
CQpy: A Handy Code Quality Inspector for Online Python

Programming Courses*

XIAO LIU AND GYUN WOO**
Dept. of Electrical and Computer Engineering, Pusan National University, Busan, Republic of Korea.

E-mail: {liuxiao, woogyun}@pusan.ac.kr

Most programming courses teach students how to write programs that produce the correct output without focusing on

code quality. Although teaching about code quality is important, more emphasis is placed on code correctness. The reason

is not its conceptual complexity but a lack of efficient methods for teaching good programming practices. This paper

presents a code quality inspector namedCQpy as a subsystem of an online judge for assessing both the correctness and the

quality of programs submitted by students. Once the submitted code is judged to be correct, a student can further inspect

code quality issues (CQIs) using CQpy. The timely feedback and automatic suggestions provided by CQpy help students

improve their code quality through self-study. A controlled experiment revealed that there were thousands of unsolved

CQIs in the programs submitted in a Python course in 2019 without CQpy. However, when CQpy was used, 91% of the

detected CQIs were addressed by students who took the same Python course online during the COVID-19 pandemic in

2020. According to a student survey conducted at the end of the course, 90.12% of the students were satisfied with using

CQpy in the online course, and 81.7% affirmed that they had improved their skills related to code quality after taking the

course. Based on the experimental results, we identified a set of common CQIs representing the most frequent mistakes

made by programming students. The results of this study could enhance the code quality education in future online Python

programming courses.

Keywords: code quality inspection; automatic programming assignment evaluation; online course

1. Introduction

Teaching code quality is difficult, not because of

complex concepts, but because of the lack of an

appropriate teaching method. Code quality should
be included in the evaluation criteria of program-

ming assignments. However, many universities

adopt online judges to assess the correctness of

students’ programs, but none of them has the

functionality for inspecting code quality sufficiently

[1]. The need for code-quality-related education

drives researchers to analyze code quality issues

(CQIs) in students’ programs [2] and investigate
approaches to improve the students’ code quality

[3]. Although there are existing tools to evaluate

code quality [4–6], most of these tools either miss

evaluation criteria or require significant human

intervention. As a result, they are inefficient and

inconvenient in practical programming courses.

Teaching students to produce high-quality code

is important in software engineering education
because the industry values and requires guarantee-

ing the software quality more than ever [7]. Based

on our past teaching experience, most students

usually pay attention to the output correctness

but fail to maintain code quality when writing

programs. Fig. 1(a) shows an example of a student’s

poor-quality code with several CQIs. In contrast,

Fig. 1(b) shows an example of implementing the

same function with good code quality. Although

the two functions generate the same result, the

function in Fig. 1(b) has better readability and a

more concise structure than that in Fig. 1(a).
Researchers have noted the lack of teaching and

measuring code quality [8], and studies show that it

is essential to enhance code quality in programming

education [9–11]. However, most of the state-of-

the-art studies related to improving code quality in

education focus on face-to-face courses, where the

instructors can apply their approach in person and

interact with students in the classroom. During the
COVID-19 pandemic, many universities decided to

convert face-to-face courses to online courses.

Online courses require more student autonomy

than face-to-face courses. Specifically, the manual

feedback for code quality can hardly be performed

effectively in online courses.

Moreover, although current studies related to

improving the code quality of students’ programs
are indeed measuring code quality, the correctness

of the program output needs to be checked either by

a human grader or by another online judge. It is

inconvenient to evaluate students’ programs for

both correctness and quality because the instructor

and students will have to keep switching tools for

checking the correctness and for receiving the code-

quality-related feedback. To the best of our knowl-
edge, it is difficult to find a system that not only

* Accepted 14 July 2021.1540

** Corresponding author.

International Journal of Engineering Education Vol. 37, No. 6, pp. 1540–1552, 2021 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2021 TEMPUS Publications.

considers the correctness of a student’s program but

also inspects its code quality fully.

This paper introduces a handy tool, CQpy (Code

Quality inspector for Python), and describes our
experience with teaching code quality using CQpy

during the COVID-19 pandemic. CQpy is imple-

mented as a subsystem of an online judge. Once the

submitted code is judged to be correct in terms of its

output, a student can further inspect any existing

CQI using CQpy. The detecting rules used in CQpy

sufficiently cover various aspects of code quality

that are wildly adopted in the industry, which are
not only feasible for identifying students’ code-

quality-related mistakes but also help students

maintain a good programming paradigm when

they become professional developers.

To verify the efficacy of CQpy, we conducted two

experiments. In the first experiment, we explored the

problems in code quality education retrospectively

using CQpy. In this experiment, we explored the
CQIs in students’ programs from past submissions.

Two thousand Python programswere collected from

undergraduate students’ submissions during the

2019 academic year. The programs were analyzed

and examined in CQpy for code quality inspection.

