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Currently STEM education evolves rapidly towards a higher integration either among separate constituents (Science,

Technology, Engineering andMathematics) or by adding the new aspects, such as social. This paper aims at extending the

science dimension in STEM-driven Computer Science (CS) education by integrating (through modelling) Data Science

(DS) concepts into the high school curriculum. Three types of models and modelling (conceptual, feature-based, and

physical modelling) incorporated into a coherent methodology form the background of the proposed approach. Models

and modelling, as well processes with data, are essential attributes of engineering education too. The core result of this

paper is a novel three-layered framework outlining a series of modelling processes to support integration along with the

assessment model. The latter includes the Revised Bloom’s taxonomy combined with computational and scientific

thinking skills. The use of this approach in the real educational setting and provided experiments show that discovered

models ensure a seamless integration of theDS component into STEM-drivenCS education. This approach contributes to

the increased students’ motivation to learn due to the interesting real-world task and active learning of engineering aspects

through constructing and testing own experimental system and data processing. The approach also enforces the learner’s

interdisciplinary knowledge by computational, scientific, and designing skills so important for engineering activities.
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1. Introduction

The Next Generation Science Standards (NGSS)
direct educators towards finding meaningful and

engaging ways to teach science content through

incorporating engineering practices as well as com-

puting and computational thinking [1]. More spe-

cifically, science and engineering are an integral part

of STEM (Science, Technology, Engineering and

Mathematics) education, one of the most striking

educational movements in recent years worldwide
[2]. The STEM movement has emerged as an

interdisciplinary approach involving teaching

science, technology, engineering, and mathematics

under one roof. Its basic concept is to provide

teaching and learning through real-world tasks

solving with the focus on obtaining the interdisci-

plinary knowledge and skill through inquiry-based

pedagogy [3]. In the digital age, the integrated
interdisciplinary knowledge is of the highest value.

It is possible to get these by studying STEM

disciplines. Therefore, STEM educational research

and practice evolve towards higher-level of effi-

ciency and widening the scope of integration [4–8].

In this context, Computer Science (CS) education

stands as one of themost important components for

integrated STEMeducation. It is so, because CS is a
cross-disciplinary field and brings computing

knowledge practically needed for all. In addition,

CS is a catalyst of providing computational think-

ing skills that, according to J. Wing, ‘‘will be a
fundamental skill used by everyone in the world by

the middle of this century’’ [9]. Therefore, since

2015 CS has become an integral part of STEM

education in the USA educational system [10].

STEM components and many other fields out-

side STEM (if not all) rely on problem solving. No

matter how problems are different, one common

attribute combines all fields while we start dealing
with problem solving. That attribute is data. In fact,

any human activity relies on using data. What is

happening now due to the ever-growing technolo-

gical advancements is the continuous increase in the

amount and accessibility to data. Therefore, we are

gradually entering into the era of massive sets of

data called ‘‘big data’’ now [11]. Before using, data

should be first extracted, collected, stored, ana-
lysed, classified, and processed in a variety of

ways to be useful for multiple applications. Practi-

cally those activities are independent upon applica-

tions, and they therefore are a matter of Data

Science (DS). DS is an interdisciplinary subject

that uses scientific methods, processes, algorithms

and systems to extract knowledge and insights from

a variety of structural and unstructured data [12]. In
addition, DS uses theories and techniques taken
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frommany fields such asmathematics, statistics, CS

and others. Thus, the relationship among STEM,

CS and DS is evident. Papers [13, 14] treat DS as a

‘‘fourth paradigm’’ of science (empirical, theoreti-

cal, computational and now data-driven) and

assert, ‘‘Everything about science is changing
because of the impact of information technology’’

and the data deluge.

In the context of the ever-growing role of data

and its inherent relationships to science, engineer-

ing, and education, it is highly important to extend

the integrative aspects of STEM education by

introducing the DS concepts and practices into K-

12 classrooms. To do that, in this paper, we discuss
an approach and its implementation in the real

educational setting. The proposed approach also

includes a methodology based on conceptual mod-

elling combined with feature-based and physical

modelling. Note that modelling is the core in

STEM, CS and science educational research and

practice [15–17] as well in engineering education [7,

8]. The aim of this paper is to extend and enforce the
previously researched STEM-driven CS education

(presented in the book [15]) by adding the core

concepts taken from DS. The contribution of this

paper is two-fold: (i) the general framework for the

seamless integration of DS concepts within pro-

cesses of STEM-driven CS education and (ii) a set

of modelling processes and model-driven compo-

nents to implement the proposed framework in
practice.

Next, we analyse the related work.

2. Related Work

Here, we focus on most essential aspects of

integrated STEM and CS education in the context
of K-12 (Stream A) and Data Science (DS) topics

(Stream B).

Stream A. Nadelson & Seifert [18] define inte-

grated STEM as the seamless amalgamation of

content and concepts taken from different STEM

disciplines. The integration appears in ways such

that ‘‘knowledge and processes of the specific

STEM disciplines are considered simultaneously
without regard to the discipline, but rather in the

context of a problem, project, or task’’. The report

prepared by National Academy of Engineering and

National Research Council (USA) [19] defines

broadly the integrated STEM education in the

context of K-12 through four general features or

subcomponents (Goals, Outcomes, Nature and

Scope of Integration and Implementation). These
features, while considered in practice, are to be

interdependent.

Hasanah [20] provides a literature review that

focuses on four key definitions based on the selected

studies: (a) STEM as discipline, (b) STEM as

instruction, (c) STEM as field, and (d) STEM as a

career. According to the author, STEMdiscipline is

a fundamental part of STEM education because

most of the initiatives in STEM education would be

related to the disciplines. Kubat & Guray [21]
assume that these four disciplines are to be taught

as a holistic and an undistinguished collective,

rather than teaching these four disciplines indepen-

dently. Thibaut et al. [22] propose the framework

containing five key principles: integration of STEM

content, problem-centred learning, inquiry-based

learning, design-based learning and cooperative

learning. According to the authors, this framework
has several benefits, such as its applicability in the

classroom and the possibility to describe integrated

STEM on multiple dimensions. In addition, this

paper calls for further research to investigate the

effects of integrated STEM on students’ cognitive

and affective learning outcomes.

Hobbs et al. [23] reveal four models of STEM

implementation based on the discipline paradigm:
(1) ‘‘Four STEM disciplines are taught separately’’;

(2) ‘‘Teaching all four but more emphasis on one or

two’’; (3) ‘‘Integration at least three disciplines’’; (4)

‘‘The integration of all four subjects by a teacher’’.

