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Physics courses are important for engineering students because not only are they the foundation for many engineering

courses, but students’ physics motivational beliefs such as self-efficacy and identity may also influence their engineering

identity as well as their choice of careers. In this study, we investigated first-year undergraduate engineering students’

engineering identity and how it is predicted by their physics motivational beliefs (including physics self-efficacy, interest,

perceived recognition and identity) in a calculus-based introductory physics course at a large research university in theUS.

We first investigated how these motivational beliefs change from the beginning to the end of the course (i.e., from pre to

post) using descriptive statistics. Then, we investigated the predictive relationships among these motivational constructs

using structural equation modeling (SEM). The SEM analysis revealed that students’ engineering identity is predicted by

their physics self-efficacy and identity. However, the descriptive statistics results showed that both male and female

students’ physics self-efficacy and identity decreased from pre to post, and female students’ physics self-efficacy dropped

even more than male students’ did. Although students’ average score on engineering identity also decreased from pre to

post, this change was only statistically significant for male students. Our results show that students’ physics perceived

recognition is the strongest predictor of physics identity, and it also predicts students’ engineering identity through physics

identity and self-efficacy. We note that even though there were significant gender differences disadvantaging women in all

motivational constructs studied, gender does not directly predict engineering and physics identities, which means that the

gender differences in both identities aremediated through physics self-efficacy, interest and perceived recognition. Thus, in

order to boost students’ engineering identity, it is important to create an equitable and inclusive environment for learning

physics, in which all students feel recognized and supported appropriately and develop a stronger physics and engineering

identity.
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1. Introduction and Theoretical
Framework

Due to the increasing demand in the work force for

engineers, many studies have focused on issues

surrounding students’ retention and persistence in

engineering [1–7]. According to a recent report, the
overall 4-year graduation rate of students in the US

who enter an undergraduate engineering program

remains below 40% in the last 10 years [8]. In

particular, 20% of students are lost within the first

year alone [8]. Another study shows that only 42%

of seniors enrolled in undergraduate engineering

programs definitely intend to pursue a career in

engineering upon graduation [9]. Moreover, the
retention issue is even more severe for students

from underrepresented groups such as women [6,

8, 10]. Studies show that less than 30% of all

engineering degrees are awarded to women [1],

and women have been found to leave engineering

at an earlier stage than men [11, 12]. Many factors

have been shown to affect undergraduate students’

choices to persist in engineering, for example,
students’ prior preparation, quality of teaching,

sociocultural and motivational factors [3, 13–22].

In particular, motivational factors such as engineer-

ing identity have been shown to be significant

indicators of students’ retention in engineering,

and also influence their short-term and long-term

career goals [23–26].

In prior research, engineering identity has been
studied from several different perspectives [27, 28].

For example, some studies consider engineering

identity as the combination of multiple identities

such as academic, social and occupational identities

[24, 29, 30]. Some other studies identified several

cognitive, affective, and performance variables to

comprise engineering identity [4, 31–33]. Another

widely used definition of engineering identity is how
students see themselves with respect to engineering

or whether they see themselves as an engineer based

on their perceptions and navigation of engineering

related experiences [34–36], which is also the most

relevant definition to our study. However, studies

have shown that many students have very few direct

experiences with engineering before they enter

college [37]. Thus, due to the interdisciplinary
nature of engineering, students’ experiences in
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other engineering related domains such asmath and

science may play a very important role in the

development of students’ engineering identity [32].

For example, studies have shown that doing well in

math and science courses in high school has a

positive impact on students’ choice of and persis-
tence in an engineering major and longer-term

career goals [3, 5]. Therefore, studying students’

motivational beliefs in engineering related domains,

e.g., physics, and how they interact with engineer-

ing identity may help us develop a better under-

standing of students’ attrition and retention in

engineering majors.

Introductory physics courses usually serve as a
prerequisite for many engineering courses, and thus

formost students who enrolled in an undergraduate

engineering program, physics is mandatory in their

first year. A study shows that students’ grades in

introductory physics courses predict their perfor-

mance in later engineering courses [38]. Moreover,

physics is not only important for engineering stu-

dents’ knowledge building but may also affect their
attitudes and self-beliefs about being an engineer.

For example, studies have shown that students’

physics motivational beliefs such as self-efficacy

and interest can influence their engineering career

agency [39]. However, physics is also one of the

most stereotyped domains in the sense that it is a

traditionally male-dominated field and has a mas-

culine culture and amasculine public image [13, 19].
In addition, physics is perceived by many people to

depend largely on the innate qualities of ‘‘brilli-

ance’’ or ‘‘genius’’, which are also typically attrib-

uted to men [40–42]. These societal stereotypes not

only impact female students’ physics motivational

beliefs but may also dissuade them from pursuing

study in physics-related disciplines such as engi-

neering. A prior study shows that in an under-
graduate engineering program, students’ self-

efficacy in physics showed a larger gender difference

than their self-efficacy in mathematics, engineering,

and chemistry [43]. In addition, physics was the

only science subject for which female engineering

students had a lower average score than male

engineering students [43, 44]. Therefore, the

gender difference in physics motivational beliefs
may partially explain the underrepresentation of

women in engineering disciplines and studying the

relationship between students’ physics and engi-

neering motivational beliefs may provide new

insights into how to improve the recruitment, reten-

tion and diversity within engineering.