The most frequent CQIs detected in these programs

were categorized by their effects on the program,

with adequate suggestions for addressing them.
In the second experiment, we measured the effec-

tiveness of CQpy in improving code quality in

programming education. This experiment was con-

ducted with an actual introductory programming

course at Pusan National University (PNU),

Busan, Republic of Korea, during the first semester

of 2020. The target course was a Python program-

ming course for undergraduate students, which was

held online during the selected timeframe because

of the COVID-19 pandemic. A quantitative analy-

sis was conducted on the code quality improvement

in students’ programs with the use of CQpy. The
qualitative effect was also analyzed based on a

student questionnaire to determine the satisfaction

with CQpy’s user experience and to identify the

shortcomings of the system to improve it.

The remainder of this paper is organized as

follows. Section 2 presents the background of

code quality education in pre-COVID-19 courses

and the technologies for detecting CQIs related to
this study. Section 3 describes our methods, includ-

ing the development of CQpy and the experiment

design. Section 4 presents the experimental results –

both quantitative and qualitative. Section 5 dis-

cusses our findings and the limitations of the

current CQpy system. Finally, Section 6 concludes

the paper.

2. Background

2.1 Code Quality and its Education pre-COVID-19

There are various aspects of code quality, such as

capability, usability, performance, reliability, and

maintainability [12]. These aspects affect the char-

acteristics of the program, including efficiency,

vulnerability, and security. Therefore, to train stu-

dents to become skilled developers, it is necessary to

teach them to understand the importance of code

quality and tomaintain a good quality of programs.
To summarize the CQIs in students’ code, Stege-

man et al. [9] proposed generic rubrics to provide

feedback on code quality in programming courses.

Nine models covered the coding criteria in terms of

naming, control structures, and expression of code

CQpy: A Handy Code Quality Inspector for Online Python Programming Courses 1541

Fig. 1. Examples of bad and good code quality.

quality. Code quality inspection rules were col-

lected by referring to professional software litera-

ture and through interviews with teachers. The

resulting models covered complexity, expression

collapsibility, code duplication, and coupling

levels. Detailed feedback could be used to analyze
the teaching of programming courses. However, a

human grader was required to evaluate the code

quality of students’ programs, which could be a

burden.

Dietz et al. [10] examined the programming

assignments collected from Java programming

courses at the University of Bamberg, Germany.

They found that students usually focused on func-
tionality rather than code quality. This study used

an analysis tool named CodeScene to analyze the

code quality in Git commits. However, their study

did not provide solutions for improving the code

quality.

Kasahara et al. [11] presented a gamification

approach for grading the correctness of program-

ming assignments and motivating students to gen-
erate high-quality code by ranking the code quality

of their programs using lines of code (LOC) and

cyclomatic complexity (CC). According to their

findings, students aimed to attain higher ranks by

optimizing the LOC and CC in their assignments

submitted to an online judge. Although LOC and

CC are important facets that affect the code quality

and efficiency of a program, the vulnerability and
security issues cannot be addressed by either of

these metrics.

2.2 SonarQube and CQI Detection

Existing tools for CQI detection include Sonar-

Qube, Fortify, and Squale, which are widely used

to analyze and review program codes [13]. Fortify
and Squale are commercial tools, and SonarQube

has been deployed in two versions: commercial and

community. SonarQube consists of a scanner and a

server [14]. The server provides an environment for

managing code and inspecting results; the scanner

detects the CQIs in the uploaded program and

generates an inspection result. SonarQube supports

various types of detections, including bug checks,
vulnerability checks, and code smell detection. The

rules used in SonarQube (such as complexity mea-

surement, use of control flow, and naming conven-

tion inspection) are helpful for detecting the

weaknesses of programs and providing useful sug-

gestions to improve code quality [15].

The basic quality inspection mechanism in

SonarQube is to statically analyze the program
code, considering several quality rules (to detect

whether the code passes the rules or not), and

generate the inspection results. The rules used in

SonarQube cover the programming guidelines of

each corresponding language, common program-

ming regulations, de facto coding patterns, and

other widely used coding conventions. These rules

have also been used in the industry to standardize

software quality [16]. Therefore, the code quality

practice using SonarQube is beneficial for students
during their job search after graduation.

3. Materials and Methods

3.1 System Development

We developed CQpy based on SonarQube for code
quality inspection. CQpy invokes the scanner of

SonarQube to detect CQIs and plugs the results into

the server of an online judge called neoESPA, which

we developed previously. We only use the open-

source portion of SonarQube to develop CQpy as

that portion is sufficient for students’ programs to

identify their novice-like mistakes.

Fig. 2 demonstrates the sequence diagram of
using CQpy with neoESPA from the student’s

perspective. A student can upload his/her source

code through a web browser. The uploaded file is

stored in the system storage and then sent to the

Python interpreter to generate the output for the

hidden test input. The correctness checker verifies

the output of the program with the criteria output,

assesses its correctness score, and stores it in the
database. Once the program has been checked for

correctness, the system storage sends the code to

CQpy for code quality inspection. The detected

CQIs are also stored in the database. Both the

correctness score and the detected CQIs are sent

back to the student’s browser as the feedback of the

submission.