Typically, acquiring of scientific knowledge goes

through solving problems that are feasible, worth-

while, contextualized, meaningful, ethical, and sus-

tainable [24]. In addition, solving of authentic
problems transcends a single discipline. Hence,

problem solving is an activity intrinsic to many (if

not all) domains and, thus, it can serve as a general

and common approach to teaching. Therefore,

problem-solving must be seen as a multidisciplinary

challenge along with the corresponding practices

and processes, for example, in STEM education, in

which different domains like science, technology,
engineering, mathematics and computer science are

involved simultaneously. To do that systematically,

Priemer et al. [25] present a fine-grained, integrated,

and interdisciplinary framework of problem solving

for education in STEM and CS by cumulatively

including ways of problem solving from all of these

domains. This framework includes twelve activities

represented as processes within the given flowchart
to foster students’ problem-solving competences.

These competences (e.g., to identify problems, to

review related information, to develop and evaluate

options, to implement solutions and many others)

are often seen as important twenty-first-century

skills [26] along with computational and scientific

thinking [9].

Yadav et al. [27] discuss the key computational
thinking (CT) constructs, such as algorithms,

abstraction, and automation in the context of

provided educational reforms (Common Core and
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Next Generation Science Standards). In addition,

this paper provides specific means that would allow

teachers to embed these ideas in their K-12 class-

rooms, including recommendations for instruc-

tional technologists and professional development

experts for infusing CT into other subjects. Accord-
ing to this paper, CT ideas are key to moving

students from merely being technology-literate to

using computational tools to solve problems.

The report [28] describes the policy trends and

national (the USA) momentum over the past 12

months (meaning the year 2018) in computing

education. It contains (i) an analysis of national

and state trends in advanced placement (AP) com-
puter science (CS) participation by gender and race,

including the relationship with policies; (ii) a policy

summary for each of the nine policies displaying a

map of the states that have enacted the policy,

including highlighted states and related resources.

The next few works deal with models and model-

ling more specifically. Hallström and Shornbörn

[16] call for the reinforcement of models and mod-
elling for authentic integrated STEM education. It

is so because models and modelling are important

tools for problem solving, prediction, decision

making, and communication and have been studied

in various fields, especially in science, mathematics,

and engineering. In addition, the authors provide

an extensive analysis of types, roles, functions,

strategies, and recommendations for using models
and modelling in the context of authentic STEM

education and literacy. Authors indicate on the

following types of models used: the concrete; the

verbal; the symbolic; the visual; the gestural and

physical. However, this list of models is not com-

prehensive. In the context of our research, it should

bementioned feature-based variability modelling in

e-learning [29–31]. Note that this approach has
been borrowed from software engineering. One

can get more knowledge on pedagogical aspects of

using models and modelling in [32] and conceptual

modelling in [33].

Stream B. Nowadays, we are witnessing a new

wave of the technological revolution resulting in

producing an innumerable quantity of data that

requires sophisticated tools and skills to be ade-
quately analysed, processed, and interpreted. The

Data Science (DS) community describes this situa-

tion broadly by the term ‘‘data deluge’’ [13, 14].

Researchers define DS differently either as ‘‘an

interdisciplinary subject that uses scientific meth-

ods, processes, algorithms and systems to extract

knowledge and insights from a variety of structural

and unstructured data’’ [12], or as an emerging area
that ‘‘involves principles, processes, and techniques

for understanding phenomena via the (automated)

analysis of data.’’ [34]. Typically, DS uses theories

and techniques drawn from many fields, including

mathematics and computer science. Job opportu-

nities in this sector are currently booming and this

growth is expected to continue during the next years

[35]. Considering these opportunities for young

generation, educational experts are now investigat-
ing different ways to introduce DS in schools [36].

However, research concerned with the teaching of

DS or Big Data (BD) concepts in secondary educa-

tion is currently in its early stages. As indicated by

[36–38], the studies are more extensive in universi-

ties, business schools or other profession-oriented

institutions. Nonetheless, experts try to formulate

examples of DS curricula for schools and address
the different aspects involved in teaching DS. In a

narrow sense, DS involves a combination of three

scholastic subjects, i.e. mathematics, statistics, and

computer science. Therefore, [39–41] present DS as

an additional component of these subjects, provid-

ing an opportunity to modernize their content and

giving to students an opportunity to understand

how BD affects their own life. Putting this into
practice, however, has revealed some considerable

shortcomings. The first arises from teachers’ com-

petences since they appear to lack statistical think-

ing. Thus, a proper training has been suggested [42]

and adopted in one pilot project (‘‘The Mobilize

Introduction to Data Science (IDS)’’) [39]. None-

theless, the lack of a statistical mind set should not

be underestimated, as other studies noted a weak
scientific and statistical reasoning also in students.

It appears that secondary school students struggle

with interpreting and using statistical information,

understanding variability in data, and extracting

pertinent information from graphical representa-

tions [43]. To overcome these barriers, it is impor-

tant to develop and adopt proper teaching models.

For example, the PPDAC (Problem – Plan – Data –
Analysis – Conclusion) cycle has been adopted as a

teaching method in the previously mentioned IDS

project, but it has proven quite challenging for both

teachers and students [39].

Another aspect of teaching DS is its relationship

with CS, which provides the necessary toolbox to

perform anyDS related activity. Obviously, when it

comes to design a DS curriculum for secondary
schools, it is important to know which software

should be used for teaching DS in schools in this

regard. Decisions can be based on which notions or

skills students are expected to learn, hoping that

teachers have the adequate digital skills [44]. This

consideration leads to the question whether DS

classes should be aimed at teaching more techni-

cal/digital skills, or they should be focused more on
teaching the concepts? Most projects and curricula

designed seem to reach for an even balance between

theory and practice, as all of the DS implementa-
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tions analysed devote considerable time to building

the knowledge and developing the adequate skills

[41, 45]. However, theRoyal Society report presents

the potential for DS to improve teaching also in

other subjects beside CS, i.e. statistics and infor-

matics [42]. In fact, to enlarge the benefits of
teaching DS in schools, a good idea is connecting

DS teaching with other data-driven subjects, such

as biology, history, and geography. In this way, DS

could also provide larger benefits in promoting a

more data-driven culture by showing the applica-

tion of mathematics to specific questions in science.

Other studies highlight the importance of balancing

the teaching of data applications with other mod-
ules concerned with societal and ethical issues [46],

in order to make students aware of the many issues

surrounding BD (privacy, confidentiality, transpar-

ency, identity, etc.) and to spread a culture of

responsible data use. Discussing about DS in

schools could be also an opportunity to raise

more aware citizens who understand today’s tech-

nology and know-how to point to their unethical
applications, which, as some publications have

shown, can be hard to see and understand [47].

Students should be aware about benefits of teaching

and learning DS in high school. That increases

motivation to learn. One factor is that data scien-

tists are among the most requested professionals

along with STEM in the job market. However, this

is relevant for presenting DS not only as a job
outlet, but also as a steady and exciting subject.

