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Although many studies have demonstrated the effectiveness of flipped learning in terms of performance enhancements,

there is a lack of research investigating the factors that can affect students’ performance in introductory engineering

mathematics courses using flipped learning. This study investigated how different factors, including prior knowledge,

learning styles, and types of problems, can affect the flipped classroom students’ performance in engineeringmathematics.

Before and after participating in flipped learning covering the concept of ordinary differential equations, 139 engineering

students’ testing and survey data were collected. The results showed that, first, two learning styles including converging

and assimilating played a major role in problem-solving, and significantly predicted their final test score. Second, when

engaging in real-life and non-routine problems individually or in collaboration with group members, students’ scores in

the post-test were increased. This study concluded that instructors could enhance students’ performance in engineering

mathematics by integrating flipped learning with their current curriculum, helping students apply the abstract concepts of

mathematics to authentic situations, and considering students’ learning styles as a factor in successful flipped learning.
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1. Introduction

In modern society, it is necessary to develop

resources that bring about outstanding scientific

and technological abilities in order to secure com-

petitiveness and innovation and ensure the coun-

try’s development and overall prosperity [1]. In the
past, a country’s national competitiveness was

determined by the quantitative and qualitative

superiority of production factors such as natural

resources, land, and capital. However, in the 21st

century, skilled personnel in the STEM fields is

becoming increasingly important [1]. Therefore,

the quality of engineering personnel afforded by

higher education is vital and impacts the future of
the nation [2]. All over the world, closer attention

has been paid to the importance of providing

engineering education that can cultivate students’

in-depth understanding, along with creativity, logi-

cal thinking, problem-solving skills, and integrated

thinking skills [3]. Nevertheless, for nearly a cen-

tury, accredited engineering programs have been

faced with high attrition rates due to students’
withdrawing from core courses during their first

year. One of those courses is ‘‘Engineering Mathe-

matics’’ (e.g., Calculus, Differential Equations, and

Algebra).

The main focus of many of today’s mathematics

classes is transferring the professor’s knowledge to

the learners in a manner in which the students

receive the lesson’s contents passively. Making
matters worse, teachers compound the problem

when asking students with diverse learning experi-

ences and varying learning styles to solve the same

standardized problems. As a result of this flawed

learning methodology for teaching mathematics – a

core course in engineering – an increasing number

of engineering students are dropping out of their

majors, leaving engineering courses behind. What
could have been a chance for these students to learn

key concepts in their field, and potentially procced

in engineering-related careers, becomes a reality

filled with students leaving engineering colleges,

accumulating learning deficits, and undermining

the number of qualified engineering personnel and

resources in the field.

Given the limitations brought about by tradi-
tional classes, flipped learning is emerging as an
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effective instructional model that can overcome

these challenges [4]. Flipped learning is a type of

blended learning that combines online and offline

classes [4] in a way that reverses – or flips – the

processes and activities involved in traditional

lecture-style classes. Students are asked to go over
the teacher’s instructional content (usually via short

videos and lecture slides) before class. Then, during

the class, they participate in learner-centered inter-

actions, including problem-solving or discussion

depending on the different types of tasks [5]. Class-

room time is used for Q&A, discussion, and prac-

tice, in whole-class format or small groups.

Many studies have demonstrated the effective-
ness of flipped learning in terms of performance

enhancements [6–8]. Nevertheless, there is a lack of

research conducted in the introductory mathe-

matics courses in engineering considering students’

prior knowledge, different learning styles, and the

different kinds of problems, which have a tremen-

dous impact on students’ learning. Due to this gap,

instructors and researchers utilizing flipped learn-
ing in their engineering mathematics courses need

to consider ways to implement more effective tech-

niques to optimize this learning methodology. With

this in mind, this study addressed how different

factors, including students’ prior knowledge, learn-

ing styles, and type of problems, can explain the

performance in the flipped classroom for Engineer-

ing Mathematics.

2. Background

2.1 Flipped Learning

With the recent surge of interest in flipped learning,

this instructional model is being applied in various
settings from elementary schools to higher educa-

tion. Flipped learning is an educational technique

consisting of interactive group learning activities in

the classroom and direct individual computer-

based lessons outside of the classroom [4]. In the

traditional lecture-style classes, students receive

and understand knowledge and concepts in an

authoritative and one-way manner led by the
instructors. In other words, one instructor delivers

knowledge to a large number of students collec-

tively, and students identify and acquire this for-

malized knowledge through repetitive exercises. On

the other hand, flipped learning is a learner-cen-

tered model based on learning activities that occur

in three-steps: before, during, and after classes.

Because pre-class activities in flipped learning
replace traditional classroom teacher-led instruc-

tion with individual learning, there is extra time

secured for meaningful learning activities and peer

interaction in the classroom. In general, students

learn the concepts necessary for the in-class activ-

ities using learning materials (e.g., readings, pre-

recorded video lectures, and other multimedia

resources) before class begins. After learning the

basic concepts, students take lecture notes to study

or take quizzes to enhance their understanding.