In this study, we investigated first-year under-

graduate engineering students’ engineering identity
and physics motivational beliefs (including physics

identity, self-efficacy, interest and perceived recog-

nition) in a calculus-based introductory physics

course. In particular, we focus on how students’

motivational beliefs in physics and engineering

change from the beginning to the end of the

course and the predictive relationships among

these motivational constructs. This course is

usually taken by engineering students in the first
semester of their first-year of undergraduate study,

and they must pass this course before they declare a

specific major, e.g., electrical engineering, within

the engineering school. Thus, students’ experiences

in this course are not only important for the

development of their physics and engineering moti-

vational beliefs but may also influence their choice

of majors. Even though there are several studies
focusing on students’ physics and engineering moti-

vational beliefs [31, 32, 39], very few studies have

investigated how male and female students’ engi-

neering identity and physics motivational beliefs

change in an introductory physics course, and how

students’ physics motivational beliefs predict their

engineering identity at the end of the course.

As noted, students’ identity in engineering or
physics is related to whether they see themselves

as an engineer or a physics person, and these

identities have been shown to influence students’

career decisions and outcome expectations [4, 34,

45, 46]. The other three motivational beliefs con-

sidered in this study (physics self-efficacy, interest

and perceived recognition) have been shown to be

the predictors of students’ physics identity and also
very important to students’ engagement, perfor-

mance and retention [46–50]. In particular, self-

efficacy is defined as students’ beliefs in their cap-

ability to succeed in a certain situation, task, or

particular domain [47, 51, 52]. Studies suggest that

students with high self-efficacy in a domain often

enroll in more challenging courses in that domain

than those with low self-efficacy because they per-
ceive difficult tasks as challenges rather than threats

[53–55]. Another motivational belief is interest,

which is defined by positive emotions accompanied

by curiosity and engagement in a particular topic

[56]. Interest has also been shown to influence

students’ learning [53, 56, 57]. For example, one

study suggested that making science courses more

relevant to students’ lives and transforming curri-
cula to promote interest in learning can improve

students’ achievement [58]. Perceived recognition

(also called external identity) in physics refers to

students’ perception about whether other people

see them as a physics person [59]. Some quantitative

studies focusing on the relation between students’

physics identity and other motivational beliefs

show that physics perceived recognition is actually
the strongest predictor of physics identity as com-

pared to physics interest and self-efficacy [39, 47].

In this study, we first investigated how students’
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engineering and physicsmotivational beliefs change

from the beginning to the end of the introductory

physics course (i.e., from pre to post) using descrip-

tive statistics. Then, we performed structural equa-

tion modeling (SEM) using the post data to study

the predictive relationships among these motiva-
tional constructs. We focus on the predictive rela-

tionships at the end of the course because most

students take this course in the first semester in

college, and they may feel uncertainty and anxiety

during the transition from high school to college.

Thus, students’ motivational beliefs may be more

stable after they have been on campus for a seme-

ster. In addition, since students’ perceived recogni-
tion is related to their interaction with TAs and

instructors, only after the course can students

answer these survey questions based on their real

experience in the course. We adapt the physics

identity model from Hazari et al.’s (with Godwin,

Lock, and Potvin) [39, 60, 61] and Kalender et al.’s

prior work [47] as shown in Fig. 1, in which

students’ physics identity is predicted by their
interest, recognition, and performance/competence

or competency belief, which is very closely tied to

self-efficacy. In this study, we add the engineering

identity construct and focus on how students’

physics motivational beliefs predict their engineer-

ing identity. As shown in Fig. 2 (a), we first

considered a model (Model 1) in which there are

only covariances between each pair of perceived

recognition (Recog), self-efficacy (SE) and interest,

so this model does not make assumptions about

predictive relationships between these threemediat-

ing constructs. Then we considered another model
(Model 2) in which perceived recognition is

the predictor of both self-efficacy and interest

(Fig. 2(b)), which is similar to the model in Kalen-

der et al.’s prior work, in which competency belief

and interest are predicted by perceived recognition

(see Fig. 1(b)) [47].

2. Research Questions

Our research questions to investigate the relation-

ship between physics motivational beliefs and engi-

neering identity of undergraduate engineering
students in the calculus-based introductory physics

1 course at a large research university in the US are

as follows:

RQ1. How do male and female students’ engineer-

ing identity and physics motivational beliefs

(including physics identity, self-efficacy, interest,
and perceived recognition) change from the

beginning to the end of the course (i.e., from

pre to post)?
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Fig. 1. Schematic representation of the physics identity models of prior studies. (a)
shows the model used in Hazari et al.’s (with Godwin, Lock, and Potvin) prior studies
[39, 60, 61] (b) shows the model used in Kalender et al.’s prior study [47].



RQ2. Are there gender differences in students’
motivational beliefs and do they change from

pre to post?

RQ3. How do students’ physics motivational

beliefs directly and indirectly predict their engi-

neering identity?

3. Methodology

3.1 Participants

The motivational survey data used in this study

were collected at the beginning and end of the
semester from engineering students who took the

calculus-based introductory physics 1 course at a

large research university in the US. The data were

collected from two consecutive fall semesters. The

majority of these students were in the first semester

of their first year in the undergraduate engineering

program. This course consists of traditional lec-

tures (4 hours per week) and recitations (1 hour per
week), in which students typically work collabora-

tively on physics problems. The paper surveys were

handed out and collected by TAs in the first and last

recitation class of a semester. We named the data

collected at the beginning of the semester as pre-

data and that collected at the end of the semester as
post-data. Finally, we combined the two semesters’

data and put them into two categories, pre and post.