Now the most crucial areas of data-centric applica-

tions relate to security, energy, social wellbeing, and

health issues.

These are just some of many examples proving

how pervasive BD and DS have become the reality

in our surrounding. By incorporating DS into other

data-driven subjects, new insights may be investi-
gated, enriching the general teaching offer. Stu-

dents, for example can also examine the threats of

wildfires or the ways social media are tracking their

data, learning how to apply math to real-world

issues [48]. The possibilities are endless indeed.

This multidisciplinary and the far-reaching applica-

tions make DS also an interesting subject of inves-

tigation.
This overview of the related work, as presented in

each category, is by no means comprehensive.

However, we treat this analysis as sufficient to

support and motivate our approach by summariz-

ing the following.

(1) All analysed educational fields (STEM, Com-

puter Science, and Data Science) provide students

with knowledge and skills that are of the highest
value for current and future young generations in

terms of their professional development and ful-

filling the social-economic needs.

(2) All fields are multidisciplinary in nature; all

rely on real-world problem solving; all of them have

the wide capabilities to develop and enhance such

skills and competences as computational thinking,

scientific thinking, algorithmic thinking, and design

thinking.
(3) The inherent interdependency among these

fields and revealed properties create good precondi-

tions for their integration into a single course.

Therefore, the findings of provided analysis encou-

rage and motivate our approach towards extending

the integrated STEM driven CS education with the

Data Science concepts.

3. Background and Motivation

We aim at broadening the previously researched

approach presented in the book [15]. The basis of

that approach is the use of robotics and smart

devices (sensors, cameras, etc.) possibly connected

to robots to form the smart learning environment
(SLE). The basic teaching content is robot’s control

programs (RCP) to provide learning and teaching

of the CS programming course, by dealing with real

world tasks (their prototypes) and using design-

based, inquiry-based, and project-based pedagogy.

Students are engaged in constructing robots from

available parts, developing/modifying RCP, mod-

elling the functionality of characteristics of smart
devices, representing modelling results. By provid-

ing these activities, students can get different knowl-

edge, identified as S-knowledge, T-knowledge, E-

knowledge, and M-knowledge. Typically, the S-

knowledge is from physics (such as obtaining phy-

sical characteristics of different sensors) and CS

(such as data, algorithms, and RCP). The T-knowl-

edge includes properties and characteristics of
robots such as LEGO [49–50], or micro controllers

such as ARDUINO [51]. E-knowledge is from

mechanical, electrical and software engineering.

M-knowledge comes when students are engaged

in formulating real-world tasks, representing pro-

ject outcomes in their reports, etc. By investigating

the S-, T-, E- andM-components, typically students

work with structured data, such as an instructive
material on how to construct a robot, predefined

values of robots’ physical characteristics (speed,

voltage). Structured data has well-defined format

such as computer’s or robot’s (it has computing and

processing units too) instruction to form a program

in RobotC or other language. However, real-world

tasks and huge number of applications, in their

initial state are concerned with a large amount of
the raw data. Extracting this data from the environ-

ment or existing ecosystems for building applica-

tions (in a variety of fields) is a primary concern. It

may be realized, for example, using the same smart
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devices (programmable sensors) taken from the

smart educational environment [15]. On the other

hand, this process along with the following activ-

ities (for collecting, storing, transforming, and

analysing) is a matter of Data Science (DS). The

latter typically relies on using and exploring a huge
amount of data identified as Big Data (BD). There-

fore, using physical components (sensors and their

supporting hardware and software facilities) from

the previously developed environment and new

ones such as tools for data transforming and

analysis, we can introduce a new STEM compo-

nent, identified as DS-component (meaning Data

Science concepts) to enrich each (S-, T-, E-, M-
component) here. Thus, we can extend the STEM

paradigm by the possibility to deliver the DS-

knowledge, the basic concepts of DS.

4. Research Methodology

The research methodology we use here relies on

using models and modelling as a cornerstone

approach to deal with the integrated STEM educa-

tional research and practice. In this regard, we

present the following excerpt from the paper [16].

‘‘Models and modelling processes can bridge the gap
between STEM disciplines through authentic prac-
tices. Models and modelling should be used as a
means to promote STEM literacy and the transfer of
knowledge and skills between contexts, both in and out
of the STEMdisciplines.Modelling activities can serve
as a meaningful route toward authentic STEM educa-
tion. <. . .> If this vision is to be reinforced, it is of
utmost importance that implementing any model-
based authentic educational activities are underpinned
by evidence-based frameworks and recommendations
for teaching practice’’.

At the core of our approach are DS concepts

modelling in the context of formulated research

objectives. Modelling is a process of identifying

properties and relationships among concepts using

some techniques and approaches. There are many

approaches and kinds of models to provide model-

ling (some indicated in [16], for others see related

work). Regarding our previous work [15] and
considering such properties as intuitiveness of the

graphical notion to express learning variability,

easiness of use, accessibility of tools for checking

models’ correctness, etc., we rely on using the

feature notation and feature-based models [52],

where they are relevant. Here, we combine three

modelling approaches as ingredients of the pro-

posed methodology (conceptual, feature-based,
and physical modelling). By the proposed metho-

dology we mean the development of the conceptual

model and three-layered framework and its imple-

mentation through conceptual, feature-based, and

physical modelling. We discuss them in detail as

follows.

5. Conceptual Model for Introducing DS
Concepts

The conceptual model explains how to introduce

DS concepts for the inclusion them into STEM-

driven CS curriculum topics to provide teaching

and learning processes in K-12 classrooms. Analy-

sis of the domains (DS, STEM, CS) and our
previous research are prerequisites to define this

model. It consists of two parts: STEM components

andData Science (DS) basic concepts. The first part

includes components taken from the STEM acro-

nym and identified as S-, T-, E-, and M-component

here. In Fig, 1, there is the full name of each STEM

component. The second part includes DS processes

(data collecting, data storing, transforming, and
analysing).

The core aspect of this model is the relationship

among STEM components and DS processes.

Table 1 explains this relationship. Note that there

are two science components (S-component). We

identify the first as Science and the other – as

Computer Science (CS). Here, by Science we mean

one, two or all from the list of subjects (Physics,
Biology, and Chemistry). What aspects of these

subjects we need to cover that depends on the

real-world tasks and learning objectives? For exam-

ple, human health monitoring tasks (e.g., pulse,

temperature measurement, etc.) more relate to

biology while tasks dealing with monitoring of the

environment more relate to chemistry. Construct-

ing an experimental system for collecting data is a
matter of engineering. Note that the non-empty

element of Table 1 defines this relationship by

informally stating what activities are taken into

consideration and therefore what kind of knowl-
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edge it is possible to extract (implicitly) and then to

deliver for learning.