We developed our own web user interface for
CQpy in place of the original interface of Sonar-

Qube to plug it into neoESPA seamlessly. Our

interface can also be helpful to reduce the students’

learning cost of a new system. Fig. 3 presents the

web interface to submit and obtain feedback for a

student’s program. Once the student selected the

corresponding homework number (1), the file type

(2), and the source code file (3), the file will be sent to
the system by clicking the upload button (4). The

correctness score of the program output will be

displayed (5) after execution. Usually, ten prede-

fined criteria data are tested for output correctness,

and each of them assigns ten points if the program

output matches the corresponding criteria. The

CQIs in the student’s code are presented in a

popup window (6). For each CQI, the incorrect
part of the code is marked by a wavy underline with

a brief explanation. The student can click on the

brief explanation (7) to obtain a more detailed

description (8) of the cause of the CQI and a

suggestion of how to fix it.

Xiao Liu and Gyun Woo1542

3.2 Data Collection

We collected students’ programs as experimental
data in two parts. The first part contained the

students’ programs in the Python programming

course in the 2019 academic year. The second part

contained the programs submitted in the first seme-

ster of 2020 by students taking the online Python

programming course and used neoESPA with

CQpy.

3.2.1 Programs Submitted in the 2019 in-person

Course

According to our department’s curriculum, Python

is taught in the first semester of the first year. Two

thousand programs were collected from a total of

60 students in the 2019 academic year. These assign-

ments covered various aspects of programming

such as data input/output, conditional statements,

type handling, and object-oriented programming.

CQpy: A Handy Code Quality Inspector for Online Python Programming Courses 1543

Fig. 2. Student’s perspective using neoESPA with CQpy.

Fig. 3.Web interface of a programming assignment submission.

After identifying the correctness of the collected

programs, we prepared 900 correct programs to

inspect their code quality using CQpy. The pro-

grams were used to quantify the CQIs in students’

programs caused by the lack of code-quality-related

education in the 2019 programming course. By
analyzing the CQIs of these source codes, we can

determine a set of common CQIs that can be used

for educational purposes in future programming

courses.

3.2.2 Programs Submitted in the 2020 Online

Course

Owing to the COVID-19 pandemic, all program-

ming courses in PNU were conducted as online

courses during the first semester of 2020. The

online Python programming course was taken by

90 students. We used neoESPA with CQpy in this

online course to evaluate the correctness and qual-

ity of students’ programs. The students submitted

more than three thousand programs during this
semester.

Although this is an introductory programming

course, the students were from different grades and

majors. To allow every student to have enough time

to learn how to write a working program, CQpy

was applied to five assignments after the midterm

exam. Students were asked to undergo the code

quality inspection if their programs have perfectly
passed the correctness check in neoESPA. There

were 62 students whose programs met this require-

ment, and they contributed 920 submissions for

code quality inspection, at least for one of their

assignments. These programs were used to analyze

the improvement in students’ code quality during

their continuous submissions to CQpy.

3.3 Experiment Design

We conducted two experiments using the two sets of

collected data. For the first experiment, we sub-

mitted all the 2019 students’ programs to CQpy to

inspect the code quality and classify the detected

CQIs. The classified data can help us understand

the most frequent CQIs in students’ programs and

how to improve students’ code quality efficiently.
The second experiment was conducted during the

first semester of 2020 because the students’ submis-

sions were continuous throughout the online

course. We asked the students whose programs

were 100% correct in terms of output to use CQpy

for the code quality inspection. They were given

bonus points for reducing their CQIs to three after

they reviewed the CQpy feedback, followed the
suggestions, and resubmitted the revised programs.

At the end of the semester, we offered a question-

naire to students to understand their perspectives

on using CQpy for improving their code quality. A

quantitative analysis measured the improvement

achieved by students in their code quality using

CQpy. A qualitative analysis helped us understand

the students’ opinions on using this approach in the

online course.

The Python programming course is held once a
year at PNU, and it is a core course for disciplines

such as computer science and engineering (CSE),

engineering, and science. Approximately half of this

course is designated for CSE students and the other

half for students with other majors and is available

for all grade levels. To compare the effects of using

and not using CQpy, we chose the same distribution

of students’ grades and majors in both 2019 and
2020.

We use the experimental results to answer the

following three research questions (RQs):

RQ1: What types of and how many CQIs in the
students’ programs were caused by the lack of

corresponding education in the 2019 program-

ming course?

RQ2: To what extent has CQpy helped students

improve their code quality in the 2020 online

programming course?

RQ3: What are the positive and negative opinions

regarding the use of CQpy to improve program-
ming skills and code quality from the students’

perspective?

4. Results

4.1 RQ1: Frequent CQIs in the 2019 Programming

Course

There are 1,728 CQIs detected in students’ pro-

grams from the 2019 programming course. The
CQIs are classified by their effects on the programs:

readability (RDB), security (SEC), and perfor-

mance (PFM). Table 1 presents the seven most

frequent CQIs classes incurred from the source

codes submitted in the 2019 course. For each

effect class, CQI details, such as the violated

reason, the number of detections (Freq.), typical

example codes, and the suggestion produced by
CQpy, are presented.