The demographic data of students – such as gender

– were provided by the university. Students’ names

and IDs were de-identified by an honest broker who

generated a unique new ID for each student (which

connected students’ survey responses with their

demographic information). Thus, researchers
could analyze students’ data without having

access to students’ identifying information.

In this study, we first investigated how students’

physics and engineeringmotivational beliefs change

from pre to post. However, because some motiva-

tional constructs were added to our survey at the

end of the course in the first year of study, we do not

have the pre-data for these constructs in that year.
Thus, we first focus on 346 undergraduate engineer-

ing students (205 male students and 141 female

students) who completed both the pre- and post-

survey in the second year of study. We use Struc-

tural Equation Modeling (SEM) to study the pre-

dictive relationships among the motivational

constructs at the end of the course [62]. Since we

have complete post-data for both years of study, we
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Fig. 2. Schematic representation of the path analysis part of the SEM models that shows how the relationship
between gender and engineering identity is mediated by physics self-efficacy, physics perceived recognition, physics
interest and physics identity. (a) In Model 1, physics self-efficacy, perceived recognition and interest are correlated
with each other. (b) InModel 2, physics perceived recognition predicts physics self-efficacy and interest, and physics
self-efficacy predicts physics interest. The direct paths from gender to physics and engineering identity are not shown
because they are not statistically significant in both models.



performed SEM with the post-data collected from

761 engineering students (273 female students and

488 male students) in both years, which further

improved the statistical power. Because students’

gender information was obtained from the univer-

sity, which offered binary options, we did the
analysis with the binary gender data in this study.

3.2 Survey Instruments

In this study, we considered five motivational con-

structs – engineering identity and physics identity as

well as physics self-efficacy, interest and perceived

recognition. The survey items for each construct are

listed in Table 1. The survey items were adapted

from the existing motivational research [63–68] and

have been revalidated in our prior work [69–75].
The validation and refinement of the survey

involved use of one-on-one interviews with students

using a think-aloud protocol, exploratory and con-

firmatory factor analyses (EFA and CFA) [76],

Pearson correlation between different constructs

and Cronbach’s alpha (which is a measure of the

internal consistency of each construct with several

items) [77–79].
In our survey, each item was scored on a 4-point

Likert scale (1–4). Students were given a score from

1 to 4 with higher scores indicating greater levels of

motivational beliefs. Physics self-efficacy represents

students’ belief about whether they can excel in

physics. We had four items for physics self-efficacy

and these items had the response scale ‘‘NO!, no,

yes, YES!’’ (Cronbach’s � = 0.81), which have been

shown to have good psychometric properties and a

low cognitive load while reading [52, 64]. We also

had four items for physics interest (Cronbach’s � =

0.82). The question ‘‘I wonder about how physics

works’’ had temporal response options ‘‘Never,
Once a month, Once a week, Every day’’, whereas

the question ‘‘In general, I find physics’’ had

response options ‘‘very boring, boring, interesting,

very interesting’’. The remaining two items under

physics interest were answered on the ‘‘NO!, no, yes,

YES!’’ scale. Physics perceived recognition corre-

sponds to whether a student thinks other people see

them as a physics person [46, 80, 81], and it includes
three items which correspond to family, friends and

TA/instructor (Cronbach’s � = 0.87). Physics iden-

tity corresponds to students’ belief about whether

they designate themselves as a physics person [46].

Engineering identity corresponds to whether they

see themselves as an engineer [34, 35]. The items for

physics perceived recognition and both physics and

engineering identity involved a four-point Likert
response on the scale ‘‘strongly disagree, disagree,

agree, and strongly agree’’ and they correspond to 1

to 4 points [82].

3.3 Quantitative Analysis of Survey Data

We calculated the mean score for eachmotivational

construct for each student. Then, we used a t-test to

compare students’ pre- and post-scores for each

motivational construct as well as conducted an

How Engineering Identity of First-Year Female and Male Engineering Majors is Predicted 803

Table 1. Survey questions for each of the motivational constructs, along with factor loadings of CFA using two years of post-data.
Lambda (factor loading) represents the correlationbetween each itemand its corresponding construct, and the square of Lambda for each
item gives the fraction of its variance explained by the construct.

Construct and Item Lambda

Engineering identity

I see myself as an engineer. 1.000

Physics identity

I see myself as a physics person. 1.000

Physics self-efficacy (Cronbach’s � = 0.81)

I am able to help my classmates with physics in the laboratory or in recitation. 0.731

I understand concepts I have studied in physics. 0.736

If I study, I will do well on a physics test. 0.742

If I encounter a setback in a physics exam, I can overcome it. 0.682

Physics interest (Cronbach’s � = 0.82)

I wonder about how physics works y 0.650

In general, I find physics z 0.781

I want to know everything I can about physics. 0.791

I am curious about recent physics discoveries. 0.707

Physics perceived recognition (Cronbach’s � = 0.87)

My family sees me as a physics person. 0.913

My friends see me as a physics person. 0.909

My physics TA and/or instructor sees me as a physics person. 0.692

All Lambdas shown in this table are statistically significant with p value <0.001.
yThe response options for this question are ‘‘Never, Once a month, Once a week, Every day’’.
zThe response options for this question are ‘‘very boring, boring, interesting, very interesting’’.



analysis of gender differences using descriptive

statistics. We performed Item Response Theory

(IRT) analysis using the R software package

‘‘mirt’’ to check the response option distances for

our survey constructs [83–86]. The results show that

our scales had approximately equal distance
between the levels, so the linearity assumption is

reasonable and allowed us to calculate the tradi-

tional mean scores [83, 86]. Furthermore, we esti-

mated the IRT-based scores (which tend to produce

trait estimates that are linearly related to the under-

lying trait being measured) for each construct, and

the results are highly correlated with the mean

scores (the correlation coefficients are > 0.98 for
all constructs), which indicates that the use of mean

scores is reasonable [83].