During the in-class activities, students may ask
the teacher questions about areas they did not

understand in the pre-class preparation. The tea-

cher/instructor will then provide the students with

additional explanations and address students’ mis-

conceptions. As students familiarize themselves

with this process of sharing basic learning content

through the Q&A session, they become better

equipped to participate in more enhanced student-
centered collaborative activities in the future. What

follows the Q&A session is small group learning, in

which the groups collaborate, discuss, or solve the

provided tasks.When students engage in discussion

or inquiry activities in groups, they form common

knowledge through a communication and interac-

tion process that involves exchanging thoughts and

opinions on the given task.
At the end of the group activity, each group

presents a summary of the discussion or inquiry.

All the students attend every other group’s pre-

sentation, compare the outcomes, and go through a

process of questioning and discussion. In this pro-

cess, the knowledge shared by the whole class is

restructured. After the group presentation and

discussion are complete, the teacher briefly sum-
marizes and organizes the core of the learning

contents.

Many scholars have claimed that flipped learn-

ing, in accordance with the learning processes

described above, has the following characteristics:

First, flipped learning increases learners’ self-

directedness. Students who were passive learners

in traditional lecture-like classes now actively par-
ticipate in their learning because lipped learning

transforms them into active subjects that become

more self-directed [9]. Self-directed learning is par-

ticularly promoted because pre-class learning hap-

pens in the students’ homes and at their own pace.

Second, interaction during class increases

because flipped learning is a method in which

teacher-student and student-student interactions
are at the forefront. As the ‘‘lectures’’ in the class-

room become pre-class activities, students commu-

nicate via different learning activities with the right

to speak [5].

Third, individualized learning becomes possible

and takes place in accordance with the speed and

the ability of individual learners. In flipped learn-

ing, students will learn individually and following
their different learning styles before class [4], at their

own pace, and repeat [10].

Finally, collaborative learning is enabled. Instead
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of lecture-style classes, in flipped learning, the

instructor becomes a facilitator so that teaching

and learning can occur among peers. The emphasis

on flipped learning is given to the classroom being a

space for learning through students’ interaction and

cooperation.
Due to these characteristics, there have been

numerous studies that demonstrated the effective-

ness of flipped learning. For example, Bates and

Galloway [11] applied flipped learning to physics

classes at British Universities, resulting in students’

better engagement, high satisfaction, and better

performance in the class. Enfield’s [12] research

reported that flipped-learning classes in a Cinema
and Television Arts department in the U.S. had a

positive effect on students’ learning immersion and

self-efficacy, and helped them better understand the

content. In addition, several studies reported the

positive effect of flipped learning on students’

enhanced achievement [13], higher-order thinking

skills [14], and perception of time management

skills [15] in Engineering Mathematics for higher
education. The recent meta-analysis also showed an

overall significant effect (Hedges’ g = 0.298) of the

flipped learning over the traditional classroom

regarding students’ achievement in mathematics

[16].

2.2 Students’ Learning Styles

The context in which we are using here the term

learning styles refers to Experiential Learning

Theory (ELT), aiming to take into account the

differences in individuals’ learning practices [17].

Kolb & Kolb [18] define what they call the experi-

ential learning cycle that relates and corresponds to

the operations of different regions of the cerebral

cortex, namely the following: 1. Sensory and post-
sensory, 2. Frontal integrative, 3. Premotor and

motor, and 4. Temporal integrative [19]. Kolb &

Kolb [20, p. 194] termed four learning modes that

correspond to the four different cerebral cortex

regions as 1.Concrete Experience (CE), 2.Abstract

Conceptualization (AC), 3. Active Experimentation

(AE), and 4. Reflective Observation (RO).

The ELT model entails two dialectically related
modes of grasping experience, (CE) and (AC), and

two dialectically related modes of transforming

experience, (RO) and (AE). Kolb describes ELT

as a ‘‘dynamic view of learning based on a learning

cycle driven by the resolution of the dual dialectics

of action/reflection and experience/abstraction.’’

[21, pp. 50–51]. Therefore, learning arises from

resolving the creative tension between the four
learning modes [18, 20]. The four learning styles

can be described [22, 23] as follows:

Convergent. Learners with a convergent learning

style perceive information through abstract con-

ceptualization (AC) and process it through active

experimentation (AE). They like to learn by doing,

and they do not like lectures or reading for a long

time. In Kolb’s terms, they ‘‘converge’’ fast and

make decisions, cutting through to the essentials.

They prefer the lab setting and the experiment.
They tend to work faster individually, and they

would like their instructor to be a coach and a

facilitator so that they can take a more active role.