The CQIs in Table 1 indicate that the students

were not familiar with the fundamental concepts of

computer programming (such as the use of vari-

ables and the design of control flow). These issues

are common for novice programmers [17]. These

CQIs do not affect the correctness but reduce the

quality of the program. The readability issues in
PyRDB1 and PyRDB2 are the most frequent,

which would increase maintenance costs if the

students continue to introduce such CQIs in a

larger software project in the future. The second

group of frequent CQIs lies in security issues

Xiao Liu and Gyun Woo1544

(PySEC1 and PySEC2), incurring vulnerable code
that can cause a crash or memory leak. The third

group of frequent CQIs (PyPFM1–PyPFM3) indi-

cates that the students were not familiar with the

proper use of conditional expressions. These CQIs

can negatively affect the performance of the pro-

gram.

4.2 RQ2: Quantifying what Students have Learned

We calculated the average changes in CQIs during
the students’ continuous process of submitting the

program – fixing CQIs – resubmitting the revised

program. Most of the students stopped the process

at the sixth submission because they had already

either fixed all CQIs or used up all the submission

chances; although they had ten attempts for each

assignment, they may have used several attempts to

obtain 100 points for the correctness check. Fig. 7
shows that the quality of students’ code improved

regardless of the assignments, grade levels, and

majors. For each graph shown in Fig. 7, the x-

axis represents the submission time on CQpy, and

the y-axis represents the number of detected CQIs

in the submission. The more CQIs decreased, the

more the quality of the code improved throughout

the submissions. The decreasing trend of detected
CQIs indicates that most students were motivated

to pursue better code quality.

Fig. 7(a) illustrates the decrease in CQIs with the

number of submissions. The numbers of initial

CQIs in Assignment 1 to Assignment 3 at the first

submission were 17, 10, and 5, respectively. Assign-

ment 1 had the highest number of initial CQIs

because it was the first time the students inspected

CQpy: A Handy Code Quality Inspector for Online Python Programming Courses 1545

Table 1. CQIs in the 2019 students’ programs

Effect Violated reason Freq. Example CQpy Suggestion

PyRDB1 Naming variables, functions, and
classes without following naming
conventions

812 Fig. 4(a) Rename the element under the
regulations

PyRDB2 Declaring variables or functions that
are not used in the code

378 Fig. 4(b) Remove the unused code

PySEC1 Using keywords such as return,
break, and pass improperly

212 Fig. 5(a) Modify or remove the
corresponding code

PySEC2 Leaving an empty code block 106 Fig. 5(b) Remove or fill the empty code block

PyPFM1 Conducting too many statements
into one function or conditional
expression

89 Fig. 6(a) Split the code into separate functions

PyPFM2 Using the same condition in an if-
else statement

91 Fig. 6(b) Merge or change one of the
consequents

PyPFM3 Splitting a collapsible conditional
statement into two expressions

40 Fig. 6(c) Merge the statement with the
enclosing one

Fig. 4. Examples of PyRDB CQIs.

Fig. 5. Examples of PySEC CQIs.

their code quality. This number was reduced in the

following two assignments because CQpy teaches

students to pay attention to their code quality.

However, the numbers of initial CQIs in Assign-

ments 4 and 5 were 9 and 11, respectively, which

were more than the number of initial CQIs in
Assignment 3, and do not fit the explanation at

first glance. The reason is that these assignments

cover more advanced concepts (such as inheritance,

subclasses, and exception handling), which cause

additional code quality difficulties when novice

students develop their programs. With the help of

CQpy, students could eventually reduce the number

of CQIs to improve their code quality in the
advanced assignments.

Fig. 7(b) illustrates the decrease in CQIs by grade

Xiao Liu and Gyun Woo1546

Fig. 6. Examples of PyPFM CQIs.

Fig. 7. Decrease in the number of CQIs for different categories.

level. At the initial submission, freshman (23 CQIs)

and sophomore (19 CQIs) students introduced

more CQIs than junior (7 CQIs) and senior students
(5 CQIs). Such a finding indicates that after acquir-

ing code-quality-related knowledge, the students

who already had programming knowledge were

more adept in following the coding conventions

than the beginners. Additionally, the decrease in

CQIs for the freshman and sophomore students was

more obvious than the smooth decrease for the

junior and senior students. Such a result indicates
that, although the beginners made many mistakes

in their earlier submissions, they could eventually

fix the CQIs through CQpy.

In theCQI decrease by collegemajors in Fig. 7(c),

the students majoring in CSE introduced 9 CQIs,

the fewest at the initial submission, followed by

those majoring in other engineering fields (12 CQIs)

and by thosemajoring in science subjects (15 CQIs).
This is reasonable since CSE students take more

programming-related courses than non-CSE-

majoring students. Although engineering majoring

students have fewer programming courses than

CSE students, they paid particular attention to

quality control. The science majoring students

seemed to have difficulties in fixing CQIs at their

first and second submissions, but they could fix all
CQIs over time.

For all data shown in Fig. 7, at the sixth submis-

sion, the average of the detected CQIs remained less

than one, for some students have fixed all CQIs.We

marked them as 1 in the graph because the number

of CQIs cannot be a fraction. There are 2,217 CQIs

detected in the 2020 online course, with 2,016 of

them being resolved by students. The number of
detected CQIs in 2020 is considerably larger than

that detected in 2019 because students usually could

not resolve all the detected CQIs in consecutive

resubmissions. Therefore, some remaining CQIs

were counted more than once in CQpy with each

subsequent submission. The number of CQIs iden-

tified in the students’ first submission was 1,822 in
2020, which was similar to that in 2019. On average,

91% of CQIs detected in the initial submission were

solved by the sixth submission.