6. Three-Layered Framework

Here, we present the next part of our methodology-

the three-layered framework (Fig. 2). It consists of

three layers, i.e. top, intermediate and implementa-

tion. The top layer uses conceptual model (Fig. 1),

curriculum requirements regardingDS topics and is

responsible for the development of the DS model
and SLE extension. The intermediate layer inter-

preted as ‘‘a generalized model of pedagogical

domain’’, stands for identifying the real world

task, models of learning activities and processes,

including the assessment model development.

Finally, the implementation layer describes the

scenario on how the processes and activities are to

be implemented. Two-sided fat arrows identify the

possible feedbacks among layers. We define the

internal part of each layer through a set of sub-
processes enumerated from 1 to 8 in Fig. 2. We

define each sub-process by its functionality along

with adequate inputs and output. Typically, inputs

are of two types within layers: from external sources

(see, shifted arrows in Fig. 2) and internal ones, i.e.

from the other sub-processes. We define the output

of a process as the adequate model. The use of the

framework starts with curriculum analysis, research
objectives analysis, STEM and DS concepts

domain tasks analysis and expected outcomes of

the research. The framework ends with implemen-

ted processes and learning findings.

By this framework, however, we have still pre-

sented our approach conceptually. We clarify the

real value of the proposed methodology and mod-

elling approaches in the next few sections by
explaining each process in more details. Knowing
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Table 1. DS concepts integration into STEM through real world task solving

DS

STEM components

(S-component) CS (S-component) T-component E-component M-component

Data Collecting Origin of data &
Data sources
(context of a real-
world task)

Data collection
programming

Data collection
technologies
applied

Data collecting
modelling and
system designing

Data Storing Storage
technologies
applied

Data storage
infrastructure
modelling and
system designing

Data
Transforming

Characteristics of
data
Transforming
procedures

Representation of
data transforming
procedures

Data Analysing Results of data
analysis

Methods of data
analysis

Data mining
methods/
technologies
applied

Methods of data
analysis

Here, we present Table 1 formally bymatrixT1(i, j), where the index i (i=1 . . 4) representsDS processes and the index j (j=1 . . 5) – STEM
components. Therefore, thismodel reveals whatmethod, technology, or activity (again, implicitly at this level) the actor (teacher, student)
needs to apply to solve the given task. Note that the way for the explicit knowledge delivery will appear gradually at the next stages as we
explain in the following.

Fig. 2. A three-layered framework to present the proposed methodology.



these details, different stakeholders might be inter-

ested in using this methodology too, not only

researchers and teachers. For example, in our

view, the top-layer is most useful for educational

strategists and curriculum designers to form an

educational policy. The intermediate layer provides
the useful information for teachers for curriculum

improvements. The implementation layer is con-

cerned with teachers and learners.

Next, we provide a detailed description of the

proposed methodology.

7. Development of DS Model

As indicated previously, we rely on using feature-

based models borrowed from SWE and CS

domains. The main activity to build these models

is domain analysis. FODA (Feature-Oriented

Domain Analysis) is the primary source that intro-

duces this approach [53]. In Fig. 3, we present the
feature model to define the DS domain aspects that

are relevant to our context. In general, feature

model is the structural representation of a domain
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under consideration in the form of tree-like feature

diagrams.

Feature is a distinguishing characteristic of a

domain, though there are dozens of other defini-

tions of this concept [52]. The latter property

indicates on the universality of this approach to
express the structural aspects of any domain. Fea-

tures (boxes in the diagram) are arranged as parent-

child relationships in the hierarchy to narrow the

scope of domain aspects. One can find more infor-

mation on feature types, constraints, and models

also in [15, pp. 72–98].

Our feature model (see Fig. 3) is abstract, i.e.

without the identification of concrete values of
terminal nodes. This model is a pre-specified set of

DS features in two categories (Data and Processes)

along with relationships and constraints among

features and/or sub-features. Note that we present

constraints ‘requires’ not graphically, but as a text

(for better readability, see Note in Fig. 3). There-

fore, this model outlines a common picture to

understand this domain by educational strategists,
curriculum designers and teachers. It is a semi-

formal abstract representation of the topics for

including them into a curriculum. Note that for

doing so we yet need to add the concrete features

through splitting the given ones. This model pro-

vides researchers, as well teachers and to some

extent students, with the needed resources, though

abstractly (measuring/recording devices, analysing

tools, see adequate feature boxes in Fig. 3) in the

route of solving a given task.

We outline that in the next section.

8. Components for extending SLE

Structurally, Smart Learning Environment (SLE)

for smart STEM-driven CS education contains four

large components: Robot-based learning environ-

ment, PC, Server and monitoring system [15, pp.

279–303]. Here, we have extended this environment

with new capabilities to provide learning research

activities in the Data Science (DS) field. In Fig. 4,

we present these new capabilities within three large
components. The made extension includes: (1)

Hardware for data collecting and storing incorpo-

rated in the Robot-based learning environment as a

white box; (2) Software for data transforming and

analysing within the PC component and (3) Assess-

ment facilities within Server, also as a white box.

We define the functionality of the extended

environment through a set of external processes
P1, . . , P8 to provide the input/output stream

among components. Note that numbering of the

process here does not correspond to the one given in

the initial SLE structure. Here, the indicated pro-

cesses outline new functional capabilities of the

extended environment. With the extended SLE,

we have finished considering the top-layer of our

framework (see Fig. 2). In the next section, we
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discuss the intermediate layer, i.e. modelling aspects

as a cornerstone attribute of our approach.

9. Modelling Activities for the
Development of Task Solution System

At this point, readers have a common understand-

ing of the DS aspects through its model (Fig. 3) and

the extended SLE with resources to deal with the

basic DS concepts (Fig. 4). The next step is to put all

this into action. As it is clear from the findings of

multiple research [2, 3, 6, 30], STEM education

focuses on solving the real-world tasks or their
prototypes (in terms of learning and teaching cap-

abilities). The same is with theDS education. In this

case, however, the application to be investigated

should contain the raw data in the necessary

amount for applying DS approaches. Therefore,

we start with a domain-specific task definition (in

terms of data richness, Big Data (BD) concepts and

specific measures to access to them) and the stu-
dents’ engagement in considering this task. We

identify that within the first component as a task-

solving plan in Fig. 5. In fact, this is the same as

presented in our framework. The task-solving plan

can be presented in a variety of ways. For example,

it can be done through discussions on the weather

pollution, its influence on human health and there-

fore the need of accumulating a huge amount of

data and then providing processing and measuring

its parameters. The other example may be related to

theCOVID-19 problem testing by explaining how it

is important to measure the amount of oxygen in

human’s blood now worldwide.

Therefore, the task solving plan (among other
items, it defines the necessary resources from the

extended SLE) serves as the input to start modelling

procedures. We identify the next bound of activities

as Task-Solution system modelling (see Fig. 5).

