
Practical Prediction of Overall Performance from

Formative Assessment Results of Engineering Students*

STEPHEN O. EKOLU
Department of Civil Engineering, Nelson Mandela University, PO Box 77000 Gqeberha 6031, South Africa.

E-mail: Stephen.Ekolu@mandela.ac.za; sekolu@gmail.com

In this paper, a new model was employed for probabilistic prediction of overall performance of engineering students. The

model employs formative assessment results to estimate the summative assessment mark of an individual student. In the

present study, statistical evaluation of predictions was conducted using data of seven (7) examination events involving 441

students studying bachelors and master’s degrees of civil engineering programmes. The other key variables of the data

comprised different class sizes, and heterogeneous classes containing students of varied academic performance levels. It

was found that the model gave realistic predictions with a good to excellent level of accuracy. The range for summative

performance results of students whose formative assessment marks fall between 50 to 70%, can be accurately estimated.

The model may be used to inform policy frameworks targeted at promoting students’ performance and throughput.
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1. Introduction

Progress of students towards achievement of learn-

ing objectives set out at the beginning of module

teaching, is typically monitored using formative

assessments. Accordingly, assessment data are

compiled throughout the module’s teaching dura-

tion over the semester or year. For students, these

data may provide the information and/or course of

action needed for him/her to sustain or improve
learning achievements towards mastery of the sub-

ject. Instructors also employ these data to improve

module delivery for betterment of students’ perfor-

mance. Assessments involve the administration of

assignments, tests, examinations etc. needed to

determine the performance of students for purposes

of deciding academic progression [1, 2].

1.1 Current Perspectives and Developments on

Assessment Approaches

In the earlier associated paper [3], reports from

various literatures are discussed showing that signifi-

cant correlation exists between formative versus
summative assessment results at higher or tertiary

level of education [4–7]. Later in Section 2.0 of this

paper, further discussion is given on components of

each assessment type. Engineering studies in most

higher education institutions (HEIs) employ a system

of integrated formative and summative assessments,

following recommendations from earlier research

studies of 1960’s to 1990’s that led to policy changes
worldwide, as elaborated by Looney [8].

Even prior to the COVID-19 pandemic, there

was a shift in emphasis towards the importance of

formative assessments on grounds that this type of

assessments aid students in developing learning

skills [9], through utilisation of feedback mechan-
isms provided during the course of module teach-

ing. Relatively, weak performing students tend to

benefit more highly from formative assessments,

leading to improvement of their overall success

results, which in turn increases the overall pass

rate for the module. Meanwhile, summative assess-

ments comprising tests, examinations etc. are

deemed to measure performance of students
towards promotion or progression to the next

level, or towards completion of study. As such,

summative assessments are often associated with

evaluation of cognitive abilities of students [8, 10].

COVID-19 pandemic lockdown has impacted

education worldwide since 2019. In response,

alternative technology-anchored educational

approach(es) were rapidly enhanced or developed,
and employed for learning and teaching by HEIs

worldwide. Consequently since then, online teach-

ing has taken centre-stage as the main alternative

(at least temporarily) to the conventional contact

face-to-face teaching and learning. Owing to the

remote nature of learning under online teaching,

assessments were also generally transitioned (at

least temporarily) to continuous evaluation (CEv),
as opposed to the conventional summative evalua-

tion (SEv) approach. Table 1 outlines the differ-

ences between CEv and SEv as employed in South

Africa. It can be seen in the table that, both

approaches contain elements of both formative

and summative assessment components but of

different weightings, criteria or requirements. In

the conventional SEv approach, a high weighting
of at least 50% is typically assigned to end-of-
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module examination assessment (EMA) mark,

while the CEv approach comprises a relatively
larger number of assessment opportunities such as

assignments, tests, tutorials etc., (Section 2.0) with

smaller weightings assigned to each. The present

paper, however, is based on data generated under

the conventional SEv approach, as explained later

in Section 3.0.