Fig. 8(a) presents the comparison of the CQIs

detected and resolved in the 2020 online course,

along with the CQIs detected from the 2019

Python course. The same classifications of CQIs

in the two courses indicate that students com-
mitted common mistakes in readability, security,

and performance.

Fig. 8(b) depicts the proportions of students in

the 2020 online course that resolved the identified

CQIs according to the grade level andmajor. As the

grade level increases, the proportion of resolved

CQIs also increases. Additionally, the highest pro-

portion of resolved CQIs is that for CSE students
for all grade levels, followed by those for engineer-

ing and science students.

To determine the level of significance of the effect

of the students’ grade level and major on the

proportion of resolved CQIs, we used two-way

analysis of variance to analyze the dependence of

student groups using CQpy in terms of resolving the

CQIs. For each of the 62 students who used CQpy
at least once, we collected the program in which the

student had resolved the most CQIs to represent

his/her best performance in terms of code quality.

Table 2 lists these students according to their grade

level and major.

Fig. 9 presents the analysis results based on the

distribution of the percentage of resolved CQIs

according to the grade level and major. Our null
hypothesis (H0) is that the students can resolve their

CQIs regardless of their grade level and major, and

the alternative hypothesis (H1) is that the students’

ability to resolve CQIs is affected by their grade

CQpy: A Handy Code Quality Inspector for Online Python Programming Courses 1547

Fig. 8. Detected and resolved CQIs in both in-person and online courses.

level and major. We considered � = 0.05 as the

significance level.

As shown in Fig. 9(a), the distribution of the

percentage of resolved CQIs based on the grade
level carries a significance of p = 0.015026 < 0.05 =

�, which indicates that the grade level is a significant
factor affecting the resolving of CQIs by students.

Fig. 9(b) depicts that the significance of the dis-

tribution of the percentage of resolved CQIs based

on the major is p = 0.000198 < 0.05 = �, which
indicates that the students’ major is also a signifi-

cant factor that affects their resolution of their
CQIs. We can reject H0 and accept H1 based on

the p-values obtained. Moreover, we can conclude

that the students’ majors have a greater impact than

their grade levels on the resolution of CQIs.

4.3 RQ3: Students’ Perspectives on using CQpy

Because the questionnaire offered at the end of the

2020 online course was not mandatory, only 71

students (30 CSE students, 22 engineering students,

and 19 science students) participated, and each of

them answered nine questions. The major and the

grade-level distribution of the students that parti-

cipated in the survey nearly matches the overall

pool of students registered in the course. Hence, the
results of the questionnaire are adequately equita-

ble and representative for us to understand the

students’ overall perspective on using CQpy.

The first five questions enquired about the level of

agreement in using CQpy to improve their code

quality. The levels represented students’ attitudes:

strongly disagree, disagree, agree, and strongly

agree. Fig. 10 shows the students’ responses. Impor-

tantly, 91.5% of students agreed that CQpy moti-

vated them to pursue better code quality (Q1).

CQpy allowed students to submit their programs

several times to improve code quality, and 97.2% of

students liked this feature (Q2).Moreover, 83.1% of
students agreed that the detailed feedback and

suggestions from CQpy helped them improve their

code quality (Q3). During the online course, 87.3%

of students agreed that CQpy helped them learn

about code quality (Q4). Finally, 91.5% of students

agreed that CQpy was a good system for learning

about code quality (Q5). On average, the percen-

tage of agreement on Q1 to Q5 was 90.12%, and the
disagreement was 9.88%.

In addition, three closed questions (with yes/no

answer) were included to examine the progress in

code quality learning and future intentions of using

CQpy. Fig. 11 presents the students’ responses to

these questions. In Q6, 80.3% of students did not

have any previous knowledge related to code qual-

ity. This result indicates the lack of code quality
education in the past programming courses and

explains the numerous CQIs described in Section

4.1. After using CQpy, 81.7% of students confirmed

that they had learned code-quality-related knowl-

edge (Q7). Furthermore, owing to good user experi-

ence with CQpy, 84.5% of students showed that

they want to use CQpy in the next programming

course (Q8).
Finally, Q9 was an open-ended question asking

the students to provide recommendations on

improving CQpy. Some students mentioned that

they wanted to practice more with CQpy:

‘‘It will be more helpful to improve programming quality
if the system allows us to practice more, even if the
deadline of an assignment has passed or we have
exceeded the number of submissions.’’

Some students mentioned the inspection speed of

CQpy requesting performance improvement:

Xiao Liu and Gyun Woo1548

Table 2. Number of students who used CQpy

Grade level CSE Engineering Science Total

Freshman 10 0 0 10

Sophomore 8 5 6 19

Junior 6 8 5 19

Senior 5 5 4 14

Fig. 9. Statistical significance of grade levels and majors on the percentage of resolved CQIs

‘‘The code quality inspection helped me to improve my
programming quality, although I had to wait for one
minute to get the feedback. It will be more efficient if the
function can be executed in a few seconds.’’