Indeed, if we want to solve the real-word task, we

need first to build a system for that. The primary

stage in doing so is modelling. Two basic attributes

of any system are its structure and functionality.
Here, by the system we mean hardware and soft-

ware parts to cover the basic DS processes (data

collecting, storing, transforming, and analysing; see

also a conceptual model in Fig. 1). Note that data

collecting and storing require both the adequate

hardware and software, while data transforming/

analysing require the only special software. One

could see this property as adequate resources in Fig.
4. Here, we uncover this property in more detail.

Process 2 (see Fig. 5) includes the system’s function-

ality modelling resulting in the creation of the data

collecting model. Process 3 includes the system’s

structure modelling resulting in the creation of the

data storing model. How these models look like in

practice, we disclose that in our case study. Data
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transforming and analysing modelling (processes 4

and 5) rely on functional modelling only. It includes

the selection of the transforming mode and ade-

quate methods and tools (see Fig. 3). Each process

(2–5) results in creating the adequate model. With

these models, it is possible to implement the system
(process 6). The implemented system in this way

through modelling enables to realize DS processes

(process 7 and 8) in the real education setting.

However, the learning process starts far earlier, in

fact, including all processes outlined in Fig. 5

starting from process 1 and ending with process 9.

It is so because the teacher uses STEM-based

pedagogy that includes a set of approaches (pro-
blem-based, learning, learning-by-doing, and

inquiry-based learning by involving active students

even in the Task-Solution system modelling, not

only in implementation processes). We extend the

discussion on this later, after introducing the case

study.

At this stage, the essential activity is the identifi-

cation what knowledge and skills students can
obtain, and how to assess the efficiency of the

learning process. As indicated in Fig. 5, learning

outcomes include three entities: (1) new knowledge

constructing skills, (2) computational thinking

skills and (3) scientific thinking skills. Here, by

new knowledge skills we mean the direct students’

involvement in basic DS processes, their experience

to provide modelling activities and to construct the
system, their experience in using novel data proces-

sing methods and tools, their capabilities to repeat

experiments on their own pace and relevant time.

Scientific thinking skills, among others, include

developing and using models, planning, and pro-

viding experimental investigation, evaluating evi-

dence of the outcomes [54]. Computational

thinking skills, on the other hand, cover the knowl-
edge about abstraction, decomposition, generaliza-

tion, data representation, and algorithms [55]. The

model-driven methodology discussed so far along

with STEM-based pedagogy applied are the key

attributes to achieving these skills. However, there

is a question: how to evaluate the extent of this

knowledge students can achieve? In our approach,

for assessing learning outcomes (process 9), we
focus on the specific assessment model to test

computational thinking and scientific skills as

described in the next section.

10. Assessment Model Development

To design the assessment model, we need to possess
the relevant constituents for that. The first consti-

tuent, as a basis for assessment of learners’ knowl-

edge, is the revised Bloom’s taxonomy [56]. It

focuses on representing any learning objective and

outcomes in two dimensions, i.e. Knowledge and

Cognitive Process. The Knowledge dimension

consists of (1) factual knowledge, (2) conceptual

knowledge, (3) procedural knowledge and (4) meta-

cognitive knowledge. Factual knowledge includes

the terminology and specific details and elements.
Conceptual knowledge covers classifications and

categories, principles and generalizations, theories,

models, and structures. Procedural knowledge

defines subject-specific skills and algorithms, tech-

niques and methods, criteria for using appropriate

procedures. Metacognitive knowledge ‘‘is the

knowledge of one’s own cognition and about one-

self in relation to various subject matters’’ [56]. The
listed knowledge types range from concrete to

abstract.

The Cognitive Process dimension introduces a

continuous sequence of cognitive complexity. Cog-

nitive processes are divided into six categories –

from the lower-order to the higher-order skills

(Remembering, Understanding, Applying, Analys-

ing,Evaluating andCreating). The next constituents
are skills, such as Computational Thinking (CT),

students able to acquire through the learning pro-

cess. For example, [57] and [55] express CT skills as

a set of basic concepts (Abstraction, Decomposition,

Generalisation/ Pattern recognition, Data represen-

tation and Algorithm). On the other hand, Scientific

Thinking (ST) skills include (Forming and Refining

Hypotheses, Developing and using models, Inves-
tigation Skills, and Evaluating Evidence) [54].

In general, the assessment has a structural part

and process-based part. The first part consists of

constituents mentioned above that represent the

generic aspects of any knowledge assessment. In

addition, it may include specific aspects related, for

example, with the real-world problem (e.g., com-

plexity, environmental factors, etc.). The process-
based part covers the assessment methods (observa-

tion, questioning, report, product review, struc-

tured activities (projects, scenarios, case study,

group discussion), self-assessment, etc.) for realiz-

ing the knowledge evaluation in practice.

The next step is to put all aspects together and

represent their relationships. In Fig. 6, we propose

the explicit knowledge assessment model repre-
sented using the feature-based notation.

The root of the tree always represents the whole

entity (in our case – the assessment model). At the

top level (we mean the next to the tree’s root, see

Fig. 6), we introduce two common features identi-

fied as ‘‘Structure’’ and ‘‘Process’’. By the first, we

aim at representing all structural features by hier-

archically splitting them as the more concrete
features. By the second, we aim to do the same to

express the process-based vision of this model in

more details. The feature ‘‘Structure’’ has two sub-
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features identified as ‘‘Generic part’’ and ‘Specific

part’. In this branch of the diagram, the role of the

remaining sub-features is clear, though we are not

able to present a concrete task here (identifying it as

Task n).

The feature ‘‘Process’’ has two sub-features too.

The first sub-feature is ‘‘Task solving’’. The second

– ‘‘Assessmentmethod’’ for realizing the knowledge
evaluation in practice. The latter includes a set of

the grouped features (ordered according to increas-

ing complexity) for possible selection as follows:

observation, questioning, report, product review,

structured activities (projects, scenarios, case

study, group discussion), self-assessment, etc.

Note that this model enables to express relation-

ships among structural and process-based features

through parent-child dependencies (see Fig. 6).

11. Case Study and Experimental
Investigation

We have adapted the generative STEM scenario

[15, pp. 259–276] for Data Science (DS) aspects and

have presented a case study to demonstrate the
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gaining DS knowledge and skills in the context of

integrated STEM. The header part of this scenario

includes the following components.

The course applied –Robotics (optionalmodule of

technology course for 10th grade) with the focus on

STEM-driven CS education.
Participants were 48 students of 10th grade (15-

16 years) from one gymnasium (in other terms,

secondary school). According to the available

knowledge and skills, students were beginners [15].

Topic as a real-world task follows: Air tempera-

ture & relative humidity measurements in the class-

room environment and analysis of the results.

The main part of the scenario consists of three
phases (see also the implementation layer in Fig. 2).