Next, we performed Structural Equation Model-

ing (SEM) [62] with the post-data to study the

predictive relationships between students’ physics

motivational beliefs and engineering identity. The

SEM includes two parts: confirmatory factor ana-

lysis (CFA) and path analysis. In CFA, themodel fit
is good if the fit parameters are above threshold. In

particular, Comparative Fit Index (CFI) > 0.9,

Tucker-Lewis Index (TLI) > 0.9, Root Mean

Square Error of Approximation (RMSEA) < 0.08

and Standardized Root Mean Square Residual

(SRMR) < 0.08 are considered as acceptable and

RMSEA< 0.06 and SRMA<0.06 are considered as

a good fit [77]. In our study, CFI = 0.976, TLI =
0.967, RMSEA = 0.054 and SRMR = 0.033, which

represent a good fit. Thus, there is additional

quantitative support for dividing the constructs as

proposed. Besides, as shown in Table 1, all factor

loadings are higher than 0.5, which is considered

acceptable, and most of them are higher than 0.7.

This means that the constructs extract sufficient

variance from the observed variables, which allows
us to perform the path analysis part of SEM [87].

Before performing the path analysis, we calcu-

lated the Pearson correlation coefficients pairwise

between the motivational constructs. As shown in

Table 2, all correlation coefficients are above 0.2,

andmost of them are less than 0.8, whichmeans that

even though these motivational constructs have

strong correlations with each other, the correlations
are not so high that they could not be examined as

separate constructs in SEM [88]. We note that the

correlation coefficient between physics identity and

perceived recognition is 0.84. This is consistent with

Godwin et al.’s [39] and Kalender et al.’s [47] prior

finding that students’ physics perceived recognition

(external identity) is the largest predictor of their
physics identity (internal identity).

To analyze the predictive relationships among

the constructs, we performed the path analysis.

Apart from CFA, the path analysis in SEM gives

regression coefficients � for paths between each pair
of constructs and the value of each � is a measure of

the strength of that relationship. Compared with a

multiple regression model, the advantage of SEM is
that we can estimate all of the regression links for

multiple outcomes and factor loadings for items

simultaneously, which improves the statistical

power. The level of SEM model fit can also be

represented by CFI, TLI, RMSEA and SRMR.

We first analyzed the saturated SEM model that

includes all possible links between different con-

structs, and thenwe used themodification indices to
improve the model fit. We kept path links which

were statistically significant in SEM path analysis.

Before performing gender mediation analysis, we

first tested the gender moderation relations between

each pair of constructs using multi-group SEM (to

investigate any interaction effects with gender),

which includes testing of factor loadings, indicator

intercepts, residual variances and regression coeffi-
cients. Results showed that in all of our models,

strong measurement invariance holds and there is

no difference in any regression coefficients by

gender, which allowed us to perform the gender

mediation analysis using SEM (see Appendix A for

detailed multi-group SEM analysis results). We fit

the two SEMmodels (Model 1 andModel 2) shown

in Fig. 2 with our data and then compared the path
analysis results (predictive relationships among the

constructs) for these two models.

4. Results

4.1 Descriptive Statistics of Students’ Motivational

Beliefs at the Beginning and End of the Course

Here, we present the descriptive statistics of the
students’ pre- and post-motivational beliefs. As

Yangqiuting Li and Chandralekha Singh804

Table 2. Pearson correlation coefficients of the constructs in the mediation model

Constructs 1 2 3 4 5

1. Engineering identity – – – – –

2. Physics identity 0.34 – – – –

3. Physics self-efficacy 0.37 0.70 – – –

4. Physics Interest 0.32 0.71 0.64 – –

5. Physics perceived recognition 0.30 0.84 0.70 0.67 –

p < 0.001.



shown in Table 3, female students had significantly

lower scores in all of the five motivational con-

structs. In particular, we note that the gender

difference in students’ physics identity is larger

than that in engineering identity and students’

physics identity is lower than engineering identity,
which is expected because they are all engineering

students. In addition, Table 3 shows that both male

and female students’ physics self-efficacy and phy-

sics identity deteriorated from pre to post. More-

over, female students’ average scores on physics

self-efficacy and physics interest decreased more

than male students’ did so that the gender differ-

ences in these two constructs became larger by the
end of the course. Although students’ average score

on engineering identity also decreased from pre to

post, this change is only statistically significant for

male students.

We also conducted a one-way repeated measures

MANOVA to analyze the changes in multiple

dependent variables over time (from pre to post).