Divergent. Students that possess a divergent

learning style perceive information through con-

crete experience (CE) and process it through reflec-

tive observation (RO). They seek personal meaning

and interaction with the instructor and their peers.
They learn well through discussion and collabora-

tion, and they are interested in the humanistic

aspects of the learned material. Kolb calls this

kind of learner ‘‘divergent’’ because they can see

things from different perspectives. As a conse-

quence, they excel in brainstorming. For them, the

ideal instructor acts as a motivator and shows them

how the taught material fits the big picture.
Assimilative. Scholars with an assimilative learn-

ing style perceive information through abstract

conceptualization (AC) and process it through

reflective observation (RO). They prefer lectures

and seek a conceptual understanding of what they

are learning. Kolb calls this learning style assim-

ilative because learners with this learning style take

separate pieces of information, analyze them, orga-
nize them, and ‘‘assimilate’’ them into a whole.

They like order, tend to be detail-oriented, and

thrive on procedures and following directions. In

their approach, they are careful, methodical, and

cautious, trying to avoid errors. They like to see the

teacher as an expert and a leader.

Accommodative. Learners with an accommoda-

tive learning style perceive information through
concrete experience (CE) and process it through

active experimentation (AE). They are enthusiastic

and prefer self-discovery as a learning method.

They like to follow their own pace, and they want

interaction with others and group discussion. They

are problem-solvers and risk-takers, and they tend

to learn from their mistakes. Kolb calls this learning

style accommodative because learners in this cate-
gory take what they have learned and adapt,

change, and improve it. The instructor’s role for

accommodators is that of an evaluator and a

remediator. These learners need to be encouraged

for self-discovery and self-teaching.

ETL’s learning style model is the most widely

accepted and has received extensive empirical sup-

port [24]. Many applications have been implemen-
ted, and much research has been conducted relative

to ELT in college-level educational contexts. Orhun

[25] concludes that applying teaching methods
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based on students’ learning styles will simplify the

selection process for the most effective teaching

strategy, enhancing engineering students’ perfor-

mance in calculus courses. Also, Konak, Clark,

and Nasereddin, [26], although they focus on the

importance of collaborative learning strategies to
promote learning in virtual computer laboratories,

they highlight the potential benefits of identifying

the students’ learning styles. Konak, Clark, and

Nasereddin [26] state that studying the interactions

between the Kolb Experiential Learning Cycle

stages and the students’ learning styles could lead

to more knowledgeable guidelines to design hands-

on activities that are most appropriate for them.
There have been several studies to identify engineer-

ing students’ learning styles. The vast majority of

the learners were nearly equally split between the

convergent and the assimilative learning styles [27].

Another study [28] had the same results, with most

engineering students being convergers or assimila-

tors. On the other hand, the results produced by two

studies [29, 30] about the engineering students’
learning styles showed that they were mostly assim-

ilators.

However, flipped learning strategies applied

under ETL learning styles in higher education,

particularly in the engineering mathematics con-

text, is a relatively new approach. Hence, more

implementations and more research should be con-

ducted to investigate the impact students’ learning
styles have on their academic accomplishments.

2.3 Types of Problems in Engineering Mathematics

Because engineering mathematics courses are

designed for all students who choose engineering-

related majors, they include a wide range of mathe-

matics content (e.g., Calculus, Differential Equa-
tions, and Linear Algebra) taught in a short

timeframe. Engineering mathematics courses are

designed for students to acquire the least amount

of mathematical knowledge needed to use mathe-

matics as a tool for understanding the essential

engineering concepts that will be the basis of their

future engineering-related majors. Therefore, engi-

neering mathematics education aims to foster stu-
dents’ mathematical skills and knowledge for

practical purposes, and to the extent that students

will not have any issues taking major-related engi-

neering courses. To achieve this goal more effec-

tively, various efforts are currently being made in

engineering mathematics classes, and one of them is

the provision of different types of problems.

According to Guven., Aydin-Guc, and Ozmen
[31], providing different kinds of problems not

only determines the direction of mathematics learn-

ing activities but also affects the lesson’s strategy

and evaluation.

Mathematics problems can be divided into

verbal, non-routine, and real-life/applied problems

[32]. The verbal mathematics problems refer to

formalized problems that can be addressed by

recalling the general algorithm already presented

as a known typical solution. Students can solve
these types of problems through already known

procedures; by applying mathematical knowledge

such as concepts, principles, and laws learned in

numbers and calculation, shapes and measure-

ments, texts and equations, and probabilities and

statistics. In short, these kinds of problems can be

solved by the simple algorithm obtained from the

standard instruction.
In non-routine problems, the clear procedures

and proper algorithms needed for the solutions are

not readily available. To solve non-routine pro-

blems, although students’ basic mathematics

knowledge is required, students need to develop

their solutions through creative thinking and map

out ways to find the answers instead of merely using

their existing knowledge. Practice, which might be
helpful to solve verbal problems, is not so useful

when it comes to solving non-routine problems.

These problems do not have any simple algorithm

to follow and require devising a creative problem-

solving strategy. Non-routine problems cannot be

solved using a formal solution, and, instead, stu-

dents need to draw graphs or use other means to

discover the patterns. A non-routine problem can
confirm students’ mathematical cognitive thinking,

creativity, and fluency. Faulkner, Earl, and

Herman [33] consider engineering undergraduate

students’ ability to formulate and solve non-routine

mathematics problems as one of the essential com-

petencies, namely the Problem Tackling Compe-

tency as defined by Niss and Højgaard [34].