(1) Motivation phase includes a discussion on the

real task solution plan and its implementation:

� Selecting devices for task solution and develop-
ing structural and physical models of the experi-

mental system. Students have applied the

previous knowledge from science (physics) and

have gained new knowledge about the tempera-

ture-humidity sensor measurement principles

and data collecting and storing on the micro-

SD card.

� Discussing an algorithm of the experimental
system functionality. Students have manipulated

the previous knowledge from computer science

(programming) and were able to get new knowl-

edge how to use functions of special libraries to

retrieve data from the temperature-humidity sen-

sors and write data on the micro-SD card.

� Considering aspects of the experimental

measurements and presenting and explaining
the results obtained. Students have operated the

previous knowledge from science to produce new

knowledge about data transforming procedures

with explanation of the physical phenomena.

At themotivation phase, collaborative learning was

dominating, because the students have developed

the task-solving plan through the group discus-

sions.

(2) Problem active investigation through task solving

consists of following learning activities:

� Students have constructed an experimental

system that consists of the air temperature &

humidity sensor and ARDUINO microcontrol-

ler. Students first have developed a structural

model of the system (see Fig. A-1 in Appendix).

Next, having this model, they have had to imple-
ment it through physical modelling (see Fig. A-2

in Appendix). In this stage, students were able to

improve their knowledge and skills in physics,

e.g., electricity, sensor‘s functionality principles,

an explanation of the physical phenomena (S-

component). In addition, students have analysed

the technology-driven environment (T-compo-

nent), so being introduced to applied engineering

(E-component). From the DS viewpoint, stu-

dents were introduced with data collecting and
storing processes; thus they have acquired the

knowledge about data collecting and storing

modelling for the given task and learning about

data storage technologies.

� After implementing the physical model of the

system, students had to program the system’s

functionality in ARDUINO Software (IDE)

(see Fig. A-3 in Appendix). Then they have had
to verify whether the system is working properly.

In this stage, students could be able to improve

programming skills (CS-component), to deepen

electrical circuit design skills (E-component) and

to learn assessing the suitability of the system for

the task solving (interdisciplinary STEM knowl-

edge).

� In the third stage of this phase, students have had
to model and implement experiments and per-

form air temperature and humidity measure-

ments over time. In our case, air temperature

and humidity were measured in the classroom

when the window was opened or closed. The

results were stored on micro-SD card as CSV

(Comma Separated Values) file. At the end of the

experiment, the students processed the results
using a spreadsheet and presented them graphi-

cally (see Fig. 7). From the DS viewpoint, stu-

dents were introduced with data transforming

procedures. In the fourth stage, students have

had to analyse the obtained results and formulate

conclusions.

At the problem-solving phase, the personalized

learning was dominating, because the students
have developed experimental systems and per-

formed measurements individually. All students

have been involved in active learning activities

covering inquiry-based, problem solving, and

design-based learning methods.

(3) Analysis of results, discussion, reflection and

evaluation phase consists of two parts.

� Firstly, students have presented and discussed

results and formulated conclusions. In Fig. 7, we

present time-temperature (T) & time-relative

humidity (RH) dependencies obtained by one

student because results of others were very simi-

lar. At the initial time of measurement, the
window in the classroom was open (T = 19oC,

RH = 53%). When the window was closed, the

temperature in the classroomhas raised to 21.7oC

and the humidity – to 61% and in the course of
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the time started to decrease achieving 49%. By

opening-closing the window, the regularity of

temperature and relative humidity changes have

been repeating. Students have applied the physics

knowledge to formulate conclusions (S-compo-

nent).

At this phase, the collaborative learning domi-

nated, as students presented, discussed results and

defined conclusions working in groups.

� The teacher has evaluated the progress made by

students using the developed assessment model
(see Fig. 6). Note that this is a subjective assess-

ment applying observation and structured activ-

ities assessment methods. It depends on the

teacher’s experience and the pedagogical specifi-

cation of the task by fixing the learning progress

at different stages of task solving (see Table 2).

The results of the assessment are presented in

Table 3. In addition, the teacher has been convinced

that learning motivation greatly improved since

students also performed similar experiments at

home on their own initiative.

12. Discussion and Evaluation

In this paper, we have presented a methodology

describing the possibilities for seamless integration

of Data Science concepts (data collecting, transfer-

ring, transforming, and analysing) into the STEM-
driven CS course at the high (secondary) school.

The methodology includes two things – the con-

ceptual model of the approach and the three-

layered framework to define the whole activities

for achieving the research objectives using model-

ling. Our methodology covers conceptual, feature-

based, and physical modelling. By passing through

this sequence, we were able to implement our

approach and test it as we described in the case

study and experimental investigation. Devised

models, especially physical modelling and design
and testing activities provided by students largely

contribute to engineering education too. Based on

achieved outcomes in this research, our previous

research and works of others, we can confirm the

power of modelling in multiple aspects, such as the

implementation of educational systems, students’

higher motivation, better involvement in learning

through learning-by-doing and inquiry-based
learning. The important aspect of the discussed

approach is its inheritance to real-world task sol-

ving in both STEM-driven CS education, and DS.

Regarding the latter field, however, there is some

specificity due to the need to focus on raw data

identified as Big Data [12]. Typically, sensors stand

for the facility to collect the raw data. On the other

hand, often sensors are nodes of Internet of Things
(IoT), the emerging technology in the 21st century

[58]. As the IoT concept attracted the attention of

educational researchers too, we can consider that

sensors used in our approach are nodes of the

virtual or real IoT for educational purposes [59].

Therefore, the scenarios of choosing real-world

tasks may vary from a simple application (the

case in our approach) to the IoT-based applica-
tions.

Next, we focus on dealing with advantages of the

proposed approach in two aspects: methodological

and pedagogical. Methodological aspects include:
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(i) Logical connectedness of different steps in terms

of produced outcomes. (ii) Strong focus on model-

ling processes and explicit model creation using
different modelling approaches. (iii) The proposed

methodology covers the full cycle of data processes

(collecting, transferring, transforming, and analys-

ing). (iv) Strong adherence to BD domain and

solving real-world problems. (v) Methodology

extends STEM-driven CS education capability sig-

nificantly due to modelling and contributes to

engineering education. (vi) The proposed metho-

dology ensures a flexible configuration by adding
new components into previously developed SLE.

From pedagogical perspective, this approach (i)

enables to enact collaborative learning. (ii) It

enhances computational thinking and scientific

thinking skills. (iii) Practically, the approach is

independent upon the previous knowledge (in our

Development and Evaluation of an Approach for Integrating Data Science Concepts into High School STEM Curriculum 769

Table 2. Pedagogical specification of the task according to assessment model (see Fig. 6)

Assessment criteria Explanation of criterion

Revised Bloom’s taxonomy (cognitive processes)

Remembering Knowledge about temperature-humidity sensor measurement principles and data collecting and storing
on micro-SD card, how to use functions of special libraries to retrieve data from temperature-humidity
sensor andwrite themonmicro-SD card, knowledge about data transforming procedures and explanation
of the physical phenomena.