The results show that female students’ overall
physics and engineering motivational beliefs

decreased from pre to post (F(5,128) = 7.103 p <

0.001,Wilks’ Lambda = 0.78, partial eta squared (�2p
= 0.217). Partial eta squared values indicate effect

sizes in one-wayMANOVAwith �2p � 0.01 generally

considered a small effect size, �2p � 0.06 a medium

effect size and �2p � 0.14 a large effect size [89].

Follow-up univariate tests show that female stu-
dents’ physics identity (F(1,132) = 12.946, p< 0.001,

�2p = 0.089), self-efficacy (F(1,132) = 22.590, p <

0.001, �2p = 0.146), and interest (F(1,132) = 11.215, p

= 0.001, �2p = 0.078) statistically significantly

decreased from pre to post. Similarly, male students’

overall physics and engineering motivational beliefs

also decreased frompre to post (F(5,189) = 4.361 p=

0.001, Wilks’ Lambda = 0.90, �2p = 0.103). Follow-

up univariate tests show that male students’ physics
identity (F(1,193) = 14.668, p < 0.001, �2p = 0.071),

self-efficacy (F(1,193) = 10.086, p = 0.002, �2p =

0.050), and engineering identity (F(1,193) = 6.739,

p = 0.01, �2p = 0.034) statistically significantly

decreased from pre to post. Thus, the results of the

one-way repeated measures MANOVA are consis-

tent with the results shown in Table 3. In addition,

we also report the percentages of students who
selected each choice for each survey item in the pre

and post-survey (see Appendix B), which are also

consistent with the descriptive statistics shown in

Table 3.

4.2 SEM Models Mediated by Motivational

Factors

In this section, we will show the predictive relation-

ships among students’ motivational beliefs using
SEM models. We first considered a model (Model

1) in which there are only covariances between each

pair of constructs: physics perceived recognition,

self-efficacy and interest. Thus, this model does not

make assumptions about the predictive relation-

ships between these three mediating constructs. We

fit this model with our motivational survey data.

The path analysis results are shown in Fig. 3 (a).
The model fit indices suggest a good fit to the data:

CFI = 0.976 (> 0.90), TLI = 0.969 (> 0.90),
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Table 3. Descriptive statistics of female and male students’ motivational beliefs at the beginning and end of the course

Gender

Physics self-efficacy Statistics Physics interest Statistics

pre post p value Cohen’s d pre post p value Cohen’s d

Male 3.09 3.00 0.046 0.20 3.05 3.00 0.394 0.08

Female 2.97 2.78 <0.001 0.42 2.86 2.72 0.033 0.26

p value <0.001 <0.001 0.001 0.003

Cohen’s d 0.29 0.42 0.37 0.46

Gender

Physics perceived
recognition Statistics Physics identity Statistics

pre post p value Cohen’s d pre post p value Cohen’s d

Male 2.70 2.60 0.151 0.14 2.77 2.59 0.019 0.23

Female 2.44 2.36 0.310 0.12 2.42 2.23 0.043 0.24

p value 0.001 0.003 <0.001 <0.001

Cohen’s d 0.38 0.33 0.48 0.43

Gender

Engineering identity Statistics

pre post p value Cohen’s d

Male 3.62 3.50 0.036 0.21

Female 3.45 3.33 0.114 0.19

p value 0.006 0.016

Cohen’s d 0.31 0.26

The sample size is 346 (205 male students and 141 female students). Cohen suggested that a typical value d � 0.2 be considered a small
effect size, d � 0.5 represents a medium effect size and d � 0.8 a large effect size.



RMSEA = 0.049 (< 0.08) and SRMR = 0.032 (<

0.08).

As shown in Fig. 3(a), there is a statistically

significant regression line from gender to each of

physics self-efficacy, perceived recognition, and

interest, consistent with Table 3 showing that
there are statistically significant gender differences

in all of these three motivational constructs. How-

ever, the direct effects of gender on both physics

identity and engineering identity are statistically

insignificant (p = 0.21 for physics identity and p =

0.22 for engineering identity) even though female

students’ physics and engineering identities are

statistically significantly lower than those of male
students as shown in Table 3. This result indicates

that the gender differences in students’ physics and

engineering identity are actually mediated by the

other three physics motivational constructs. In

addition, Fig. 3(a) shows that even though there is

a strong covariance among physics self-efficacy,

interest, and perceived recognition, students’ phy-

sics perceived recognition is the strongest predictor

of their physics identity (� = 0.58). This result is

consistent with Hazari et al.’s [46] and Kalender et

al.’s prior work [47].
Next, we consider a model (Model 2) in which

physics perceived recognition predicts physics self-

efficacy and interest, and physics self-efficacy pre-

dicts interest. The path analysis results are shown in

Fig. 3 (b). This model also fits the data very well:

CFI = 0.976 (> 0.90), TLI = 0.969 (> 0.90),

RMSEA = 0.049 (< 0.08) and SRMR = 0.032

(< 0.08). We note that the direct effect of gender
on physics perceived recognition in Model 2 is the

same as that in Model 1. This is because in both

models, gender is the only predictor of perceived

recognition. On the other hand, the direct effects of

gender on physics self-efficacy and interest are
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Fig. 3. Results of the path analysis part of the SEM models that show how the relationship between gender and engineering
identity is mediated by physics self-efficacy, physics perceived recognition, physics interest and physics identity. (a) InModel 1,
physics self-efficacy, perceived recognition and interest are correlated with each other. (b) In Model 2, physics perceived
recognition predicts physics self-efficacy and interest, and physics self-efficacy predicts physics interest. The solid lines
represent regression paths, and the numbers on the lines are standardized regression coefficients (� values), which represent the
strength of the regression relations. Each regression line thickness qualitatively corresponds to themagnitude of �with 0.001�
p < 0.01 indicated by **. All the other regression lines show relations with p < 0.001. For clarity, we have removed all
statistically insignificant regression paths.



smaller inModel 2 comparedwith those inModel 1.