1.2 Objectives

A new model giving the mathematical relationship

between formative and summative assessment

results, was recently proposed in the associated
paper [3]. In the present study, the new model

was employed for probabilistic predictions to

determine summative performance of engineering

students, while also assessing the model’s robust-

ness and accuracy. Accordingly, data employed in

the study contained several variables involving

varied class sizes, heterogeneous classes with stu-

dents of widely varying academic performance
levels, different degree programmes comprising

bachelors and masters study levels etc. The sto-

chastic applicative approach was employed to

evaluate the potential for practical application of

the prediction method.

2. Measurement of Learning Outcomes

Most HEIs offering undergraduate and post-

graduate engineering study programmes, utilize

the different types of assessments shown in Fig. 1.

Typically, instruction process assessments are con-

ducted to satisfy quality assurance system require-

ments of the institution. Meanwhile, the success or
failure of students in their modules or study pro-

grammes, is determined from competence i.e. for-

mative and summative assessments, conducted by

departments that host the particular study pro-

gramme(s) offered.

Formative assessments are continuous evalua-

tions on the learning acquired by students during

the course of module delivery. In engineering dis-
ciplines for example, formative assessments typi-

cally involve various forms including assignments,

practical work, experiments, class tests etc. These

assessment components are conducted progres-

sively at different stages of the module’s teaching

delivery, for purposes of enriching and evaluating
students progress. Summative assessment typically

comprises a final test or EMA. This high stakes test

or examination is conducted to evaluate mastery of

the knowledge attained by students, in relation to

the module content delivered during the course of

learning. Accordingly, summative assessment is

typically structured to provide balanced coverage

of the module content, rather than simply selecting
sections or parts of it. Summative assessment marks

are then integrated with formative assessment

results, to determine the overall academic perfor-

mance of a student. The foregoing process may be

structured to follow the SEv or CEv approach, as

earlier discussed (Section 1.1, Table 1).

Learning outcomes in engineering studies are

typically pre-defined according to the accreditation
requirements, governed by a national professional

body. In South Africa for example, the Engineering

Council of South Africa (ECSA) which is also a

signatory to an International Accord recognizing

engineering programmes in 17 different countries,

places a demand on HEIs to ensure that students

achieve the specified learning outcomes [11]. HEIs

are therefore required to measure these learning
outcomes based on evidence that demonstrates

satisfactory attainment by students at exit level. In

engineering studies, the required knowledge areas

that must be taught and assessed comprise basic

sciences, mathematical sciences, engineering

sciences, engineering design and synthesis, as these

form the core tenets of the discipline. Meanwhile,

generic or transferable knowledge and skills (also
referred to as soft skills) such as computing, infor-

mation technology and other complementary sub-

jects, are offered selectively at the discretion ofHEIs

and their departments.

At exit level, the competencies attained by stu-

dents must be demonstrated. For example, students

are required to satisfy the outcomes of core compe-

tency domains such as problem solving, applied
scientific knowledge, engineering design, ability to

conduct engineering procedures and investigations

etc. In addition, students are also required to show

satisfactory attainment of generic competencies

which may include professionalism, technical com-
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Table 1. Comparison of summative and continuous evaluation approaches.

Conventional summative evaluation (SEv) Continuous evaluation (CEv)

1. 40% subminimum semester mark is required to qualify for
end-of-module examination (EMA).

No subminimum required or involved.

2. Re-write i.e. supplementary examination, is administered. No re-write for students that fail the module.

3. Number of assessments are fewer. A larger number of assessment opportunities are
administered.

4. Higher weighting of 50–70% is allocated to EMA. Smaller weightings are distributed across several assessment
opportunities which may or may not include EMA.



munication, lifelong learning ability, teamwork

abilities, and awareness of the impact of engineer-

ing in society [12]. Evidently, effectivemonitoring of

the foregoing competencies requires that integrated

formative and summative assessments, are con-

ducted at different stages of learning. For example,
the student’s ability to conduct engineering proce-

dures and methods, would be evaluated based on

experiments and projects, while technical commu-

nication and/or teamwork would be assessed

through writing of laboratory and project reports.