Understanding Understanding temperature-humidity sensor’s functionality, data collecting and storing on micro-SD
card principles, understanding that exist dependencies between temperature and relative humidity.

Applying Developing an experimental system and retrieving data through automatized measurements of relative
humidity and temperature by opening-closing window in the classroom.

Analysing Transforming results into spreadsheet and presenting them graphically. Explaining time-relative humidity
and time-temperature dependencies.

Evaluating Evaluating the task solution plan, the developed system, and defining advantages and disadvantages of the
system.

Creating Students demonstrated their ability to create own systems using additional sensors (e.g., noise, gas, pulse,
etc.).

Computational thinking skills

Abstraction Extracting the physical phenomena from the retrieved data, developing similar experimental systems using
additional sensors.

Decomposition Testing of temperature-humidity sensor functionality, testing of data collecting and storing on micro-SD
card.

Generalisation/ Pattern
recognition

Developing similar experimental systems using additional sensors and providing a similar data collecting
and storing.

Data representation Representing Comma Separated Values (CSV) data graphically.

Algorithm Developing an algorithm of the experimental system functionality.

Scientific thinking skills

Using models Developing structural and physical models.

Planning and carrying
out investigations

Developing an experimental system and retrieving data through automatized measurements of relative
humidity and temperature by opening-closing window in the classroom.

Analysing and
interpreting data/
evidence

Transforming results into spreadsheet and presenting them graphically. Explaining time-relative humidity
and time-temperature dependencies.

Constructing
explanations

Transforming results into spreadsheet and presenting them graphically. Explaining time-relative humidity
and time-temperature dependencies.

Table 3. Assessment of students’ progress obtained through teacher’s monitoring and fixing the outcomes (see Table 2)

Revised Bloom’s taxonomy Computational thinking Scientific thinking

Process dimension % of students Skills % of students Skills % of students

Remembering 100 Abstraction 70 Using models 100

Understanding 100 Decomposition 70 Planning and
carrying out
investigations

100

Applying 100 Generalisation/
Pattern
recognition

50 Analysing and
interpreting data/
evidence

70

Analysing 70 Data
representation

50 Constructing
explanations

50

Evaluating 30 Algorithm 50

Creating 10



experiment all students were beginners). (iv)

Approach contributes to the increased motivation

(all students have passed the full cycle of DS

processes). (v) Approach also supports persona-

lized learning since students can work on own

pace and relevant intensity and at home. (vi)
Approach covers a set of pedagogical approaches

such as learning-by-doing, problem-based and

inquiry-based adding the pedagogical value. (vii)

In terms of modelling, this approach enables stu-

dent to fasten the move from the beginner’s state to

the advanced state after completing the introduced

learning scenario. In the latter state, active students

can collaborate by extending the functionality of
the system through modelling and thus to gain

engineering skills. (viii) Approach implements the

extended assessment model that also includes

assessment of computational and scientific thinking

skills.

The approach has also some drawbacks. (1)

Looking at the multiple steps or stages within this

methodology, one may treat it as being complex
enough. Its complexity, however, not so much

relates with students (because of this methodology

is well structured) but, largely, complexity issues

may occur for teachers (due to their insufficient

professional preparedness in interdisciplinary

knowledge to manage the multiple processes prop-

erly before delivering this knowledge to students).

(2) So far, we have still a restricted experience of
using this approach in terms of durability, scope of

experiments, the number of students involved, due

to the novelty of the approach. (3) To support the

approach, we need to apply the modern facilities

and technological resources, which typically cannot

be found in already existing educational systems.

13. Conclusions

Three fields – STEM, Computer Science (CS) and
Data Science (DS) – have inherent relationships,

making the seamless integration of all into one

course possible. We have proposed a novel three-

layered framework to do that systematically. The

basic idea relies on using models andmodelling. We

have applied the three types of modelling in our

framework – conceptual at the top layer, feature-

based at the intermediate layer and physical at the
implementation layer. All these have enabled to

achieve the systemisation and coherence of the

proposed methodology. The provided research

has confirmed once again the role, the power, and

the relevance of modelling-oriented methodologies

for education in general and for STEM-driven CS

education with multiple engineering approaches.

The multi-stage modelling and the focus on data-

centric real-world tasks enable to achieve a higher
degree of integration what Hallström & Schönborn

call authentic STEM education. Our case study

shows that solving authentic tasks through model-

ling is highly influential on students’ interdisciplin-

ary knowledge gaining due to the enforced interest

and motivation to learn. The DS component, with

its processes and supporting facilities is, in fact, an

enabler and driver in gaining this knowledge. The
separate DS processes, however, affect the STEM

components and therefore interdisciplinary knowl-

edge gaining, differently. For example, data collect-

ing, transferring, and storing are largely influencing

the S-, T- and E-components and adequate knowl-

edge, while data transforming, analysing (repre-

senting) are more influential on the M-

component. What is common for all components
(S, T, E, M and DS) is the possibility to get and to

enrich gradually the scientific and computational

thinking skills of learners. In addition, our experi-

ment through the case study shows that the extent

of the interdisciplinary knowledge is extended due

to the related DS processes and new facilities used.

From the pure technological and engineering

viewpoint, when students hold in their hands sen-
sors and provide collecting data automatically from

classroom or other environments outside, one can

treat that as simplified nodes of the virtual Internet

of Things (IoT), the most striking technology of the

21st century. Of course, there is a long way to apply

this technology in the educational sector effectively,

though one can find successful attempts in the

literature already now.
At the end, we need to emphasise yet another

important finding – the successful implementation

of this methodology in reality can take place only if

the teacher has the adequate competence in the

related fields, or at least can be ready to accept

and overcome the challenges of interdisciplinary

teaching. Therefore, the teacher’s professional pre-

paration could be a serious obstacle to accept and
use this methodology in a wider context.

The future work will be directed on a wider

exploration of big data capabilities in our vision

on STEM-based research and practice.
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25. B. Priemer, K. Eilerts, A. Filler, N. Pinkwart, B. Rösken-Winter, R. Tiemann and A. U. Zu Belzen, A framework to foster problem-

solving in STEM and computing education, Research in Science & Technological Education, 38(1), pp. 105–130, 2020.

26. H. Jang, Identifying 21st Century STEMCompetencies UsingWorkplaceData, Journal of Science Education and Technology, 25, pp.

284–301, 2016.

27. A. Yadav, H. Hong and C. Stephenson, Computational Thinking for All: Pedagogical Approaches to Embedding 21st Century

Problem Solving in K-12 Classrooms, TechTrends, 60, pp. 565–568, 2016.