This is because in Model 2, physics self-efficacy and

interest are predicted by more constructs than in

Model 1, and thus there is more correlated effect

being controlled for when estimating the regression
coefficients from gender to physics self-efficacy and

interest.

To further understand the relationships among

the motivational constructs in different models, we

calculated the coefficients of determination R

squared (fraction of variance explained) for each

construct in each model (Table 4). We note that the

R2 of physics identity is 0.75 and theR2 of engineer-
ing identity is 0.15 in both Model 1 and Model 2.

This is because in both models, physics and engi-

neering identity are predicted by the same con-

structs, even though the predictive relationships

among the predictors are different in the two

models. Similarly, since perceived recognition is

only predicted by gender in both models, the R2

of perceived recognition is the same across models.
On the other hand, the R2 of physics self-efficacy

and interest are larger in Model 2 than in Model 1.

This is because in Model 2, physics self-efficacy and

interest are predicted by more constructs than they

are in Model 1, and thus more variance in self-

efficacy and interest is explained by Model 2.

5. Discussion

In this study, we investigated female and male

undergraduate engineering students’ engineering

identity and physics motivational beliefs (including

physics identity, self-efficacy, interest and perceived

recognition) in a calculus-based introductory phy-

sics course. In particular, we focused on the pre-
dictive relationships among these engineering and

physics motivational constructs, and how these

constructs change from pre to post in the course.

Our results reveal that students’ engineering

identity is directly predicted by their physics iden-

tity and self-efficacy. Even though physics interest

and perceived recognition do not have direct effects

on engineering identity, they all indirectly predict

engineering identity through physics identity. Since
engineering is interdisciplinary in nature and phy-

sics is an important foundational discipline for

engineering students, students’ perception of their

ability to do well in engineering may be influenced

by their physics motivational beliefs, which can be

influenced by their physics learning experiences. In

addition, since physics is one of the disciplines that

are believed to require intelligence for success [40,
41], doing well in physics may boost students’ self-

beliefs in learning other subjects such as engineer-

ing, while a low self-efficacy in physics may lead

students to doubt their ability. According to our

previous interviews with students, some students

chose to major in engineering because of their

earlier experience with mechanics in high school,

while some other engineering students considered
changing their majors because of their negative

experience in a previous physics course.

Another important finding is that even though

there are statistically significant gender differences

disadvantaging women in all engineering and phy-

sics motivational constructs, gender does not

directly predict engineering and physics identity.

This means that the gender differences in students’
engineering and physics identity are mediated

through the other three physics motivational beliefs

(physics self-efficacy, interest, and perceived recog-

nition). According to a prior study, among an

undergraduate engineering population, the gender

difference in physics self-efficacy is the largest

compared with the gender differences in students’

self-efficacy in other STEM disciplines such as
chemistry and math [43]. Thus, the gender differ-

ence in physics motivational beliefs may help

explain the underrepresentation of women in ‘‘phy-
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Table 4. Coefficient of determination (R2) for various constructs in different models

Models Constructs R2

Model 1
SE + Recog + Interest

Physics perceived recognition 0.06

Physics self-efficacy 0.08

Physics interest 0.12

Physics identity 0.75

Engineering identity 0.15

Model 2
Recog! SE! Interest

Physics perceived recognition 0.06

Physics self-efficacy 0.49

Physics interest 0.53

Physics identity 0.75

Engineering identity 0.15

All R2 values are statistically significant with p values < 0.001. In Model 1, there are only covariances between each pair of constructs:
physics self-efficacy (SE), perceived recognition (Recog), and interest. In Models 2, the arrows indicate the direction of the predictive
relationships.



sics-heavy’’ engineering disciplines. Our study

further indicates that we may be able to reduce

the gender gap in students’ engineering identity by

eliminating the gender differences in physics moti-

vational beliefs. For example, we can create a more

inclusive and equitable learning environment for
physics learning so that all students feel recognized

as people who can do well in physics and other

related disciplines.

However, our results show that the two direct

predictors of students’ engineering identity – phy-

sics identity and self-efficacy – actually decreased by

the end of the physics course for both male and

female students. Moreover, female students’ phy-
sics self-efficacy dropped even more than male

students’ did, and the gender difference in physics

self-efficacy became larger at the end of the course.

These findings may partially explain the result that

students’ average score on engineering identity also

decreased from pre to post, although this change is

only statistically significant for male students.

Overall, our results indicate that the current learn-
ing environment didn’t help students develop a

stronger engineering identity, and the gender dif-

ference in engineering identity is also maintained.

Physics courses are very important for engineer-

ing students because not only are they the founda-

tion for engineering courses, but students’ physics

motivational beliefs can also influence their atti-

tudes and beliefs toward engineering as well as their
choice of careers. Due to societal stereotypes,

physics is one of the disciplines that have a mascu-

line image and are believed to require a natural

ability to excel [42]. Studies have shown that these

stereotypes and biases can negatively impact female

students’ motivational beliefs in physics [13, 90].