The last type is the real-life/applied mathematics
problem. The topics and the materials used in

constructing these kinds of problems are taken

from students’ real life, and the solutions include

both verbal and non-routine explanations. Real-life

problems are the most appropriate for demonstrat-

ing the applicability of mathematics. Solving real-

life problems enable students to acquire mathema-

tical knowledge, add to their problem-solving tech-
niques, enhance their understanding of

mathematics applications, and arouse their interest

in learning mathematics. Engineering students tes-

tify to that by recognizing as a strength of a course’s

strategies the use of real-life applications because,

as they said, it gave them a ‘‘taste’’ of what the

engineering world is today [35]. Furthermore,

adapting mathematical models to represent real-
life or simulated engineering problems [36] and

relating the mathematical knowledge, techniques,

skills, and ideas acquired previously to the engineer-
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ing context [37] are considered by scholars of grave

importance. The problem-solving techniques that

engineering students are taught were not proved

useful when learned in isolation. Graduate engi-

neering students could not develop their critical

thinking and creativity to use problem-solving
strategies to deal with real-life problems. When

the context in which the students acquired the

knowledge is removed from the actual real-life

applications, that knowledge is not available to

the students [36]. Radzi et al. [36] advocate using

real-life mathematics problems to avoid the rote

learning and rote memorization attitude that stu-

dents transfer from school to university.
Many scholars have assumed that verbal pro-

blem-solving learning outcomes can easily be trans-

ferred to non-routine or real-life problem-solving.

Nevertheless, recent studies have shown a clear

difference in the problem-solving process between

verbal, non-routine, and real-life problems [38–40].

Dunkle, Schraw, and Bendixen [41] concluded that

the skills required to solve verbal and non-routine/
real-world problems were independent. Shin,

Jonassen, and McGee [42] suggested that solving

real-life problems requires not only cognitive skills

but also non-cognitive abilities, such as evidence-

based argumentation skills and metacognition.

That does not necessarily mean that real-life pro-

blems must be part of the curriculum for students in

mathematics education. It means that the appro-
priate kinds of problems should be developed

considering students’ level of knowledge, learning

content, and learning/teaching model.

However, few studies have investigated which

types of problems in engineering mathematics

courses adopting flipped learning can enhance engi-

neering students’ mathematical knowledge and

understanding of the concepts. Thus, it is essential
to identify the kinds of problems that should be

considered when designing effective flipped learning

for engineering mathematics education.

2.4 Prior Knowledge

Bloom [43] defined prior knowledge as knowledge,

skills, and abilities necessary to successfully carry
out a given series of new learning tasks and Gagne

[44] defined it similarly as a lower learning task

linked to higher learning tasks in various hierarch-

ical learning tasks. Prior knowledge is the right

understanding of the characteristics of learning

tasks, which is necessary to achieve the learning

goals. As a learner, knowledge of oneself means

knowing the personal academic strengths and
weaknesses. Also, knowledge of the learning pro-

cess can be understood as the knowledge that sets

the correct learning goals and carries out the learn-

ing activities to achieve them.

The importance of prior knowledge is empha-

sized by Ausubel’s advanced organizer and schema

theory. According to Ausubel [45], acquiring

knowledge means that new knowledge is added to

the existing cognitive framework (i.e., schema).

Meaningful learning, which helps learners expand
and reorganize the schema through the interaction

with new information, is an important process that

uses prior knowledge as meaningful information

and derives meaning in relation to the new knowl-

edge. Ausubel referred to advanced organizers as a

way to promote meaningful learning. Advanced

organizers are resources that come before present-

ing a new learning task, which is a means of
strengthening learner’s cognitive structure and pro-

moting the absorption of new information. In other

words, the advanced organizers are a technique that

presents new learning content to students before the

beginning of instruction to help them relate them to

prior knowledge. Advanced organizers facilitate

bridging the gap between what learners already

know and the new knowledge to be acquired, and
scaffolding, which is defined as a support to help

learners participate in tasks beyond their current

abilities, can also play a similar role [46–48].

Pre-class activities, which are part of the flipped

learning processes, provide students with learning

materials related to the upcoming lesson’s learning

contents and can play the role of an advanced

organizer [49]. Based on this fact, one can assume
that prior knowledge built by these pre-class activ-

ities or already exist as schema can affect students’

performance in flipped learning. However, few

studies investigated the role of prior knowledge in

affecting the outcomes in flipped learning through

empirical research.

2.5 Research Question

To what extent can students’ learning styles, the

type of problem, and their prior knowledge influ-

ence their understanding of Engineering Mathe-

matics using Flipped Learning?