28. Code.org Advocacy Coalition, Computer Science Teachers Association, and Expanding Computing Education Pathways Alliance,

‘‘2019 state of computer science education’’, https://advocacy.code.org/2019_state_of_cs.pdf, Accessed 1 September, 2021.

29. S. Azouzi, S. A. Ghannouchi and Z. Brahmi, Towards supporting modeling variability in e-learning application: a case study, 18th

International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pp. 488–494, 2017.

30. H. Sebbaq,A.Retbi,M.K. Idrissi and S. Bennani, Software Product Line to overcome the variability issue in E-Learning: Systematic

literature review, Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications, pp. 1–8, 2018.

31. E. F. Coutinho and C. I. Bezerra, A study on dynamic aspects variability in the SOLAR educational software ecosystem, Journal of

the Brazilian Computer Society, 26(1), pp. 1–19, 2020.

32. N.M. Seel, Model-based learning: A synthesis of theory and research, Educational Technology Research and Development, 65(4), pp.

931–966, 2017.

33. B. Thalheim, Towards a theory of conceptual modelling, J. UCS, 16(20), pp. 3102–3137, 2010.

34. F. Provost and T. Fawcett, Data science and its relationship to big data and data-driven decision making, Big Data, 1(1), pp. 51–59,

2013.

35. A.Deen,WhyData ScienceWill beAmong theMost PromisingCareers in 2020, https://www.equities.com/why-data-science-will-be-

the-most-promising-career-in-2020, Accessed 1 September, 2021.

36. I. Song and Y. Zhu, Big data and data science: what should we teach?, Expert Systems, 33(4), pp. 364–373, 2016.

37. R. J. Brunner and E. J. Kim, Teaching Data Science, The International Conference on Computational Science, 80, pp. 1947–1956,

2016.

Development and Evaluation of an Approach for Integrating Data Science Concepts into High School STEM Curriculum 771



38. S. C. Hicks and R. A. Irizarry, A Guide to Teaching Data Science, The American Statistician, 72(4), pp. 382–391, in Rolf, B. et al,

Paderborn Symposium on Data Science Education at School Level 2017: The Collected Extended Abstracts. Paderbon:

Universitätsbibliothek Paderborn, pp. 1–14, 2018.

39. R. Gould, S. Machado, C. Ong, T. Johnson, J. Molyneux, S. Nolen, H. Tangmunarunkit, L. Trusela and L. Zanontian, Teaching

Data Science to Secondary Students: The mobilize introduction to data science curriculum, Iase-Web. Org, pp. 1–11, 2016.

40. C.Ridslade, J. Rothwell,M. Smit et al., Strategies and best practices for data literacy education: knowledge synthesis report, Dalhousie

University, 2015.

41. R. Biehler and C. Schulte, Perspectives for an Interdisciplinary Data Science Curriculum in German Secondary Schools, Paderborn

Symposium on Data Science Education at School Level, pp. 2–14, 2017.

42. V. Pittard, The Integration of Data Science in the Primary and Secondary Curriculum, Final Report to the Royal Society Advisory

Committee on Mathematics Education, 2018.

43. T. Irish, A. Berkowitz and C. Harris, Data Explorations: Secondary Students’ Knowledge, Skills and Attitudes Toward Working

with Data, EURASIA Journal of Mathematics, Science and Technology Education, 15(6), pp. 1–15, 2019.

44. F. F. Cruz and M. F. Diaz, Generations Z’s Teachers and their Digital Skills, Comunicar, Media Education Research Journal, 24(1),

pp. 97–105, 2016.

45. P. Tong and F. Yong, Implementing and Developing Big Data Analytics in the K-12 Curriculum: A Preliminary Stage, Conference

Paper EdCon, 2015.

46. S. Sentance, Data Science and Data Literacy in School: Opportunities and Challenges, Proceedings of the 18th Koli Calling

International Conference on Computing education Research, pp. 84–89, 2017.

47. C. O’Neil,Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy, Crown Books, Washington

D.C., USA, 2016.

48. How should high school students learn data science?, https://www.quora.com/How-should-high-school-students-learn-data-science,

Accessed 1 September 2021.

49. I. M. Souza, W. L. Andrade, L. M. Sampaio and A. L. S. O. Araujo, A Systematic Review on the use of LEGO1 Robotics in

Education, in 2018 IEEE Frontiers in Education Conference (FIE), pp. 1–9, 2018.

50. M. F. Iskander, J. Baker, J. K. Nakatsu, S. Y. Lim and N. Celik, Multimedia Modules and Virtual Organization Website for

Collaborative Research Experience for Teachers in STEM, J. UCS, 17(9), pp. 1347–1364, 2011.

51. D. Tsiastoudis and H. Polatoglou, Inclusive education on stem subjects with the arduino platform, Proceedings of the 8th

International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion, pp.

234–239, 2018.

52. P. Y. Schobbens, P. Heymans and J. C. Trigaux, Feature diagrams: A survey and a formal semantics, 14th IEEE International

Requirements Engineering Conference (RE’06), pp. 139–148, 2006.

53. K. Kang, S. Cohen, J. Hess, W. Novak and S. Peterson, Feature-oriented domain analysis (FODA) feasibility study, Software

Engineering Institute, Carnegie Mellon University, 1990.

54. C. Zimmerman and D. Klahr, Development of scientific thinking, Stevens’ Handbook of Experimental Psychology and Cognitive

Neuroscience, 4, pp. 1–25, 2018.

55. K. Cummins, Teaching Digital Technologies & STEM: Computational Thinking, coding and robotics in the classroom, Retrieved from

Amazon.com, 2016.

56. L. W. Anderson and B. S. Bloom, A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational

objectives, Longman, 2001.

57. S. Atmatzidou and S. Demetriadis, Advancing students’ computational thinking skills through educational robotics: A study on age

and gender relevant differences, Robotics and Autonomous Systems, 75, pp. 661–670, 2016.

58. P. P. Ray, A survey on Internet of Things architectures, Journal of King Saud University-Computer and Information Sciences, 30(3),

pp. 291–319, 2018.

59. M. Kassab, J. DeFranco and A. Laplante, A systematic literature review on Internet of things in education: Benefits and challenges,

Journal of Computer Assisted Learning, 36(2), pp. 115–127, 2020.
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Appendix

Fig. A-1. A structural model of system developed using fritzing
software (DHT11 Temperature & Humidity sensor on left, SD
Card Module on right and ARDUINO in the centre).

Fig. A-2. An implementation of the structural model (SD Card
module on left, ARDUINO in the centre and DHT11 Temperature
& Humidity sensor on right).



Development and Evaluation of an Approach for Integrating Data Science Concepts into High School STEM Curriculum 773

Fig. A-3. Program of the system functionality.
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