According to our study, these gender differences in

physics motivational beliefs contribute to the
gender difference in undergraduate engineering

students’ engineering identity. Thus, it is important

to focus on the role played by physics courses in

students’ persistence and retention in engineering

and engineering school should work with physics

department to take effective measures to create an

inclusive and equitable learning environment in

which all students can develop a stronger identity
in both physics and engineering. There are some

research-based classroom interventions that have

been shown to reduce gender gaps in students’

performance in different types of classes (not neces-

sarily focused on engineering students) [91-94].

However, to our knowledge, no intervention has

investigated how engineering students’ self-efficacy

and identity are impacted by these interventions.
Their impact on self-efficacy and identity of engi-

neering students from different demographic

groups should be studied in future studies. Appro-

priate interventions could particularly help under-

represented engineering students such as women in

physics courses if they were designed well.

In this study, we used single item to measure

students’ physics identity and engineering identity.

Even though these items are commonly used in
studies involving physics and engineering identity

[26, 32, 39, 60, 95–97], it would be helpful in future

studies to develop more survey items for these

identity constructs. Another limitation of the cur-

rent study is that it only focuses on the under-

representation of female students and not on

other underrepresented demographic groups. In

future studies, we intend to investigatemotivational
beliefs of students from other underrepresented

groups such as ethnic/racial minority students. In

addition, the data from this study was collected

from one research university in the US. Similar

studies in different types of institutions and in

other countries would also be helpful for develop-

ing a deeper understanding of the relationships

between students’ physics motivational beliefs and
their engineering identity.

6. Conclusion

Students’ engineering identity is an important moti-

vational belief that can influence students’ retention

in engineering as well as their short-term and long-
term career goals. Introductory physics courses

usually serve as a prerequisite for many engineering

courses because they are foundation of many dis-

ciplines and contribute directly to engineering. In

this study, we investigated how undergraduate

engineering students’ physics motivational beliefs

predict their engineering identity in an introductory

physics course. We find that students’ engineering
identity is directly predicted by their physics iden-

tity and self-efficacy and also indirectly predicted by

their physics interest and perceived recognition

(RQ3). However, our results show that both

women and men’s physics identity and self-efficacy

decreased from the beginning to the end of the

course (RQ1). In addition, there are statistically

significant gender differences in all physics motiva-
tional beliefs and engineering identity, and the

gender differences in physics self-efficacy and inter-

est became larger at the end of the course (RQ2).

Our results show that students’ physics motiva-

tional beliefs play an important role in shaping

their engineering identity; however, students’ phy-

sics motivational beliefs decreased after the course,

and current learning environment didn’t help stu-
dents develop a stronger engineering identity.

Therefore, engineering school should reflect upon

the role played by physics courses in undergraduate

students’ academic trajectory and retention in engi-
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neering and work with physics department to make

intentional efforts to create an inclusive and equi-

table learning environment in which all students

can develop a stronger identity in both physics and

engineering.
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Appendix A: Multi-Group SEM Analysis

We conducted a multi-group analysis to examine whether the survey items were interpreted in a conceptually

similar manner by female and male students, and whether the strength of relationships given by the

standardized regression coefficients between any two constructs in the models differ for women and men.

We first tested for measurement invariance. In other words, we looked at whether the factor loadings,

intercepts, and residual variances of the items are equal across gender in the model. SinceModel 1 andModel
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2 include the same motivational constructs, measurement invariance tests are the same for these two models.

To test measurement invariance, we ran a set of increasingly constrained models and tested the differences

between these models. First, we examined the configural invariance model, in which the number of constructs

and the correspondence between constructs and items are the same across gender groups, but all parameters

can vary freely in each group. The result indicated that configural invariance holds (CFI = 0.975 > 0.90, TLI =

0.967 > 0.90, RMSEA = 0.051 < 0.08, SRMR = 0.038 < 0.08). Second, to test for ‘‘weak’’ measurement

invariance, we ran the model in which the item loadings were constrained to be equal across gender groups,

but intercepts and residual variances were allowed to vary between groups. According to a likelihood ratio

test, there was no statistically significant difference between the weak invariance model and the configural

invariance model, so the weak measurement invariance holds (Chi-square difference ��2 = 4.936, degree of

freedom difference �dof = 8, p = 0.764). The third step is testing for ‘‘strong’’ measurement invariance. We

ran the model in which both the item loadings and intercepts were constrained to be equal across gender

groups, but the residual variances were allowed to differ. A likelihood ratio test shows that there was no

statistically significant difference between the strong invariance model and the weak invariance model (��2 =

7.935,�dof = 8, p= 0.440) or the configural invariance model (��2 = 12.872,�dof = 16, p= 0.682), so strong

measurement invariance holds. Finally, to test for ‘‘strict’’ measurement invariance, we ran the model in

which the item loadings, intercepts, and residual variances were constrained to be equal across gender groups.

This model was statistically significantly different from the strong invariance model (��2 = 18.378,�dof = 9,

p = 0.031), therefore ‘‘strict invariance’’ did not hold. However, strict invariance is unlikely to hold in most

situations. Therefore, since strong measurement invariance holds for this model, we proceeded on to test for

structural invariance.