These components fall under the formative assess-

ment category. It should also be considered that

students tend to direct their study efforts and
commitments, in accordance with the type and

value of assessment. High stakes assessments that

contribute strongly to the overall grade, are gen-

erally taken more seriously and given greater com-

mitment by students, relative to those that are

assigned low weightings [1, 13–15].

Already it was mentioned earlier, that formative

assessments typically consist of several compo-
nents including assignments, laboratory projects,

class tests etc., while summative assessment

usually involves a single test or EMA event. For

most South African engineering study pro-

grammes, the results of formative and summative

assessments may contribute equally to the overall

assessment mark (OAM) awarded to the student.

Accordingly, the OAM mark is a composite of
50% formative assessment mark (FAM) plus 50%

examination (EXAM) mark. It may be recalled

that formative assessment is also a composite of

sub-components comprising different weightings.

For example, a FAM mark composite may com-

prise 5% assignment, 10% project report and 35%

class test. In such a multifaceted assessment

approach, students are compelled to direct their
study efforts to both the formative and summative

assessments, with some understanding of the

implications associated with results that they

obtain from each assessment component. Instruc-

tors also face the challenge of developing effective

assessments that appropriately measure the learn-

ing outcomes. In the literatures, some attempts

have been made to define some criteria that could

be used to determine the effectiveness of assess-
ments [16–19].

3. Data Characteristics

Data employed in the model’s evaluation com-

prised four (4) civil engineering modules involving

441 students in seven (7) different examination

events. The variables embedded in the data include

the involvement of: (i) various undergraduate and

postgraduate degree programmes, (ii) different
engineering sub-disciplines and programmes com-

prising BEng in civil engineering and MEng in

structural engineering, (iii) various class groups of

small to large sizes ranging from 29 to 97 students,

(iv) heterogeneous classes comprising students of

different academic competencies, as indicated in

Table 2 showing varying class average values of

the FAM and OAM marks.
The present data are based on the SEv approach

(Section 1.1), in which the OAM mark was calcu-

lated using fixed weightings of 50% FAMmark and

50% EMA examination mark (Table 1). In the

present study, only the FAM and OAM results

are of interest. As mentioned earlier, the FAM

mark itself is a composite result determined from

assignments, laboratory experiments, class tests
etc., all of which are combined using weightings

that are different for each module, as decided upon

by the instructor(s). Table 2 is a summary of data

employed in the present study, giving class averages

of FAM and OAMmarks for each of the examina-

tion events. The modules S4A18 and DAR18 gave

the least and the best OAM results comprising class

averages of 47.1% and 62.7%, respectively. As
expected, FAM marks are relatively higher than
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Fig. 1. Types of educational assessments at higher institutions of learning.



the corresponding OAM marks. However, the

FAM and OAM marks show similar respective

standard deviations of 10.1 and 9.3.

4. Prediction Model

Derivation of the new model given in equation

below, is described in an earlier associated paper [3].

OAM = P(FAM)Q

where P = 3.2 and Q = 0.7

and Q = 1.033P–0.347

In the equation, P and Q are variables describing

the data characteristics holistically associated with

the module delivery and students learning experi-

ences. Although these two variables may change

depending on data characteristics, Ekolu [3] recom-

mends using P = 3.2 and Q = 0.7 as starting values.
Also given in [3] are different values of P andQ, that

may be considered for modules of different data

characteristics.

5. Comparison of Model’s Prediction with
Actual Results

The strong relationship between FAM and OAM
marks forms the basis of the model’s formula given

in the foregoing section. It is emphasized that data

used in the present study are independent of those

that were employed in [3] for themodel’s derivation.