Those students providing no recommendations

indicate that they did not find any inconvenience

in using CQpy. A few students expressed that the

course was too difficult for them and that they

rarely used CQpy for code quality inspection.

5. Discussion

5.1 Benefits of the Online Code Quality Inspection

Method

Most of all, the timely feedback with automatic

suggestions of CQpy can help students improve

code quality in self-study. This feature is particu-

larly effective for online programming courses,

where it is difficult for instructors to give face-to-
face feedback to students. Students can submit

source codes, assess correctness, inspect code qual-

ity, and learn-and-fix CQIs in self-study without the

intervention of the instructor. Such an advantage

provides a favorable learning experience and posi-

tive educational effects, especially in online pro-

gramming courses.

The answer to RQ3 shows that most students
have positive perspectives on the user experience of

CQpy and confirmed that they gained code-quality-

related knowledge after taking the online course.

This is a strong recognition of the contribution of

our method. Letting students know their mistakes

with proper suggestions immediately once they

submit their programs can encourage them to

CQpy: A Handy Code Quality Inspector for Online Python Programming Courses 1549

Fig. 10. Level of agreement regarding the user experience of CQpy from the students’ perspective.

Fig. 11. Students’ perspectives on code quality learning and their future intentions of using CQpy.

pursue better code quality. It is more efficient than

the traditional ‘‘knowledge-inculcation’’ lecturing

approaches for teaching code quality.

Furthermore, the detected CQIs in students’

programs can be reviewed online in real-time,

which helps the instructor to monitor the students’
submissions in a timely manner. Assuming that the

manual assessment of the code quality of a program

by a human grader requires ten minutes on average,

it will take more than 153 hours to mark the

mistakes, write explanations, and make appropri-

ate suggestions for 920 programs. Using CQpy, the

cumbersome task of assessing the code quality of

students’ programs can bemademuch easier for the
instructors. Students can submit their programs

and need to wait just a few minutes to receive

detailed feedback automatically. Additionally, the

progress of students resolving CQIs can also be

monitored by the instructor if the students are

willing to participate in pair-programming, which

is helpful to timely discover the progress of students

learning code quality.

5.2 Comparison of the Pre-, during, and post-

COVID-19 Strategies

The comparison of the pre-, during, and post-

COVID-19 teaching strategies are presented in

Table 3. In pre-COVID-19, the teaching method

for code quality mainly depends on human interac-
tions, including themanual evaluation andmarking

right or wrong issues with a demonstration on

typical source codes. During COVID-19, CQpy

has helped most of the students to improve their

programming skills related to code quality by

pinpointing the location of issues with detailed

suggestions.

After teaching code quality in the 2020 online
course, we realized that there are advantages in

both teaching strategies used pre-COVID-19 and

during the COVID-19 pandemic. There were a few

students who had difficulties in using CQpy (Sec-

tion 4.3, Q9), and demonstrations are still needed

for introducing CQIs and showing how to resolve

them. We should also allow the students whose

programs are either overdue or partially correct to
use CQpy for addressing their unsolved CQIs. In

addition, we are going to apply certain practices of

pair-programming for students with the instructor/

teaching assistant (TA) as supplementary feedback

to help students become familiar with using CQpy

to resolve CQIs.

5.3 Instructors’ Points Of View on CQpy

As expressed by the instructors who taught Python

programming in both semesters (2019 in-person

and 2020 online), the current CQpy is also effective

for programming experts. Even if the naming rule is

simple enough, it is easy to violate as some simple

predefined names, such as min and max, can be

easily used as variable names. Therefore, the use of
CQpy is highly recommended, even for the devel-

opment procedure. Code quality assessment is

facilitated because the actual assessment time is

significantly reduced from tens of minutes to a few

minutes by using CQpy.

To make CQpy viable during the development

procedure, the output correctness check should be

bypassed. To do this, making a separate sandbox
session solely for quality assessment can be a quick

solution. Because the syntax and the static seman-

tics of the code should be checked before the quality

assessment procedure, the compilation procedure

should be performed before CQpy. The compila-

tion module (py_compile) of the standard Python

distribution could be used for the compilation step.

We devoted three months to develop the proto-
type of CQpy and spent another three months

testing its functionality and verifying its practicality

by inspecting the CQIs in students’ programs from

their past submissions. Therefore, the construction

of CQpy took approximately six months. Consider-

ing our familiarity with the automatic judge neoE-

SPA, it may require a few additional months to

make a workable code quality inspector like CQpy
for other automatic judges.

5.4 Teaching Methods post-COVID-19

The answer of RQ2 shows that students usually

have a certain number of CQIs in their first sub-

mission, but most of them could eventually solve

the CQIs by referring to the feedback from CQpy.

As shown in Fig. 7(a), difficult assignments could
cause more CQIs than the previous assignments.