3. Methods

3.1 Participants and Group Composition

Most of the 139 students who participated were

majoring in engineering and various natural science

departments. Their ages ranged between twenty

and twenty-four, while most were male students

(92%). At the beginning of each semester, students

took two tests. The first test was a set of conceptual
problems that measured the students’ prior knowl-

edge of the course material. The second test was

Kolb’s learning style inventory (LSI), by which the

students were categorized into four different

groups: convergent, divergent, assimilative, and
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accommodative. The students were assigned to

four-member groups so that their average score

on the conceptual test were similar (p > 0.05). The

assigned groups remained unchanged throughout

the semester.

3.2 The Course and Course Design

This study involved four sections of ‘‘Engineering

Mathematics I,’’ a course on ordinary differential

equations, in one large-scale private university

located in South Korea. One of the study research-

ers was the instructor of all sections, on the same

days of the week, at different times. The course
materials, assignments, and in-class activities were

identical for all sections. The instructor had been

teaching the course for seven years and could

manage four sections without much variance. The

only difference was the number of students in each

section (39, 14, 48, and 38).

For this study, students learned one concept (i.e.,

Spring-mass system, equivalent system, linear
system, and SIR model) every week for a total of

four weeks. Students submitted their pre-class

homework after watching two or three fifteen-

minute-long video clips, which were about the

topics of the following class. This pre-class home-

work was comprised of three conceptual questions

related to the watched video clips. During class,

students participated in ‘‘voting’’ activities based
on the framework of Peer Instruction [50] or

Hypothesis-Experiment-Instruction [51]. First, each

student solved the given problem individually, and

then, the students joined their groups. The group

members shared their thoughts, rationale, and

opinions on the right answer and voted their correct

answers. Finally, the instructor examined the

voting results, clarified possible misconceptions,
and pointed out any existing pitfalls. The group

discussion usually was taking between fifteen to

twenty minutes. The instructor determined the

discussion’s duration based on the problem’s diffi-

culty and the students’ engagement level.

After finishing four weeks’ learning, students

took the exam to check their understanding of

four concepts related to ordinary differential equa-
tions covered by this flipped classroom.

3.3 Data Collection

Prior knowledge test. This test measured students’

basic knowledge of functions, continuity, differen-

tial equations, and function graphing, which is

necessary to learn ordinary differential equations

covered in the class. This test, which consists of 12
items, was validated by two experts in the engineer-

ing mathematics field and was highly reliable

(Cronbach’s alpha = 0.92). The maximum score

students could get from this test was 100.

Learning Style (see Appendix A). Kolb’s Learn-

ing Style Inventory (LSI) Version 3.1, consisting of

12 items, was used to identify the participants’

learning styles by measuring how much each stu-

dent’s learning style corresponded to the four learn-

ing styles as defined by Kolb [52]. The score the
participants could get from this survey ranged from

12 to 48, and, based on their results, each partici-

pant was placed into one of four learning style

quadrants: Convergent, Divergent, Assimilative,

and Accommodative. The reliability for each of

the four-dimensional constructs (based on N =

139) was very good (Cronbach’s alpha ranging

from 0.84 to 0.89).
Performance in different kinds of problems. Four

problems (two verbal, one non-routine, and one

real-life) and provided to each group for individual

and collaborative learning in the classroom to

assess the influence of different kinds of problems

on students’ understanding of contents related to

ordinary differential equations. Fig. 1. shows exam-

ples of different kinds of problems.
The first example, the speedometer, is a real-life/

applied type of problem because it is about an

instrument most students use almost daily or are

all familiar with it. This problem demonstrates the

applicability of mathematics by finding a mathe-

matical model of the speedometer. For the second

example with the equivalent system, students

cannot merely apply a known algorithmic solu-
tion. Instead, they need to implement their crea-

tive skills to form a unique problem-solving

strategy. Hence, the second example belongs in

the category of the non-routine type of problems.

The last two examples, the linear system and the

SIR model, are verbal type mathematical pro-

blems because they can be solved through

known procedures. They require familiar to stu-
dents algorithmic procedures for solving ordinary

differential equations. The type of each problem

and its content were validated by one expert in

assessment and an instructor who has expertise in

Engineering Mathematics. Students’ performance

on each problem was coded as a dichotomous

variable (i.e., right or wrong).

Post-Test (see Appendix B). The measure of
individual student understating in the course was

the score of one test. The test consisted of 14 open-

ended problems about four concepts (Mass-spring

system, Equivalent system, linear system, and SIR

Model) covered by Flipped learning. The score for

the post-test ranged from 0 to 100. An instructor of

this course and one of the researchers – who had

expertise in engineering mathematics – worked
independently to score students’ responses in the

test. Then they met to discuss score discrepancies

and came to a consensus. The post-test interrater
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Fig. 1. (a) Speedometer: real-life problem, (b) Equivalent: non-routine problem, (c) and (d) Linear system and SIR model:
verbal problems.

Fig. 2. Histogram of residuals and two scatter plots of Linearity of Residuals and Equal Variance of Residuals.



reliabilities, which show the degree of concordance

concerning grading, were 0.95 (Krippendorff’s

alpha. [53]). The overall Cronbach’s alpha value

of items’ reliability in the test was 0.87.