For each module, the present study compares the

model’s predicted OAM results against actual

OAM marks of the individual students, as shown

in Fig. 2. It can be seen that for all modules, data

points lie along the line of equality, thereby depict-

ing statistical equality between the two sets of

results. Considering the wide range of variables

embedded in data characteristics, the model’s
demonstrated ability to correctly predict OAM

results of individual students, is quite remarkable.

Having observed the models prediction veracity,

subsequent sections of this paper provide statistical

evaluation of the model’s accuracy and its potential

for practical employment using the probabilistic

applicative approach.

5.1 Statistical Error Analysis

The model’s prediction performance was evaluated

using various error indicators including the ratio of
actual value (AV) of OAM to predicted value (PV)

of the OAM mark i.e. AV/PV ratio, the root mean

square of errors (RMS) and the coefficient of

variation of errors (CV). Definitions for these

parameters are already given in earlier works of

the author [3, 20, 21] and are therefore not repeated

here. For data of eachmodule, the AV/PV ratio was

calculated for each individual student. Considering
the large data comprising 441 students, it is not

convenient to present all the individual ratios in this

paper, hence only the average ratio determined for

each module, is given in Table 3. It can be seen that

AV/PV values are between 0.95 to 1.09, indicating

that the two sets of results are within the range of
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Table 2. Assessment data of the various modules.

Module no. Module name

Civil
engineering
degree

Class Size
(No.)

FAM
class average marks

OAM
class average marks

Mark (%) Std dev Mark (%) Std dev

1 S4A17 BEng 83 68.5 8.5 58.3 8.2

2 S4A18 BEng 74 52.6 11.3 47.1 8.1

3 S4A19 BEng 97 60.8 8.7 56.0 10.3

4 ACT18 MEng 62 59.1 9.5 59.3 10.6

5 DAR16 MEng 29 64.5 8.3 58.6 6.8

6 DAR18 MEng 33 63.0 13.3 62.7 10.4

7 ARCAD19 MEng 63 59.4 10.8 55.6 10.4

Global value 441 63.4 10.1 58.04 9.26

Table 3. Statistical error indicators of prediction accuracy

Module no. Module name Class size Average AV/PV ratio RMS CV (%)

1 S4A17 83 0.95 6.7 11.4

2 S4A18 74 0.95 6.5 13.8

3 S4A19 97 0.99 7.9 14.2

4 ACT18 62 1.07 9.2 15.6

5 DAR16 29 0.99 3.8 6.5

6 DAR18 33 1.09 9.3 14.8

7 ARCAD19 63 1.0 6.6 12.0

Global value 1.01 5.0 8.83



perfect agreement which occurs at the ratio of 1.0.

The observed accuracy ofAV/PV values, also affirm

the observations seen in the graphs of Fig. 2

showing strong correlations, with data values for
each module consistently falling along the line of

equality.

Typically in practice, a standard deviation of

<5.0 or coefficient of variation <10%, indicates an

excellent degree of control. A good degree of

quality control is associated with a standard devia-

tion of 5.0–7.0 or coefficient of variation of 10–15%

[22]. The lowRMS values of 4.0–9.0 obtained in the
present study, indicate that the model exhibits good

to excellent prediction performance. Similarly, the

low CV values of 6–16% obtained, indicate that the

model’s predictions are of high accuracy. Recog-

nized engineering code-type models typically give

CV values of 20 to 45% [20, 23, 24]. Evidently, the

model employed in the present study exhibits

greater prediction accuracy than some well-estab-

lished code-type models.

It is also interesting to note that class size
influences the RMS value of results. Fig. 3 shows

that RMS values generally increased with increase

in class size. The trend seen in Fig. 3 appears to

indicate that class groups of small, medium and

large sizes may be categorized as those having

10–30, 31–70 and >70 students, respectively.

Small to medium class sizes gave sporadic RMS

values widely varying between 4.0–9.0. Further
research is needed to investigate this observation.