We tested for structural invariance to examine whether the regression coefficients among the motiva-

tional constructs are equal across gender. Since the regression relationships among the constructs are

different in Model 1 and Model 2, we conducted the structural invariance test for Model 1 and Model 2

separately. We first ran a multi-group SEM for Model 1, in which all regression coefficients were

constrained to be equal across gender groups in addition to the item loadings and intercepts. The

model fit parameters for this model indicate a good fit (CFI = 0.975, TLI = 0.972, RMSEA = 0.047,

SRMR = 0.050). According to the results of likelihood ratio tests, this model was not statistically

significantly different from either the configural invariance model (��2 = 26.599, �dof = 24, p = 0.324) or

the strong invariance model (��2 = 13.728, �dof = 8, p = 0.089). Thus, the regression pathways among

the constructs do not have statistically significant differences across gender for Model 1. Then, we ran a

multi-group SEM for Model 2, in which all regression coefficients were constrained to be equal across

gender groups in addition to the item loadings and intercepts. This model also fits the data very well (CFI

= 0.975, TLI = 0.972, RMSEA = 0.047, SRMR = 0.048). Similarly, there was no statistically significant

difference between this model and the configural invariance model (��2 = 25.754, �dof = 24, p = 0.366) or

the strong invariance model (��2 = 12.882, �dof = 8, p = 0.116). Thus, structural invariance also holds

for Model 2.

Appendix B: Percentages of Students Who Selected Each Choice for Each Survey Item

In the main text, we investigated how students’ motivational beliefs change from the beginning to the end of

the course by comparing their average scores on themotivational constructs in the pre- and post-survey. Here,

we present the percentages of female (Table 5) and male students (Table 6) who selected each answer choice

from a 4-point Likert scale for each survey item. Students were given a score from 1 to 4 respectively with

higher scores indicating greater levels of interest, self-efficacy, perceived recognition, physics identity, and

engineering identity.

As shown in Table 5 and Table 6, for both female and male students, the percentages of students who

selected 3 or 4 for most survey items under self-efficacy and physics identity decreased from pre to post, while

the percentages of students who selected 1 or 2 increased. These results are consistent with the descriptive

statics shown in Table 3, which show that both male and female students’ self-efficacy and physics identity

statistically significantly decreased from the beginning to the end of the course. In addition, by comparing

Table 5 and Table 6, we found that formost survey items, the percentages of female students who selected 1 or

2 were larger than those ofmale students, while the percentages of female students who selected 4were smaller

than those of female students. These findings are also consistent with Table 3 showing that there were

statistically significant gender differences in all motivational constructs studied.
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Table 5. Percentages of female students who selected each choice from a 4-point Likert scale for each survey item in the pre- and post-
survey

Survey items

Pre Post

1 2 3 4 1 2 3 4

SE1 4% 26% 65% 5% 9% 25% 60% 6%

SE2 2% 11% 78% 9% 4% 16% 74% 6%

SE3 0% 5% 72% 23% 6% 20% 61% 14%

SE4 0% 11% 72% 18% 5% 19% 65% 11%

Int1 6% 38% 44% 12% 8% 22% 46% 24%

Int2 1% 9% 70% 19% 4% 22% 63% 11%

Int3 0% 25% 62% 13% 5% 48% 39% 9%

Int4 1% 27% 54% 18% 6% 29% 54% 11%

Recog1 11% 39% 42% 7% 13% 38% 41% 8%

Recog2 12% 36% 45% 6% 12% 39% 40% 9%

Recog3 7% 50% 42% 1% 15% 54% 29% 2%

Physics identity 9% 48% 38% 6% 16% 49% 30% 5%

Engineering identity 0% 4% 46% 49% 1% 5% 52% 41%

The self-efficacy (SE) and interest (Int) items have the response scale: 1 = NO!, 2 = no, 3 = yes, and 4 = YES!, while the perceived
recognition (Recog), physics identity, and engineering identity items have the response scale: 1 = strongly disagree, 2 = disagree, 3 = agree,
and 4 = strongly agree.

Table 6. Percentages of male students who selected each choice from a 4-point Likert scale for each survey item in the pre- and post-survey

Survey items

Pre Post

1 2 3 4 1 2 3 4

SE1 2% 27% 60% 10% 3% 20% 64% 13%

SE2 0% 8% 72% 20% 0% 11% 68% 20%

SE3 0% 4% 60% 36% 3% 14% 55% 27%

SE4 0% 8% 69% 23% 0% 18% 65% 17%

Int1 4% 24% 42% 29% 4% 14% 38% 43%

Int2 2% 6% 66% 25% 3% 12% 60% 25%

Int3 2% 15% 61% 21% 3% 28% 47% 21%

Int4 1% 15% 62% 22% 4% 25% 49% 21%

Recog1 4% 31% 49% 16% 9% 26% 49% 15%

Recog2 6% 33% 43% 18% 10% 33% 42% 15%

Recog3 5% 35% 54% 5% 13% 35% 46% 6%

Physics identity 3% 30% 52% 14% 11% 32% 45% 12%

Engineering identity 1% 1% 32% 66% 1% 4% 39% 56%

The self-efficacy (SE) and interest (Int) items have the response scale: 1= NO!, 2 = no, 3 = yes, and 4 = YES!, while the perceived
recognition (Recog), physics identity, and engineering identity items have the response scale: 1 = strongly disagree, 2 = disagree, 3 = agree,
and 4 = strongly agree.