3.4 Data Analysis

Multiple Linear Regression was conducted to pre-

dict engineering students’ mathematical under-

standing of ordinary differential equations

considering their learning styles, prior knowledge,

and the performance on each of the different types

of problems (i.e., Speedometer, Equivalent, Linear,

and SIR). Before conducting multiple linear regres-
sion, we tested four assumptions of linear regres-

sion: Linearity of Residuals, Independence of

Residuals, Normal Distribution of Residuals, and

Equal Variance of Residuals.

A histogram and two scatter plots in Fig. 2

satisfied the four linear regression assumptions.

The following statistical results in Table 1 also

show no issues to conduct Multiple Linear Regres-
sion.

In addition, all variables’ VIF values to detect

multicollinearity were less than 10 [54]. All vari-

ables were included in this regression model.

4. Results

Descriptive statistics of Learning Styles in this

study are shown in Table 2. Most participants had

‘convergent’ (48.20%) and ‘assimilative’ as their

learning styles (26.62%).

Table 3 shows the means, standard deviations,

and 95% confidence intervals of a prior knowledge

test and post-test.
The multiple regression was conducted by the

enter method so that all nine independent variables

were included simultaneously in themodel. Accord-

ing to the ANOVA table, the multiple regression

model, including nine independent variables, was

significant, and 62% of the data fit this regression

model, F(9, 129) = 23.77, p < 0.01, with an R2 of

0.62 (see Table 4).
Students’ performance in real-life problem (p <

0.01), and non-routine (p < 0.05), and two learning

styles, convergent (p < 0.05), and assimilative (p <

0.01) were statistically significant predictors of

students’ final test scores (see Table 5). However,

there was no statistically significant linear depen-

dence of themean of the post-test score on students’

prior knowledge, learning styles of divergent and
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Table 1. Results of Four Different Assumption Tests

Assumption Test Results

Linearity of Residuals Pearson Correlation (between Final and Standardized Residuals) r(137) = 0.89, p < 0.01

Independency of Residuals Durbin-Watson d-statistic Durbin-Watson value = 1.61

Normality of Residuals Shapiro-Wilk W test for normal data W(139) = 0.99434, p > 0.05

Equal Variances of Residuals Breusch-Pagan test for heteroskedasticity X 2 (1) = 3.26, p > 0.05

Table 2. Learning Styles of Participants

Learning Styles N Percent (%)

Convergent 67 48.20

Divergent 19 13.67

Accommodative 13 9.35

Assimilative 37 26.62

Table 3.Means, Standard Errors, and 95% Confidence Intervals of Prior Knowledge and Post Tests=

Mean Std. Error

95% Confidence Interval

Lower Upper

Prior 47.14 1.23 44.70 49.58

Post 61.37 1.96 57.49 65.24

Table 4. ANOVA Table for Goodness of Fit of Regression Model

Model Sum of Squares df Mean Squares F Sig.

1. Regression
Residual
Total

45910.81
27679.48
73590.29

9
129
138

5101.20
214.57

2.377 0.00

Note: R2 = 0.62, Dependent Variable: Posttest.



accommodative, and verbal-type problem (p

>0.05).

5. Discussion

To achieve academic objectives effectively, instruc-

tors need to implement various teaching methods

for learners. With even more people noticing the

problems with the existing lecture method in teach-
ing engineering mathematics, the flipped classroom

has been regarded as an effective alternative teach-

ing method [4]. While the empirical research using

flipped classroom in mathematics in engineering

has been widely conducted, most of them are

simple comparative studies of the traditional and

flipped classroom in a short period in terms of

students’ performance. Due to this lack of design
principles and the breadth of the topics needed to be

covered, instructors in the field of engineering

mathematics are often reluctant to implement

flipped learning. Therefore, the study at hand was

not about researching the effectiveness of flipped

learning in engineering mathematics classes since

this was already demonstrated by several empirical

research [13] and meta-analyses [16]. Instead, this
study investigated the extent to which students’

learning styles, prior knowledge, and the types of

problems provided predict students’ understanding

of ordinary differential equations at the end of class.

In the multiple linear regression, significant pre-

dictors of students’ final test scores were the con-

vergent and assimilative learning styles and the

non-routine and real-world problem types. In the
following sections, we unpack and discuss the

predictors in light of the literature.

5.1 Predication of Post Score by Students’

Learning Style

The finding that the learning style of most engineer-

ing students participating in this study was either

convergent or assimilative is consistent with prior

research [28, 30]. These two learning styles (con-

vergent and assimilative) were also significant fac-

tors affecting students’ post-test scores in flipped

learning for the engineeringmathematics class. This
result can be explained by considering the charac-

teristics of the two learning styles, which corre-

spond to the requirements for successful flipped

learning in studying and understanding the abstract

concepts related to mathematics.