Meanwhile for large class sizes exceeding 70 stu-

dents, the spread of RMS values becomes narrower

with corresponding increase in class size. Overall,

the RMS value converged towards 9.0 as class

groups increased from small to large sizes.
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Fig. 2. Plots of actual OAM marks versus predicted OAM values: OAM – overall assessment mark.
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Fig. 3. Relationship between class size and root mean square of errors (RMS).

Fig. 4. Residuals between the predicted and actual OAM marks: OAM – overall assessment mark.



5.2 Residuals

Fig. 4 gives plots of residuals for the various
randomly selected modules. Clearly, no heterosce-

dasticity tendencies such as convergence or fanning

out occurred, as class size increased. Also shown in

the graphs are limits for 95% confidence interval.

Generally in all cases, the residuals fall within the

95% confidence limits. However, this interpretation

is meaningful under the assumption that residuals

exhibit the normal distribution characteristics. This
presumption is indeed correct as seen in Fig. 5,

showing that residuals for all the modules exhibited

normal distribution curves.

5.3 Probabilistic Predictions

Variability is inherent in data of natural processes

and systems. In order to account for variability of

data in the model’s predictions, the stochastic

applicative method is the appropriate approach

typically employed. Based on statistical error cal-

culations shown in Table 3 and the criteria given in

[22], the average RMS value of 7.0 was selected for

use in probabilistic prediction calculations. To
demonstrate stochastic application of the method,

seven (7) data sets were randomly selected from

various modules. The selection process was done

randomly while ensuring that one data set is

obtained from each module and that the selected

OAM marks covered the full range of results from

40 to 90%. Marks below 40% were excluded since

only students with a sub-minimum FAM mark
exceeding this value, are usually allowed to take

the EMA examinations. Also, values above 90%

were excluded since such a high level of marks, is

rarely achieved in engineering modules.

Stephen O. Ekolu1112

Fig. 5. Residuals exhibiting the normal distribution curve behaviour.



Initially, the model’s deterministic predictions

were calculated. Then by applying 1.0, 1.5 and 2.0

standard deviations, each deterministic mark pre-

diction was converted to a range of minimum and

maximum values at the different probability levels

of 68.2%, 86.6% and 95%, respectively. Table 4
gives results of the probabilistic predictions for

the randomly selected data sets. The range of

marks showing the minimum and maximum pre-

dicted OAM values, are given for each probability

level. As expected, deterministic predictions did not

give correct estimations of the actual OAM marks.

Results show that probabilistic predictions gener-

ally gave correct estimates of OAM values at an
accuracy that was dependent on the level of prob-

ability. At 68.2% probability, three (3) of the seven

(7) predicted OAM results, were incorrect. At

86.6% probability, the number of incorrect predic-

tions reduced to only two values. At 95% prob-

ability, all the model’s predictions were correct. It

may be noted that the values that were incorrectly

predicted were either the very low or very high
marks, basically falling at the tail ends of the bell

distribution curve. Considering that all data of the

OAM marks exhibited the normal distribution

curve behaviour, tail ends of the curve represent

quite a small group of students.

From a practical perspective, it is also essential to

consider the spread or range of predictions. At 90

and 95% probability levels, the �10.5% and �15%
range values of predictions, are too large to be of

practical use. However, the range of �7.0% for

predictions at 68.2% probability, is reasonable

enough for practical purposes. Interestingly for

FAM values falling between 50 and 70%, the

corresponding OAM marks were predicted by the

model, at 68.2% probability with 100% accuracy.

6. Model’s Applications, Limitations and
Future Research

6.1 Applications

The proposed model can be used by instructors as

a screening tool during compilation of marks. If

for example during grading, the OAM marks

obtained by several students are found to fall

outside the predicted performance results, such

an observation may be an indication of an anom-

aly. In such cases, the instructor may then take
further steps, which may include checking the

marked scripts, interrogation of issues that may

have unfolded prior to the final examination etc.

The model can also be a useful tool to foster

students’ preparation for summative assessment.

