. Yarlagadda, Analog and digital signals and systems. Springer, 1, 2010.

40. L. Frenzel, Principles of electronic communication systems. McGraw-Hill, Inc., 2007.

41. SparkFun, Tutorials, December 2020. [Online]. Available: https://learn.sparkfun.com/tutorials.

42. M. Karlesky, G. Williams, W. Bereza, and M. Fletcher, Mocking the embedded world: Test-driven development, continuous

integration, and design patterns, in Proc. of the Embedded Systems Conference, CA, USA, pp. 1518–1532, 2007.

43. S. Balaji andM. S.Murugaiyan,Waterfall vs. v-model vs. agile: A comparative study on SDLC, International Journal of Information

Technology and Business Management, 2(1), pp. 26–30, 2012.

44. M. Siegel, The sense-think-act paradigm revisited, in Proc. of the 1st International Workshop on Robotic Sensing (ROSE’03), IEEE,

pp. 5–pp, 2003.

45. T. Wescott, Applied control theory for embedded systems. Elsevier, 2011.

46. I. Pan, S. Das, and A. Gupta, Tuning of an optimal fuzzy pid controller with stochastic algorithms for networked control systems

with random time delay, ISA transactions, 50(1), pp. 28–36, 2011.

47. Y. Wang, B. Xiao, L. Liu and Q. Yuan, Bangbang controller design and implementation for east vertical instability control, Fusion

Engineering and Design, 112, pp. 692–698, 2016.

48. G. K. McMillan, D. M. Considine et al., Process/industrial instruments and controls handbook, McGraw Hill, 7, 1999.

49. P. D. Pearson, M. L. Kamil, P. B. Mosenthal, R. Barr et al., Handbook of reading research, Routledge, 2016.

50. H. Fairhead, Micro: bit IoT In C. I/O Press, 2016.

51. git scm.com, Git version control system, December 2020. [Online]. Available: https://git-scm.com/

52. N. Matloff and P. J. Salzman, The Art of Debugging with GDB, DDD, and Eclipse, No Starch Press, 2008.

53. F. S. Foundation, GNU Make Manual, Free Software Foundation, 2016.

54. J. Catsoulis, Designing Embedded Hardware, 2nd ed., O’Reilly, 2005.

55. H. Berger, Automating with STEP 7 in STL and SCL: SIMATIC S7-300/400 programmable controllers, John Wiley & Sons, 2014.

56. D. Nadeau, N. Ezzati-Jivan and M. R. Dagenais, Efficient large-scale heterogeneous debugging using dynamic tracing, Journal of

Systems Architecture, 98, pp. 346–360, 2019.

57. Valgrind Developers, Valgrind, a suite of tools for debugging and profiling, December 2020. [Online]. Available: https://valgrind.org/

58. S. McConnell, Code Complete, 2nd ed., Microsoft Press, 2004.

59. F. Falcone, A. V. Alejos, J. G. Cenoz andA. L.Martı́n, Implementation of higher education and life long learning curricula based on

university-industry synergic approach, The International Journal of Engineering Education, 35(6), pp. 1568–1583, 2019.

Filippo Sanfilippo an Associate Professor at the Dept. of Engineering Sciences, Faculty of Engineering and Science,

University of Agder (UiA), Grimstad, Norway. He is also appointed as a Professor II at the Dept. of Mechanical,

Electronic and Chemical Engineering, Faculty of Technology, Art and Design, OsloMetropolitan University (OsloMet),

Oslo,Norway.He is responsible for the research theme onCollaborativeRobots (CoBots) at the Priority ResearchCentre

Mechatronics, UiA. He is also a member of the Centre for Integrated EmergencyManagement (CIEM), UiA. He holds a

PhD degree in Engineering Cybernetics. His research focuses on robotics, wearable haptics and safe human-robot

interaction. He is currently supervising four PhDs and co-supervising one PostDoc. He carries experience in participating

to European research programs and various national projects from the Research Council of Norway (RCN). He is an

IEEE Senior Member. He is currently the Chair of the IEEE Norway Section. He is also the Chair of the IEEE Robotics

and Automation, Control Systems and Intelligent Transportation Systems Joint Chapter. He is also the treasurer of the

Norsk Forening for Kunstig Intelligens (NAIS), the Norwegian Association for Artificial Intelligence. He has authored

and co-authored several technical papers in various journals and conferences. He is a reviewer for several international

conferences and journals.

Filippo Sanfilippo and Kolbjørn Austreng828

Kolbjørn Austreng holds a master’s degree in cybernetics and robotics from the Norwegian University of Science and

Technology (NTNU), Norway. He actively contributes to the course TTK4235 – Embedded Systems as a Teaching

Assistant. He has also been an active member of Revolve NTNU, where he was involved in the development of embedded

sensor-and telemetry circuits, with a cross disciplinary focus on both hardware and software. He is currently an active

alumnus of Revolve NTNU. He has also been involved in the development of internal tools at Nordic Semiconductor,

with a focus on performance embedded systems testing.

Sustainable Approach to Teaching Embedded Systems with Hands-On Project-Based Visible Learning 829