In flipped learning for engineering mathematics,

the in-class given task should begin with the stu-

dents’ basic understanding of the pre-class abstract
concept activity. Then it should progress to the

challenging problems addressed by their advanced

problem-solving skills, the practical application of

concepts, and reasoning skills [13]. According to

Kolb [52], the assimilators abstractly conceptualize

the information and process it with perceptual and

reflective observations. The assimilators are excel-

lent in logic and precision and are familiar with
inductive reasoning. They can integrate a wide

range of ideas and understand them in various

ways, so their ability to create theoretical models

is excellent. The convergers, on the other hand,

have the ability to conceptualize abstractly, percep-

tually, and actively experiment with the provided

information. Because they can apply ideas [46],

converges have excellent decision-making and pro-
blem-solving skills. They can also focus on parti-

cular problems through hypotheses-linked causes

and approach tasks systematically and scientifi-

cally.

For this reason, both the assimilative and the

convergent learning styles showed significantly

positive correlations with performance in the engi-

neering mathematics class using flipped learning.
From this result, one of the effective ways to achieve

successful outcomes in flipped learning is to obtain

information about students’ learning styles before

class and provide the individualized learning pro-

cess and tasks considering learners’ different learn-

ing styles.

However, to realize the flipped learning class, the
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Table 5. Regression Analysis of Predictor Variables Related to Students’ performance in Engineering Mathematics Class

Model Coefficients Std. Error t Sig

(constant) 26.04 9.08 2.87 0.00**

Prior 0.13 0.09 1.45 0.15

Convergent 22.66 8.79 2.58 0.01*

Divergent –0.32 9.24 –0.03 0.97

Accommodative 8.75 9.53 0.92 0.36

Assimilative 43.33 9.15 4.73 0.00**

Verbal 1 (Linear) –1.28 2.74 –0.47 0.64

Verbal 2 (SIR) 0.15 2.83 0.05 0.96

Real-life (Spring-Mass) 10.50 2.76 3.80 0.00**

Non-routine (Equivalent) 6.31 2.71 2.33 0.02*

Note. ** < 0.01, * < 0.05.



workload and the time needed from the instructor

to design and develop all the necessary learning

materials are immense. So, it might not be feasible

to create individualized learning, taking into

account the different learning styles. Instead, it

may be more realistic to train students to adapt to
the optimal learning style by acquiring various

learning styles, based on the fact that learning

style preferences can change according to environ-

mental needs and circumstances.

5.2 The Influence of Different Types of Problems

on Students’ Understanding of Concepts

Results showed that students’ performance in real-

life (p < 0.01) and non-routine problems (p < 0.05)

were statistically significant predictors of students’

post-test scores in flipped learning for the engineer-

ing mathematics class. This result can be explained

by the skills necessary to tackle non-routine and

real-life problems, which are also necessary for a

successful flipped learning implementation in
understanding the abstract mathematical concepts

in the engineering mathematics class. In non-rou-

tine problems, the solutions are not achieved

through the taught procedures or known algo-

rithms [41]. Students not only need their existing

knowledge to solve these kinds of problems but also

need to implement their creative thinking and

construct a problem-solving strategy. In real-life/
applied problems, the solutions include both verbal

and non-routine explanations [39]. They are about

the applicability of mathematics, and they

‘‘demand’’ the students’ knowledge and problem-

solving strategies in mathematics.

Similarly, for a successful flipped learning

implementation in engineering mathematics, the

problems become more challenging after the pre-
class abstract concept activity, asking for the

students’ advanced problem-solving, practical

application of concepts, reasoning skills, and col-

laborative argumentation skills. In this sense, non-

routine and real-life problems enhance and ask for

independent thinkers, individualized learning, self-

directedness, and collaborative learning skills in

flipped learning.

5.3 Insignificant Prediction of Post Score by

Student’s Prior Knowledge

Based on previous research, students’ prior knowl-

edge is one of the significant factors that predict

the overall cognitive outcomes [55]. Nevertheless,

in this research, the students’ prior knowledge of

functions, continuity, differential equations, and
function graphing (which are the necessary basics

to learn ordinary differential equations covered in

the class) was not a significant predictor of stu-

dents’ post-test measurement of their understand-

ing of ordinary differential equations. This result is

somewhat perplexing but can be explained by three

reasons. One plausible reason is that pre-class

activities in flipped learning did not play a mean-

ingful role as advanced organizers, as Ausubel

claimed [45], due to lack of provision of scaffold-
ing. The pre-class activities should be conducted

by the students themselves without any support

from instructors or peers, which could hinder their

knowledge building, affecting students’ final out-

comes in flipped learning. Another possible reason

is that the participants’ level of prior knowledge

(M = 47.14) was not high. According to several

scholars [56], students with a low level of prior
knowledge can achieve better performance in the

class when they get direct and explicit support and

feedback from instructors. The flipped classroom’s

learning process is such that students are respon-

sible for their learning; all activities are conducted

by individualized learning at their level and by

collaboration with peers, rather than direct

instruction from teachers [4]. This means that
even students with low prior knowledge do not