Based on FAM results, students can be informed

of their predicted performance in summative

assessment. Such prior knowledge gives students
an anticipatory frame of mind which can be

employed as an informed scientific basis for set-

ting performance goals.

Finally, the model can be embedded into a

policy framework under different scenarios to

enhance students learning and performance

towards the promotion of throughput. The drop-

out rate for engineering programmes in South
Africa is very high, being 56% while only 30% of

students complete engineering programmes after

five (5) years of study [25, 26]. Improvement of

student’s performance during engineering studies

is therefore of high importance to stakeholders.

The proposed model has the potential to improve

student’s performance, but it may only be effective

once built into the policy framework of HEIs. It is
possible for HEIs to enact a policy that allows

establishment of a dedicated ‘‘student perfor-

mance monitoring’’ unit within an organogram

of the university. The role of such a unit would

be to apply techniques such as the proposed model

etc., in order to timeously identify weak perform-

ing students that may need appropriate interven-

tions during the course of formative assessments.
Proactive measures can then be determined and

undertaken to support such students in improving

performance during summative assessment(s)

undertaken towards the end-of-module teaching

delivery.
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Table 4. Probabilistic predictions for overall assessment marks.

Data no.
Module
name

Student
name FAM*

EXAM
or EMA

Actual
OAM

Predicted
OAM

68.2%
probability

86.6%
probability

95%
probability

1 S4A17 BNN 61 44 53 56.9 50–64
p

46–67
p

39–67
p

2 S4A18 ZBOP 46 35 41 46.7 40–54
p

36–57
p

27–55
p

3 S4A19 DBP 58 31 45 54.9 48–62 X 44–65
p

31–59
p

4 ACT18 MSO 81 80 81 69.4 62–76 X 59–80 X 67–95
p

5 DAR16 LM 70 42 56 62.6 56–70
p

52–73
p

42–70
p

6 DAR18 SAJT 64 57 61 58.8 52–66
p

48–69
p

47–75
p

7 ARCAD19 ST 63 27 45 58.2 51–65 X 48–69 X 31–59
p

* FAM – formative assessment mark, OAM – overall assessment mark, EXAM is end-of-module examination (EMA)mark,
p
– correct

prediction, X – incorrect prediction.



6.2 Limitations and Future Research

It was highlighted in Ekolu [3] (also Section 4.0)

that data characteristics of modules may differ

depending on factors that underlie their generation.

The present study claims that when the model is

employed under stochastic analysis, it is fully accu-

rate for prediction of formative marks that fall

within the range of 50 to 70%. However, this
observation was based on limited data generated

by one lecturer in one discipline i.e. civil engineer-

ing. However, the current research is ongoing and

incremental. The earlier associated studies [3, 7]

focussed on literature review, research justification

and model development using a small set of data.

Subsequently, the validation study presented in this

paper involved several variables in a larger data set
generated by one civil engineering lecturer (Section

3.0).

Further research is needed to evaluate the

model’s performance using data generated by sev-

eral lecturers other than the model’s developer.

Moreover, such data should be sourced from

other engineering disciplines including mechanical,

electrical, industrial engineering etc., in addition to
data of civil engineering modules. Also needed is a

case study, to practically apply themodel actively in

real-time during the course of teaching and learning

over the semester or year.

So far, the model has been validated using data

that was generated based on the conventional SEv

assessment approach (Sections 1.1, 3.0). With
online teaching taking centre-stage due to the

COVID-19 pandemic, there is need to investigate

and determine whether or not, the model could also

be employed under the CEv assessment approach.

7. Conclusions

A new model was employed to conduct probabil-

istic prediction of overall performance for civil

engineering students, based on their formative
assessment results. It was found that the model

showed robustness under a wide range of variables.

Statistical evaluation shows that overall perfor-

mance results for students whose formative assess-

ment marks fall between 50 and 70%, may be

estimated at 68.2% probability with 100% accuracy.

The new model may be employed under a policy

framework towards promotion of students’ perfor-
mance and throughput.
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