However, students could eventually resolve these

Xiao Liu and Gyun Woo1550

Table 3. Comparison of Pre-, during, and post-COVID-19 Teaching Strategies

Pre-COVID-19 During COVID-19 Post-COVID-19

Teaching method Demonstration in lectures Applying CQpy to correctly
working code

Demonstration in lectures and
applying CQpy to partially
correct code

Evaluation approach Manual evaluation Automatic evaluation Automatic evaluation

Feedback form Marked as correct or wrongwith
handwritten notes

Detailed descriptions for CQIs
and automatic suggestions as
solutions

The form of During-COVID-19
and pair-programming with
instructor/TA

CQIs as well. In retrospect, the diverse spectrum of

difficulty range of problems can open more oppor-

tunities for code quality education to a wide range

of students.

As shown in Figs. 7(b) and 7(c), the code quality

improvements achieved by different grade levels
and majors of students prove that the lack of a

programming background does not limit students

in learning code quality. This finding drives us to

consider that it would probably be better if we apply

CQpy as early as possible in programming educa-

tion.

Although online courses may limit the teacher/

student face-to-face interaction, it is still practical
to teach students about code quality through online

conferencing tools such as ZOOM. After the mid-

term exam of the 2020 online course, we recruited

several volunteers to try to solve the exam problems

with the instructor in a form of pair-programming.

The volunteers were asked to construct programs in

a collaborative environment, and the instructor

guided them to resolve the CQIs of their programs
using CQpy. These practices were posted as demon-

strations1 of the introduction to use CQpy for the

rest of the students.

In addition, we analyzed the volunteers’

improvement in code quality after the pair-pro-

gramming exercises. We found that students could

resolve more CQIs and obtain more bonus points

(20 points) than before (10 points or less). This is an
encouraging result for the extension of such pair-

programming opportunities during and after the

COVID-19 pandemic in additional practice ses-

sions with TAs, given that enough TAs are avail-

able.

5.5 Recommendations for Teaching Code Quality

The answer of RQ1 shows that the most frequent

CQIs in students’ programs were caused by their

lack of Python syntax knowledge. Although such

CQIs may not affect the program’s correctness,

students will make similar mistakes when they

learn other programming languages if they are not
reminded to improve code quality. Furthermore,

once the CQIs remain in their programming para-

digm, students may write low-quality software

when they become developers or even face difficul-

ties in finding jobs after graduating. Therefore, it is

necessary to teach students code quality manage-

ment either through lectures or automatic tools in

programming courses.
The classifications of the common CQIs in Table

1 can help instructors locate common weak points

in code quality and enhance the corresponding

training in programming education. The examples

of bad code quality can be used in the lectures for

reminding students to avoid such mistakes when

they construct programs. The suggestions of resol-

ving CQIs also can be taught to students for

improving the code quality of their programs.
By utilizing CQpy, most of the students can gain

code-quality-related knowledge and improve their

code quality in self-study (Figs. 7 and 8). The

approach of allowing students to continuously

submit their programs, fix CQIs, and resubmit the

revised programs can improve the efficiency of an

online Python programming course. We believe

that such a self-study approach will be practical
for other programming courses as well.

We investigated the recommendations (Q9) given

by the students who had negative perspectives on

Q3 (Fig. 10) and Q7 (Fig. 11) and thought that the

deadline for each assignment was too tight to

submit it multiple times for fixing CQIs. The

students who had negative perspectives on Q4

(Fig. 10) and Q8 (Fig. 11) thought it was unfair
that only the 100% correct programs could pass the

code quality inspection. Therefore, the code quality

inspection tools such as CQpy need to be more

flexibly applied to partially correct programs.

6. Conclusion

Teaching code-quality-related knowledge is diffi-

cult through traditional ‘‘knowledge-inculcation’’

lecturing approaches in programming education

because students require continuous practice for

learning programming skills. Further, we cannot

predict all potential CQIs in students’ programs.

We implemented an automatic quality inspector,

namely CQpy, and conducted a study on applying
CQpy as a subsystem of an online judge for check-

ing code quality when students submit their Python

programs for assessment.

The improvements in students’ programming

skills during the COVID-19 pandemic indicate

that CQpy played a significant role in educating

them on CQIs in programming. Moreover, this

empirical study shows that the approach of apply-
ing CQpy can help students in different grade levels

and majors. Most of the students showed positive

responses to using CQpy, and even a few negative

responses seem to arise from students’ eagerness to

improve the quality of their programs, even if they

are partially correct. We believe that our self-

learning approach facilitated by CQpy is not only

effective for online courses but would also be help-
ful during in-person courses once the COVID-19

pandemic is over.

In the future, we plan to extend the CQpy in both

online and in-person programming courses to help

CQpy: A Handy Code Quality Inspector for Online Python Programming Courses 1551

1A pair-programming video is posted at https://youtu.be/
ewKohpxXh7c, where the CQpy demonstration starts at 18:48.

students learn different programming languages.

Once extended, we can publish it as an open-

source program with a license compatible with

SonarQube. We will enhance code-quality-related

education in the programming lectures based on the

classified common CQIs. We also intend to analyze

the effectiveness of CQpy on a diverse spectrum of

difficulties of assignments. Based on this analysis,

we could introduce policies of allowing CQpy in

complicated programming assignments, especially

on deciding the due dates and the policy of applying

CQpy to partially correct programs.