necessarily show low performance in flipped learn-

ing. On the contrary, high performance is not

guaranteed for students with a high level of prior

knowledge [57, 58]. This led us to conclude that

students’ prior knowledge was not a significant

factor in predicting the post-test scores in this

research. The last reason is the insignificance of
verbal problems in predicting students’ perfor-

mance in flipped learning. Based on this study’s

results, the effects of verbal problems, mostly

requiring students’ prior mathematical knowledge

for problem-solving [32], on students’ performance

were not significant. On the other hand, two types

of problems (i.e., non-routine and real-life) that

can be solved by creative thinking and advanced
problem-solving skills rather than relying on prior

knowledge were significant predictors in flipped

learning [38, 39]. This fact can be the reason why

students’ prior knowledge was not a significant

predictor that affects students’ performance in

flipped learning.

5.4 Limitations and Suggestions for Future

Research

This research revealed the extent to which students’

learning style and different types of problems can

affect their understanding of engineering mathe-

matics concepts through quantitative analysis.

The limitations that emerged in this research are

as follows.
First, this research did not directly verify flipped

learning effectiveness in a college engineering

mathematics class. However, several significant

factors (i.e., learning styles and types of problems)
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to predict students’ performance in flipped learning

were identified. Therefore, further empirical

research, including the variables analyzed in this

study, needs to be carried out to investigate the

effects of flipped learning.

Second, additional qualitative research can sig-
nificantly contribute to answering the ‘how’ and

‘why’ questions, increasing the likelihood of a

reasonable interpretation of quantitative results

through the qualitative data describing students’

perception and experience in flipped learning in

detail and more in-depth.

Third, this research applied flipped learning to an

engineering mathematics class over a relatively
short learning period of four weeks. Therefore,

there is a limit to generalizing the results obtained

by applying a new instructional model for four

weeks. Therefore, future research is required to

verify this study results repeatedly for more than

one semester.

6. Conclusion

This study helped further understand the predic-

tion of students’ performance in engineering

mathematics by their prior knowledge, learning

styles, and the types of problems in a flipped

classroom. The results showed that, first, two

learning styles (i.e., convergent and assimilative)

in flipped learning for engineering mathematics
played a major role in problem-solving and sig-

nificantly predicted their final test score. Second,

engineering students’ performance on ordinary

differential equations varied significantly depend-

ing on the different types of problems. Students’

scores in the post-test were significantly increased

when engaging in real-life and non-routine pro-

blems individually or in collaboration with group
members. Implications from this study include

that instructors can enhance students’ perfor-

mance in engineering mathematics by (a) integrat-

ing the learning process of flipped learning with

the current curriculum, (b) helping students apply

the abstract concepts of mathematics to an

authentic situation, and (c) considering students’

learning styles as one of the factors for successful
flipped learning.
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Appendix

Appendix A. Kolb’s Learning Style Inventory Survey



Impact of Prior Knowledge, Learning Style, and Problem Nature on Students Performance 973

Appendix B. Exam

Engineering Mathematics

Exam

Please remember that your solutions should be clear, concise, precise, and legible. Be sure to check you write

your name and your class number on the exam paper before you hand in.

Name & ID No.: ___________________________________________________________________________

Class No.: _________________________________________________________________________________

1. (10) Solve the following ODE:

2. (10) Solve the following ODE:

[Problems 3–5] Consider the following initial value problem (IVP),

3. (10) Sketch the isoclines for slopes –2, 0, 2, and sketch the slope field using this information.

4. (5) On the same graph, draw the solution curve of the above IVP.

5. (5) Estimate y (–100).

[Problems 6–7] Consider the following autonomous ODE:

6. (5) Find all equilibrium solutions and state the stability of them.

7. (5) Sketch the graph of the solutions in the t y-plane. Be sure to include at least one solution with values in
each interval above, below, and between the equilibrium solutions. You also need to specify the value at

the points of inflection.

[Problems 8–10] Consider the following spring-mass system:

8. (10) Using the Laplace Transforms, find the above spring-mass system’s impulse response and sketch it.

9. (5) Describe the change of the mass’ velocity near t = 0 when the impulse is applied at t = 0.

10. (5) If an arbitrary force f(t) is applied to the above spring-mass system, write the solution using the

convolution integration. (You need to write down the integration explicitly).

[Problems 11–12]

11. (5) Find the Laplace Transform of the following function:

12. (5) Find the non-negative real numbers A, !, and � for the following equation:
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[Problems 13–14] If the fuel in a car engine is shut off, the car will eventually come to a rolling stop due to wind

resistance and rolling friction. Assume that the rolling friction is given by Ff ¼ k1V and the wind resistance is

given by Fw ¼ K2V where V is the speed of the car.

13. (5) Write down the equation for the velocity of the car. Assume that the car has mass M.

14. (5) Solve the resulting equation if Vð0Þ ¼ V0.
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