References

1. S. Wasik, M. Antczak, J. Badura, A. Laskowski and T. Sternal, A survey on online judge systems and their applications, ACM

Computing Surveys, 51(1), pp. 1–34, 2018.

2. H. Keuning, B. Heeren and J. Jeuring, Code quality issues in student programs, in Proceedings of the 2017 ACM Conference on

Innovation and Technology in Computer Science Education, Bologna Italy, July 3–5, pp. 110–115, 2017.

3. L. Jiang, R. Rewcastle, P. Denny and E. Tempero, CompareCFG: Providing Visual Feedback on Code Quality Using Control Flow

Graphs, in Proceedings of the 2020 ACMConference on Innovation and Technology in Computer Science Education, Virtual, June 17–

18, pp. 493–499, 2020.

4. K. K. Zaw, H. W. Hnin, K. Y. Kyaw and N. Funabiki, Software Quality Metrics Calculations for Java Programming Learning

Assistant System, inProceedings of the 2020 IEEEConference on Computer Applications, Yangon,Myanmar, February 27–28, pp. 1–

6, 2020.

5. Y. Wang, H. Li, Y. Feng, Y. Jiang and Y. Liu, Assessment of programming language learning based on peer code review model:

Implementation and experience report, Computers & Education, 59(2), pp. 412–422, 2012.

6. U. Costantini, V. Lonati and A. Morpurgo, How plans occur in novices’ programs: A method to evaluate program-writing skills, in

Proceedings of the 51st ACM Technical Symposium on Computer Science Education, Portland ORUSA, March 11–14, pp. 852–858,

2020.

7. D. Silva, I. Nunes and R. Terra, Investigating code quality tools in the context of software engineering education, Computer

Applications in Engineering Education, 25(2), pp. 230–241, 2017.

8. D. Kirk, T. Crow, A. Luxton-Reilly and E. Tempero, On Assuring Learning About Code Quality, in Proceedings of the Twenty-

Second Australasian Computing Education Conference, Melbourne VIC Australia, February 3–7, pp. 86–94, 2020.

9. M. Stegeman, E. Barendsen and S. Smetsers,Designing a rubric for feedback on code quality in programming courses, in Proceedings

of the 16thKoli Calling International Conference on Computing EducationResearch,Koli, Finland, November 24–27, pp. 160–164,

2016.

10. L. W. Dietz, R. Lichtenthäler, A. Tornhill and S. Harrer, Code Process Metrics in University Programming Education, in

Proceedings of the 2nd Workshop on Innovative Software Engineering Education, Stuttgart, Germany, February 19, pp. 23–26, 2019.

11. R. Kasahara, K. Sakamoto, H. Washizaki and Y. Fukazawa, Applying Gamification to Motivate Students to Write High-Quality

Code in Programming Assignments, in Proceedings of the 2019 ACMConference on Innovation and Technology in Computer Science

Education, Aberdeen, UK, July 15–17, pp. 92–98, 2019.

12. S. H. Kan, Metrics and models in software quality engineering, Addison-Wesley Publishing Co., 75 Arlington Street, Suite 300

Boston, MA USA, p. 25, 2002.

13. V. Lenarduzzi, A. Sillitti andD. Taibi, A survey on code analysis tools for softwaremaintenance prediction, in Proceedings of the 6th

International Conference in Software Engineering for Defence Applications, Rome, Italy, June 7–8, pp. 165–175, 2018.

14. G. Campbell and P. P. Papapetrou, SonarQube in action, Manning Publications Co., 20 Baldwin Road PO Box 761 Shelter Island,

NY, p. 7, 2013.

15. D. Falessi and A. Voegele, Validating and Prioritizing Quality Rules for Managing Technical Debt: An Industrial Case Study, in

Proceedings of the 2015 IEEE 7th International Workshop onManaging Technical Debt, Bremen, Germany, October 2, pp. 41–48,

2015.

16. M. Foucault, X. Blanc, J. R. Falleri and M. A. Storey, Fostering good coding practices through individual feedback and

gamification: an industrial case study, Empirical Software Engineering, 24(6), pp. 3731–3754, 2019.

17. P. K. Sevella, Determining the barriers faced by novice programmers, Doctoral dissertation, Texas A&M University-Kingsville,

2013.

Xiao Liu is a PhD candidate in the Department of Electrical and Computer Engineering at the PusanNational University

(PNU), Republic of Korea. He obtained both his Bachelor’s and Master’s degrees in Computer Science and Engineering

from PNU. He developed an online program judging system called neoESPA. He has been maintaining neoESPA for

evaluating students’ assignments and serving as a Teaching Assistant for several programming courses since 2016. His

main research interests include web development, program analysis, and cloud computing.

Gyun Woo is a Professor in the School of Computer Science and Engineering at the Pusan National University (PNU),

Republic ofKorea.Dr.Woo received his PhD inElectronic Engineering andComputer Science from theKoreaAdvanced

Institute of Science andTechnology (KAIST), where he took both his BS andMS inComputer Science.Dr.Wooworks on

program analysis and language design, especially for beginners. He is also interested in code security, functional reactive

programming, and robot programming.

Xiao Liu and Gyun Woo1552

